Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

Topology Proceedings Vol 16, 1991

A FIXED-POINT THEOREM FOR TREE-LIKE CONTINUA

CHARLES L. HAGOPIAN

ABSTRACT. Let M be a tree-like continuum and let H be a map of $M \times [0,1]$ onto M such that H(x,0) = x for each point x of M. Let f_t be the map of M into M defined by $f_t(x) = H(x,t)$. We prove that for some t > 0, the map f_t has a fixed point.

1. INTRODUCTION.

Recently, Minc [Mi] used an example of Bellamy [B] to construct a tree-like continuum that admits fixed-point-free selfmaps arbitrarily close to the identity. We show that it is impossible to define a homotopy on a tree-like continuum that is made up of such maps. This is a partial solution to the problem of determining whether every deformation of a tree-like continuum has a fixed point [L, Problem 29]. Our proof is based on the dog-chases-rabbit principle [Bi2]. The author previously used this principle to prove that all deformations of uniquely arcwise connected continua [H2] and nonseparating plane continua [H3] have fixed points. For more information about fixed points of tree-like continua see [Bo], [C], [FM], [H4], [Ha], [M], [Ma], and [OR].

2. DEFINITIONS.

A map f of a space S is a deformation if there exists a map H of $S \times [0,1]$ onto S such that H(x,0) = x and H(x,1) = f(x) for each point x of S.

A continuum is a nondegenerate compact connected metric space.

A continuum is *uniquely arcwise connected* if it is arcwise connected and does not contain a simple closed curve.

A nonseparating plane continuum is a continuum in the plane whose complement relative to the plane is connected.

A chain is a finite collection $\{L_i : 1 \le i \le n\}$ of open sets such that $L_i \cap L_j \ne \emptyset$ if and only if $|i-j| \le 1$. If n > 2 and the conditions of the preceding definition hold with the exception that $L_1 \cap L_n \ne \emptyset$, then the collection is called a *circular chain*. Each L_i is called a *link*.

A collection \mathcal{R} of sets is *coherent* if for each nonempty proper subcollection \mathcal{S} of \mathcal{R} , an element of \mathcal{S} intersects an element of $\mathcal{R} \setminus \mathcal{S}$.

A finite coherent collection \mathcal{T} of open sets is a *tree-chain* if no three elements of \mathcal{T} have a point in common and no subcollection of \mathcal{T} is a circular chain.

A continuum M is tree-like if for each positive number ϵ there is a tree chain covering M such that each element has diameter less than ϵ [Bi1, p. 653].

A continuum is *hereditarily unicoherent* if each pair of its intersecting subcontinua has a connected intersection. Each tree-like continuum is hereditarily unicoherent.

3. The result.

Theorem Suppose M is a tree-like continuum and H is a map of $M \times [0,1]$ onto M such that H(x,0) = x for each point x of M. Let f_t be the map of M into M defined by $f_t(x) = H(x,t)$. Then for some t > 0, the map f_t has a fixed point.

Proof. Assume each f_t with t > 0 is fixed-point free.

By the compactness of M, there is a positive number ϵ such that

(3.1) $\rho(x, f_1(x)) > 2\epsilon$ for each point x of M.

For each point x of M, let $\mathbb{Z}(x)$ denote the arc-component of M that contains x. Since M is hereditarily unicoherent, $\mathbb{Z}(x)$

does not contain a simple closed curve. Thus $\mathbb{Z}(x)$ is uniquely arcwise connected.

Notation Let y be a point of $\mathbb{Z}(x)\setminus(x)$. The unique arc and half-open arc in $\mathbb{Z}(x)$ with endpoints x and y are denoted by [x, y] and [x, y), respectively. We define [x, x] to be $\{x\}$.

For each point x of M, Borsuk [Bo] showed there exists a unique sequence $a_1(x), a_2(x), \ldots$ of points of $\mathbb{Z}(x)$ such that $a_1(x) = x$ and for each positive integer n,

(3.2) $\rho(a_n(x), a_{n+1}(x)) = \epsilon$ [Bo,(4_n)],

(3.3) if $y \in [a_n(x), a_{n+1}(x))$, then $\rho(a_n(x), y) < \epsilon$ [Bo, (5_n)],

(3.4) $[x, a_n(x)] \cup [a_n(x), a_{n+1}(x)] = \{a_n(x)\}$ [Bo, (11)], and (3.5) $[a_n(x), a_{n+1}(x)] \subset [x, f_1(a_n(x))]$ [Bo, (7_n), (13)].

For each positive integer n, let ψ_n be a homeomorphism of the half-open real line interval [n-1,n) onto $[a_n(x), a_{n+1}(x))$. For each nonnegative real number r, let $\psi(r) = \psi_n(r)$ if $n-1 \leq r < n$.

Let $\mathbb{P}(x) = \bigcup \{ [x, a_n(x)) : n = 2, 3, ... \}$. By (3.4), ψ is a oneto-one map of the nonnegative real line $[0, +\infty)$ onto $\mathbb{P}(x)$. The map ψ determines a linear ordering << of $\mathbb{P}(x)$ with x as the first point. The set $\mathbb{P}(x)$ is called a *Borsuk ray*.

By [H2, (3.6)].

(3.6)
$$\mathbb{P}(x)$$
 is $\{z \in \mathbb{Z}(x) : [x, y] \cap [z, f_1(z)] = \{z\}\}$.
For each point y of $\mathbb{P}(x)$,

(3.7) the Borsuk ray $\mathbb{P}(y)$ is $\{z \in \mathbb{P}(x) : y = z \text{ or } y \ll z\}$.

To see this let z be a point of $\mathbb{P}(x)$ such that y = z or $y \ll z$. Then $[x, y] \cap [y, z] = \{y\}$. By (3.6), $[x, z] \cap [z, f_1(z)] = \{z\}$. Thus $[y, z] \cap [z, f_1(z)] = \{z\}$. It follows from (3.6) that $z \in \mathbb{P}(y)$. Hence $\mathbb{P}(y)$ contains $\{z \in \mathbb{P}(x) : y = z \text{ or } y \ll z\}$. Now (3.7) follows from (3.2) and the fact that $\mathbb{P}(y)$ is a one-to-one continuous image of $[0, +\infty)$.

By (3.2) and (3.5) with n = 1, for each point x of M, (3.8) $\mathbb{P}(x) \cap [x, f_1(x)]$ is an arc of diameter at least ϵ .

Let τ be a positive number such that for each point x of M, (3.9) the diameter of $H(x \times [0, \tau])$ is less than $\epsilon/10$. By the compactness of M, there is a positive number δ less than $\epsilon/144$ such that

(3.10) $\rho(x, f_t(x)) > \delta$ for each point x of M and each number $t \ge \tau$.

Let \mathcal{T} be a tree chain covering M such that each element of \mathcal{T} has diameter less than δ .

Notation. For each point x of M, define $A(x) = \{y \in M : \epsilon/9 \le \rho(x,y) \le \epsilon/4\}$ and $C(x) = \{y \in M : \rho(x,y) = \epsilon/4\}$.

Let x_0 be a point of M. By (3.2), $\mathbb{P}(x_0) \cap C(x_0) \neq \emptyset$. Let x_1 be the first point of $\mathbb{P}(x_0)$ in $C(x_0)$. Let C_0 be the chain in \mathcal{T} that goes from x_0 to x_1 . Since \mathcal{T} is a tree chain, each link of C_0 intersects $[x_0, x_1]$. By (3.2), $\mathbb{P}(x_1) \cap C(x_1) \neq \emptyset$. Let x_2 be the first point of $\mathbb{P}(x_1)$ in $C(x_1)$.

Note that

(3.11) $[x_1, x_2]$ misses $A(x_1) \cap \cup \mathcal{C}_0$.

To see this assume the contrary. Let y be a point of $[x_1, x_2] \cap A(x_1) \cap \cup C_0$. Let L be a link of C_0 that contains y. Let x be a point of $L \cap [x_0, x_1]$. By (3.7), $[x_1, x_2] \subset \mathbb{P}(x)$. Since the diameter of $[x, x_2]$ is less than ϵ , by (3.8), $[x, x_2] \subset [x, f_1(x)] \cap \mathbb{P}(x)$. It follows from (3.9) and the hereditary unicoherent of M that $[x_1, x_2] \cap H(x \times [0, \tau]) = \emptyset$. Thus $f_t(x) = y$ for some $t > \tau$, and since $\{x, y\} \subset L$, this contradicts (3.10). Hence (3.11) is true.

Let C_1 be the chain in T that goes from x_1 to x_2 .

Since \mathcal{T} is a tree chain,

(3.12) each link of C_1 intersects $[x_1, x_2]$.

Let \mathcal{D}_1 be the collection of links of \mathcal{C}_1 that lie in $A(x_1)$.

The sets $\cup \mathcal{D}_1$ and $\cup \mathcal{C}_0$ are disjoint; for otherwise, by (3.11) and (3.12), there exists a circular chain in $\mathcal{C}_0 \cup \mathcal{C}_1$, and this contradicts the fact that \mathcal{T} is a tree chain. Hence $\mathcal{D}_1 \setminus \mathcal{C}_0 \neq \emptyset$.

We proceed inductively. Let n be a positive integer. Assume that for each positive integer $m \leq n$, there exist points x_m and x_{m+1} of M and subcollections \mathcal{C}_m and \mathcal{D}_m of \mathcal{T} such that (3.13m) x_{m+1} is the first point of $\mathbb{P}(x_m)$ in $C(x_m)$, (2.14m) \mathcal{C}_m is a chain from m to m

(3.14m) \mathcal{C}_m is a chain from x_m to x_{m+1} ,

- (3.15m) \mathcal{D}_m is the collection of links of \mathcal{C}_m that lie in $A(x_m)$,
- (3.16m) $(\cup \mathcal{D}_m) \cap (\cup \cup \{\mathcal{C}_i : 0 \le i < m\}) \ne \emptyset$, and
- (3.17m) $\mathcal{D}_m \setminus \bigcup \{\mathcal{C}_i : 0 \le i < m \ne \emptyset$. Let x_{m+2} be the first point of $\mathbb{P}(x_{n+1})$ in $C(x_{n+1})$. It follows from the argument for (3.11) that
- (3.18) $[x_{n+1}, x_{n+2}]$ misses $A(x_{n+1}) \cap \cup C_n$. Let C_{n+1} be the chain in \mathcal{T} that goes from x_{n+1} to x_{n+2} . Since \mathcal{T} is a tree chain,
- (3.19) each link of C_{n+1} intersects $[x_{n+1}, x_{n+2}]$. Let \mathcal{D}_{n+1} be the collection of links of \mathcal{C}_{n+1} that lie in $A(x_{n+1})$. Since \mathcal{T} is a tree chain, it follows from (3.18) and (3.19) that (3.20) $(\cup \mathcal{D}_{n+1}) \cap (\cup \mathcal{C}_n) = \emptyset$.
- Furthermore, $(UU_n+1) + (UU_n)$
- $(3.21) (\cup \mathcal{D}_{n+1}) \cap (\cup \cup \{\mathcal{C}_i : 0 \le 1 < n\}) = \emptyset.$

To see this suppose an element L of \mathcal{D}_{n+1} intersects $\cup \cup \{C_i : 0 \leq i < n\}$. Let \mathcal{E} be a chain in $\cup \{C_i : 0 \leq i < n\}$ such that L intersects one end link of \mathcal{E} and x_n belongs to the other end link of \mathcal{E} . Let \mathcal{F} be the subchain of \mathcal{C}_{n+1} with the property that x_{n+1} belongs to one end link of \mathcal{F} and the other end link of \mathcal{F} is L. It follows from (3.16n) and (3.20) that $\mathcal{C}_n \cup \mathcal{E} \cup \mathcal{F}$ contains a circular chain. This contradicts the fact that \mathcal{T} is a tree chain. Hence (3.21) is true.

By (3.20) and (3.21), $\mathcal{D}_{n+1} \setminus \cup \{\mathcal{C}_i : 0 \leq i \leq n\} \neq \emptyset$. This completes the inductive step.

For each positive integer m, there exist points x_m and x_{m+1} of M and subcollections \mathcal{C}_m and \mathcal{D}_m of \mathcal{T} that satisfy (3.13m)-(3.17m). Therefore \mathcal{T} is infinite, and this contradicts the fact that \mathcal{T} is a tree chain. Hence for some t > 0, the map f_t has a fixed point.

Comment. Parts of the preceding argument were derived from the author's proof that no homogeneous tree-like continuum contains an arc [H1].

References

[B] D. P. Bellamy, A tree-like continuum without the fixed point property, Houston J. Math. 6 (1979), 1-13.

- [Bi1] R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653-663.
- [Bi2] R. H. Bing, The elusive fixed point property, Amer. Math. Monthly 76 (1969), 119-132.
- [Bo] K. Borsuk, A theorem on fixed points, Bull. Acad. Polon. Sci. 2 (1954), 17-20.
- [C] H. Cook, Tree-likeness of dendroids and λ -dendroids, Fund. Math. 68 (1970), 19-22.
- [FM] J. B. Fugate and L. Mohler, A note on fixed points in tree-like continua, Topology Proceedings, 2 (1977), 457-460.
- [H1] C. L. Hagopian, No homogeneous tree-like continuum contains an arc, Proc. Amer. Math. Soc. 88 (1983), 560-564.
- [H2] —, The fixed-point property for deformations of uniquely arcwise connected continua, Topology and its Appl. 24 (1986), 207-212.
- [H3] —, Fixed points of arc-component-preserving maps, Trans. Amer. Math. Soc. 306 (1988), 411-420.
- [H4] —, Fixed points of tree-like continua, Contemporary Math. 72 (1988), 131-137.
- [Ha] O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proc. Amer. Math. Soc. 2 (1951), 173-174.
- [L] I. W. Lewis, Continuum theory problems, Topology Proc. 8 (1983), 361-394.
- [M] R. Manka, End continua and fixed points, Bull. Acad. Polon. des Sci. ser. Math. Astronom. Phys. 7 (1975), 761-766.
- [Ma] M. M. Marsh, ε-mappings onto a tree and the fixed point property, Topology Proceedings 14 (1989), 265-277.
- [Mi] P. Minc, A tree-like continuum admitting fixed point free maps with arbitrarily small trajectories, to appear in Topology and its Appl.
- [OR] L.G. Oversteegen and J. T. Rogers, Jr., Fixed-point-free maps on tree-like continua, Topology and its Appl. 13 (1982), 85-95.

California State University Sacramento, California 95819