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Research Announcement 

SOME NEW TWO-DIMENSIONAL 
HOMOGENEOUS CONTINUA 

KAREN VILLARREAL* 

A continuum is a compact, connected metric space. A con
tinuum is homogeneous if, for any pair of points x, y in X, 
there exists a homeomorphism h : (X, x) --+ (X, y). A contin
uum Y is aposyndetic if for each pair of distinct points x and 
y in Y, there is a subcontinuum S of Y such that x E int(S) 
and y E Y - s. 

A continuous decomposition of a continuum is a partition of 
the continuum into subcontinua such that the quotient map of 
the partition is both open and closed. Let X be a continuum 
which has a continuous decomposition into continua, and let 
f : X --+ Q be the quotient map where Q is a homogeneous 
continuum. We call the following property of X, with respect 
to f, Property H: 

If h is any homeomorphism of Q, and if h(f(x)) == 
f (y ), then there is a homeomorphism Ii : (X, x) --+ 

(X, y) such that f 0 It == h 0 f. 
We announce the proof of the following theorem: 

Theorem. Let X be a continuum with a continuous decompo
sition into nondegenerate continua, and let f : X --+ Q be the 
quotient map, where Q is a homogeneous continuum and X 
has Property H with respect to f. Let X == {(x, y) E X x X : 
f(x) == f(y)} == U{f-l(q) X f-l(q) : q E Q}. Then X is an 
aposyndetic, homogeneous continuum such that for each q E Q, 

dim(f-l(q) x f-l(q)) :::; dimX :::; dim(X x X). 

*It is acknowledged that this research was a dissertation done at Tulane 
University under the direction of Professor James T. Rogers, Jr .. 
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Three continua which satisfy the hypothesis of the above 
theorem are the pseudo-arc, the circle of pseudo-arcs, and a 
solenoid of pseudo-arcs. 

A pseudo-arc, which we will denote P, is a chainable, hered
itarily indecomposable continuum. A chainable continuum is 
a continuum which is homeomorphic to an inverse limit of arc
s, and an indecomposable continuum is a continuum which is 
not the union of two of its proper subcontinua.' A continuum 
is hereditarily indecomposable if every subcontinuum is inde
composable. The pseudo-arc was first constructed by Knaster 
[3] in 1922. It was shown to be homogeneous by Bing [1] in 
1948. 

A circle of pseudo-arcs (CP) is a circle-like continuum with 
a continuous decomposition into pseudo-arcs, such that the 
quotient space is a circle. Bing and Jones [2] constructed a 
circle of pseudo-arcs in 1954, and showed that the circle of 
pseudo-arcs is homogeneolls. 

A solenoid is an inverse limit of circles with covering maps 
as the bonding maps. In 1977, for each solenoid S, J.T. Rogers 
[6] constructed a solenoid of pseudo-arcs (SP), that is, a ho
mogeneous continuum with a continuous decomposition into 
pseudo-arcs, such that the quotient space is S. 

In 1984, W. Lewis [4] generalized the above results by show
ing that the points of any homogeneous one-dimensional con
tinuum Q can be "blown up" into pseudo-arcs, so that the 
resulting continuum is a homogeneous continuum with a con
tinuous decomposition into pseudo-arcs such that the quotient 
space is Q. The continuum obtained by blowing up the points 
of the pseudo-arc into pseudo-arcs is known to be homeomor
phic to the pseudo-arc [5]. The continua constructed in Lewis' 
paper satisfy Property H with respect to the quotient map 
of the continuous decomposition into pseudo-arcs. Hence, for 
each of these continua, the construction in the theorem above 
yields a two-dimensional, aposyndetic, homogeneous continu
um. 
_ ILa pape0 0 be published elsewhere, we will show that 
P, CP, and SPare not homeomorphic to any known homoge
neous continua. J.T. Rogers has informed the author that, in 
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the case of CP, this solves a problem posed by the late Andrew 
Conner about 10 years ago. 
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