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SEMI-BOUNDARIES IN HYPERSPACES

ALEJANDRO ILLANES

ABSTRACT.

Let C(X) be the hyperspace of all subcontinua of a
continuum X. In this paper we introduce the concept of
semi-boundary. Given A € C(X)—{X}, a subcontinuum
B of A is in the semi-boundary of C(A) if there exists a
map a : [0,1] — C(X) such that a(0) = B and a(t) in
not contained in A for every t > 0. Using semi-boundaries
we obtain characterizations of the interval, simple closed
curves, local connectedness, acyclic finite graphs, hered-
itarily indecomposable continua, atriodic continua and
continua containing n-ods.

INTRODUCTION.

The X will denote a continuum (i. e. a compact, connected
space with metric d). The hyperspace C(X) consists of all
subcontinua of X with the Hausdorff metric H. Continuous
functions are called maps. The unit closed interval in the real
line is denoted by I. Given A € C(X)—{X}, the semi-boundary
of C(A) is defined by SB(A) = {B € C(A) : there exists a map
a: I — C(X) such that «(0) = B and a(t) is not contained in
A for all t > 0}. Notice that SB(A) depends on the containing
space X. For simplicity, this dependence is suppressed in the
notation.

Let us consider some examples: (a) Taking parametrized
order arcs (see Def.1.1), it follows that SB({z}) = {z} for ev-
eryz € X and A € SB(A) for all A € C(X) — {X}. (b) If
A € C(I) — {I} and A is not a one-point set, then SB(A)
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is an arc and A is an end point of this arc if and only if
0€e Aorl € A. (c) If X is a single closed curve and A €
C(X)— {X}, then SB(A) is an arc and A is not an end point
of this arc. (d) Let X be the subspace of the Euclidean plane
defined by X = (U{(0,1/n)(1,1/n) : n > 1}) U (0,0)(1,0) U
(0,0)(0,1), where pg denotes the arc joining p and g. Define
A= (U{(0,0)(1 -1/n,1/n):n > 1})U(0,0)(1’0)U(0’0)(09 1).
Then {(1 — 1/n,1/n)} € SB(A) for each n and {(1,0)} is not
in SB(A). This show that SB(A) is not necessarily closed.

In [12], S.B. Nadler, Jr., introduced and developed the con-
cepts of arcwise, segmentwise and continuumwise accessiblili-
ty. All of them are inserted in the following context: Given
Be AcCcBc?2X ={AC X : Ais anonempty closed subset
of X}, under which conditions is B arcwise ( resp. segmen-
twise, continuumwise) accessible from B — A? That is, when
~does there exist an arc a in B (resp. a segment a in B, a con-
tinuum a in B) such that a N A = {B}? These concepts have
been useful for the study of the structure of hyperspaces (see
[12] and [4]). Semi-boundaries are also inserted in this context.
Using Nadler’s terminology, we could say that C € SB(A) if
C is arcwise accessible from C(X) — C(A).

Restricted semi-boundaries were used in [5]. Although semi-
boundaries can be defined in every topological space, in this
paper, we show that their use in hyperspaces has a special util-
ity. The structure and characteristics of the semi-boundaries
in C(X) reflect many properties of the space X, using them we
obtain characterizations of the interval, simple closed curves,
local connectedness, acyclic finite graphs, hereditarily inde-
composable continua, atriodic continua and continua contain-
ing n-ods.

The notions not defined here will be taken as in the book of
S. B. Nadler, JR. [13]. I acknowledge many fruitful discussions
with César Jiménez Espinosa on the topic of this paper. I wish
to thank the referee for his useful comments and for suggesting
to me Theorem 4.3 and its corollary.
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1 Basic FacTs.

Definition. Given A,B € C(X) such that A C B # A, a
parametrized order arc from A to Bis amap a : I — C(X)
such that a(0) = A, o(l) = B and if s < t, then a(s) C
a(t) # a(s). The existence of parametrized order arcs follows
from [13, Thm. 1.8.]. Let CA(X) = C(X) - {X} and F;(X) =
{{z} € C(X):z € X}. We write X ~ Y to denote that X is
homeomorphic to Y.

1.2 Theorem. Let A € C*(X).

(a) B € SB(A) if and only if B € C(A) and there ezists a
map a : I — C(X) such that a(0) = B, a(t) is not contained
in A for eacht > 0 and if s < t, then a(s) C a(t). Such a map
will be named a removing map for B

(b) If B € SB(A) and B C D C A, then D € SB(A).

(c) A€ SB(A).

(d) SB(A) is pathwise connected.

(e) SB(A) C Fr(C(A)) (boundary of C(A) in C(X)).
(f)IfB,DeC(X), BND#0, B—D#0, D—B#0 and
E is a component of BN D, then E € SB(B) N SB(D).

Proof.

(a) (=) Let B: I - C(X) be a map such that $(0) = B and
B(t) is not contained in A for every ¢t > 0. Define a : I — C(X)
by a(t) = U{B(s) € C(X) : s € [0,t]}.

(b) Let a be a removing map for B, define §: I — C(X) by
B(t) = D U a(t). Clearly, 8 is a removing map for D.

(c) Every parametrized order arc from A to X is a removing
arc for A.

(d) Let B € SB(A) — {A}, let a be a parametrized order arc
from B to A. By (b), Im a C SB(A).

(f) Take a parametrized order arc a from E to B. Given t >
0, E C a(t) # E and a(t) C B, then a(t) is not contained in
D. Thus E € SB(D). Similarly, E € SB(B).

1.3 Theorem. Let A € C*(X) and B € C(A). Let (B,)n C
C(X) be a sequence such that B, — B. Then each one of the



66 ALEJANDRO ILLANES

following conditions implies that B € SB(A) :

(a) If By, is not contained in A and Bn41 C B, for each n;
(b) If B, is not contained in A and B, N B # 0 for each n;
(c) If B, € SB(A) and B, N B # { for each n.

Proof. (a) For each n, choose a map o, : [1/(n +1),1/n] —
. C(X) such that a,(1/(n + 1)) = Bup41,04(1/n) = B, and if
s < t, then a,(s) C a,(t). Define a : I — C(X) by a(t) =
a,(t)ift € [1/(n+1),1/n] and a(0) = B. Then a is a removing
map for B.

(b) For each n, define C, = BUB,UB,;;U.... Then C, €
C(X), C, — B and C, is not contained in A and Cr4; C Cp
for every n. Thus (a) implies that B € SB(A).

(c) For each n, let a, be a removing map for B,,. Choose t, > 0
such that H(B,,an(ts)) < 1/n. Then ay(t,) — B, an(t,) is
not contained in A and B N ay,(t,) # @ for each n. By (b),
B e SB(A).

1.4 Theorem. If A € C*X) and B € SB(A), then there
exists a minimal element (with respect to the inclusion) C €
SB(A) such that C C B.

Proof. By Theorem 1.3 (c), the intersection of a countable nest
of elements in SB(A) is in A. Then the proof follows from the
Brower Reduction Theorem ( see [7, p. 61])

2. HEREDITARILY INDECOMPOSABLE CONTINUA.

2.1 Definition. A continuum is indecomposable provided that
X is not the union of two proper subcontinua. It is hereditarily
indecomposable provided that each of its subcontinua is inde-
composable.

It is easy to see that a continuum X is hereditarily indecom-
posable if and only if whenever A and B are subcontinua of X
such that AN B # 0, then A C B or B C A.

The following theorem is related to Kelley’s Theorem 8.2 in
[6] and it is easy to prove using Theorem 1.2 (f).
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Theorem. X is hereditarily indecomposable if and only if
SB(A) = {A} for every A € C(X).

ARCS.

3.1 Theorem. If X is a nondegenerate continuum then X ~ I

if and only if X ~ SB(A) for every A € CNX) — F1(X).

Proof. (<) Let A € CMNX) — Fi(X) and let B € SB(A) —
{A}. Since SB(A) is arcwise connected, there exists an arc
a in X. Since SB(a) C C(a) ~ Disc X, SB(a) is a plane
continuum. Identify a with the interval [0,1]. If there exists
E € SB(a) such that 0,1 ¢ E, then E is of the form E = [a, }]
with 0 < a £ b < 1. Define o : [0,a] x [b,1] = C(X) by
o(s,t) = [s,t]. Then o is an injective map and Theorem 1.2
(b) implies that Im(¢o) C SB(a). Thus X ~ SB(«a) contains
a subspace C which is homeomorphic to the square I x I.
Consider a simple triod Z (a space of the form of the letter Y')
“contained in C. Then every subcontinuum of Z is in SB(Z).
Then C(Z) C SB(Z). But C(Z) contains a cube I x I x I. It
follows that X ~ SB(Z) contains a cube. This contradiction
proves that if [a,b] € SB(a), then a =0 or b = 1. Then SB(c)
is a subcontinuum of the set {[0,8] : b € I} U {[a,1] : a € I}
which is homeomorphic to I. Therefore X ~ SB(a) ~ I.

4. N-ODS.

Definition. An n—od (resp. co—od) in X is an element
B € C(X) for which there exists an A € C(X) such that
B — A contains at least n components (resp. infinitely many
components). X is said to be atriodic if it does not contain
3-ods. Given A € C*(X), we will denote by m(A) the set of
minimal elements in SB(A).

In [5] it was proved that X contains n—ods (resp. co—ods)
if and only if C(X) contains n—cells (resp. Hilbert cubes).

4.2 Theorem. Let n > 1. Then X contains n—ods if and
only if there ezists E € C*(X) such that m(E) has at least n
elements.
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Proof. (=) Suppose that n > 2. Let A, B € C(X) be such that
A C B and B — A has at least n components. Let D,,...,D,
be components of B — A. Then CI(D;)NA# 0 and AUD; €
C(X) for each :. Fix an open subset U of X such that AC U
and D; — Cl(U) # 0 for each i:. Let E be the component of
Cl(U) such that A C E. Given ¢ and taking a parametrized
order arc from A to AU D;, we can find a continuum which
properly contains A and which is properly contained in (A U
D;)NU. Hence, EN D; # 0. By Thm 1.2 (f), there exists an
element F; € SB(E) contained in Cl(D;). Let E; be a minimal
element in SB(F) such that E; C F;. Since U is open, it is not
possible that E; C A, so E; N D; # 0. Hence E,,... ,E, are
pairwise different.

(«<) Let E € C*X) be such that m(E) has at least n
elements. Let Ey,...,E, € m(E). If there exist A and B €
C(X) such that AN B has infinitely many components, then
X contains co—ods ([11, Thm, 14]). Suppose then that AN B
has finitely many components for every A,B € C(X). For
each i, choose a removing map a; for E;. Given i, E; is not
contained in E; for every j # i, so a number ¢; > 0 can be
choosen in such a way that E; is not contained in o;(¢;) for
every j # i. Given ¢ # j, we will show that there exists s > 0
such that o;(s) N a;(t;) C E. If E; N a;(t;) = 0, then it is easy
to find s. Suppose then that C},... ,C, are the components of
E;Na;(t;). Suppose also that there is not such an s. Given k >
1, ;(1/k) N a;(t;) is not contained in E. Let C be the union
of the components of a;(1/k) N a;(t;) which do not intersect
E;. Then C is a compact set disjoint from E;, and there exists
a number z; € (0,1/k) such that a;(zx) N C = 0. Choose a
point z in a;(zx) N a;(t;) — E. Let Dy be the component of
a;(1/k) N a;(t;) such that z € Di. Then DN E; # @, so there
exists 1 < 1 < r such that C;, C Dx.

Let 1o € {1,...,7} be such that 15 = 1 for infinitely many
k. Suppose that k; < k; < ... are such that 15 = 1, for
all m. Given m > 2, Dy, € C(X),Dx,, is not contained
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in E, C, C D, and Dy, is a component of a;(1/k,) N
a;(t;) C ai(1/km-1) N ;(t;), so Dy, is contained in Dy, _,.
Since Dy, C ¢;(1/k,) — E; C E, we have that (Thm. 1.3
(a)) D = N{Dy,, : m 2 1} € SB(F) and D C E; N a,(t;).
Thus E; = D C a;j(t;). This contradicts the choice of t; and
proves the existence of s.

Then, given i, we may choose s; € (0,t;) such that a;(s;) N
a;j(t;) C E for every j # i. Define B = EUay(s;) U... U
a,(8,) € C(X). Then B is an n—od..

4.3 Theorem. X is an atriodic continuum if and only if SB(A)
is either a point or an arc for every A € CN(X).

Proof. We will use the following consequence of Thm. 1.8 in
[1): X is an atriodic continuum if and only if there is not three
subcontinua of X with nonempty intersection and such that
no one of them is contained in the union of the other two.

(=) By theorems 1.2 (c), 1.4 and 4.2, m(A) has only one
or two elements. We only analyze the case m(A) = {B,, By}
where By # B,, the proof of the other one is analogous. Choose
two parametrized order arcs 8, and B, from B, to A and B,
to A, respectively. And fix removing maps &, and a; for B;
and B,, respectively.

We assert that if By C B C A and B € C(X), then B €
Im B,. Suppose, on the contrary, that B € Im ;. Let to =
max {t € I : (t) C B}. Then Bi(to) C B # Pi(to). Fix a
point p € B — B4(to) and let t; > to be such that p & Bi(to).
Choose a point ¢ in $1(t;) — B. Then there exists t; > 0 such
that p,q & ai(t2). Then a;(2;) is not contained in A. Thus
B, $1(t,) and a; (t;) are three subcontinua of X with nonempty
intersection and no one of them is contained in the union of the
other two. This is a contradiction which proves the assertion.

A similar assertion holds for B,. Then, SB(A) = Im 5, U
Im f; (see theorems 1.2 (b)and 1.4).

If there exists and element E € Imf; N Imf, such that E #
A, choose a point zo € A— E. Notice that B,, B, € SB(F) and
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a; and a; are removing maps for B; and By, respectively (with
respect to E). Asin the proof of the sufficiency of Theorem 4.2,
it is possible to find s;,; > 0 such that a;(s;) N az(s;) C E.
We may suppose that zo & a;(s1) U az(sz). Thus A, EU a;(s;)
and E U ay(s;) are three subcontinua of X with nonempty
intersection and no one of them is contained in the union of
the other two. This contradiction proves that Im 8,NIm B, =

{4}.
Hence SB(A) = Im $, U Im (3, is an arc.

(«<=) Suppose that X is not atriodic. Theorem 4.2 implies
that there exists E € C*(X) such that m(F) has at least three
different elements B,, B3, and B;. Let 8, : I — C(X) (resp.
B2 and B3) be a parametrized order arc from B, (resp. B, and
Bs) to E. Then for each i = 1,2,3, I'm f§; is a subarc of the
arc SB(E) joining B; to E. This implies that B; € Im B; for
some ¢ # j. Thus B; C B; which is a contradiction. Therefore
X is atriodic.

4.4 Corollary. If X is a Peano continuum, then X is either
an arc or a simple closed curve if and only if SB(A) is an arc
for all proper nondegenerate subcontinua A of X.

Proof. (=) Is immediate, (<) By Theorem 4.3, X is an atri-
odic Peano continuum. Then X is either an arc or a simple
closed curve.

4.5 Theorem. If there exists E € C"(X) such that m(E) is
infinite, then X contains oo—ods.

Proof. Let E € C"*(X) be such that m(E) is infinite. Choose
a sequence E;, E,,... of pairwise different elements in m(E).
We may suppose that E, — E; for some Ey € C(X). Suppose
that A N B has finitely many components for every A and B
in C(X).

If E, C E, for infinitely many n, by Thm. 1.3 (c), Eo €
SB(E). But each E, is minimal, so infinitely many of them
are equal to Ey. This contradiction proves that this case is not
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possible. Then we may suppose that Ej is not contained in E,
for every n.

For each n, let a,, be a removing map for E,. Let ¢ > 0 be
such that a,(t) does not contain Ey, then there exists M > 0
such that E,, is not contained in ay(t) for every m > M.
Thus there exists ¢, > 0 such that F,, is not contained in
an(ts,) for every m # n. Proceeding as in the proof of the
necessity in Thm. 4.2, a number s,, € (0,%,) can be found in
such a way that a,(s,) N (a1(t;) V... Uan_y(ta-1)) C E and
H(E,,a(ss)) < 1/n.

Define B = E U a;(s;) U az(sz) U ... . Then o,(s,) — E is
open and closed in B — E for each n. Therefore, B is an co—od.

The converse of Theorem 4.5 is not true as it is shown in the
following example.

4.6 Example. Choose an hereditarily indecomposable contin-
uum Z contained in the Euclidean plane R? such that (0,0) €
Z. For each n, let Z, = {(1/n)(z,y,(1/n) || (z,y) ||) € R*:
(z,y) € Z}. Then each Z,, is a subcontinuum in R3 such that
Zn ~Z.If n # m, then Z,N Z,, = {0} and Z, — {0}.

Define X = Z;UZ,U... . Then X is a continuum and X — {0}
has infinitely many components. Thus X is an co—od.

Let E € C*(X), we will show that m(E) is finite. We ana-

lyze three cases:

(a) 0 € E. Then there exists n such that E C Z, — {0}.
Since Z, is hereditarily indecomposable, then SB(E) = {E}
and m(FE) = {E}.

(b) 0 € E. Then EN Z, € C(X) for each n. Let A € m(E),
if0 ¢ A, then A C Z,NE—{0} for some n. Then if B € C(X)
is such that A C B and 0 ¢ B, then B C Z, N E. This implies
that A € SB(FE). This contradiction proves that 0 € A.

(b.1) Z, is not contained in E for infinitely many n. Take
A € m(E). Then 0 € A. Since Z, — {0}, by Thm. 1.3 (b) we
have {0} € SB(E). Thus {0} = A. Hence m(E) = {{0}}.
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(b.2) The set of n such that Z, is not contained in E is a
finite set {n,,...,n,}. Notice that EN Z,, € SB(FE) for every
t. Given A € m(FE), we assert that EN Z,, C A for some
1. Suppose that this is not true. Let a be a removing map
for A. So there exists ¢ > 0 such that a(t) does not contain
any E N Z,,. Since E N Z,, and a(t) N Z,, are intersecting
subcontinua of Z,,;, we have that a(t)N Z,, C EN Z,, for each
i. Then a(t) C E. This contradiction proves that ENZ,, C A
for some i. Then A belongs to theset {ENZ,,... ,ENZ, }.
Therefore m(FE) is finite.

5. LocALLY CONNECTED CONTINUA.

5.1 Theorem. The following assertions are equivalent.
(a) X is locally connected,
(b) If A€ CNX) and p € Fr(A), then {p} € SB(A) and,
(c) SB(A) = Fr(C(A)) for every A € C*(X).

Proof. (a) = (b) follows from Thm. 1.3 (a).

(b) = (a). Suppose that X is not locally connected. Then
there exists an open subset U of X and there exists a compo-
nent D of U such that D is not open. Let p € D — Int(D).
Then p € Fr(Cl(D)) and {p} &€ SB(CI(D)).

(a) = (c). Let B € Fr(C(A)), then there exists b € Fr(A)
such that b € B. By (b), {6} € SB(A). Thm 1.2 (b) implies
that B € SB(A).

(c) = (b). Let A € CAX) and p € Fr(A), then {p} €
Fr(C(A)) = SB(A).

Using the Baire Category Theorem, the following lemma is
easy to prove.

5.2 Lemma. Let {A, : n > 1} be a countable family of pair-
wise disjoint closed subsets of X and let U be an open subset of
X such that A,NU # 0 for every n and U C U{A, : n > 1}.
Then (Int(A,))NU # O for infinitely many n.



SEMI-BOUNDARIES IN HYPERSPACES 73

5.3 Theorem. Suppose that X is a pathwise connected contin-
uum. Then X is locally connected if and only if m(A) C F;(A)
for every A € CNX).

Proof. (=) Let A-€ C*(X) and let B € m(A). Then B €
Fr(C(A)), so there exists b € B such that b € Fr(A),. By
‘Thm. 5.1, {b} € SB(A), so B = {b} € F;(A).

(<) Suppose that X is not locally connected. Then there
exists an open subset U of X and there exists a component D*
of U such that D* is not open. Choose py € D* — Int(D*). Let
W,V be open subsets of X such that ppe W Cc CI(W)C V C
Cl(U) c U. Notice that infinitely many components of CI(U)
intersect W.

Let D = {D : D is a component of CI(U) and DN CI(V) #
0}. Let L be an arc in X. Given z € L N CI(V), there exists
a subarc L, of L such that s € L;, z is not an end point
of L, and L, C U. Since L N CI(V) is a compact subset of
L, LNCI(V) can be covered by finitely many sets of the form
L,. Thus L N CI(V) can be covered by finitely many elements
of D. Therefore L intersects at most finitely many sets of the
form DN CI(V) with D € D.

Choose a point zo € X — CI(U). Given D € D, we assert
that there exists finitely many elements D,,... ,D, in D and
there exists arcs L;,... ,L, in X —V such that D, = D, z¢ €
L,,LynD;NCIV) # P andi€ {2,...,n},L;nD;_,NCIV) #
®and L; N D; N CI(V) # 0.

To prove this, let z € DNCI(V) and let v : I — X be
an injective map such that 4(0) = zo and 4(1) = z. Let
{C1,...,Cn}={E € D: ImyNCIV)NE # 0} with C; = D.
Let ¢t; = min v~1(D N CI(V)). If 4([0,t;)) does not intersect
CI(V)v put n = 17D1 = D and Ll = 7([09t1]) If 7([0’t1))
intersects CI(V), let s; = max y~}(CI(V)) N [0,%;). Then we
may suppose that 7(s;) € C;. Let t; = min y~}(C;NCI(V)). If
v([0,%2)) does not intersect CI(V), put n =2, D, = D, L, =
v([s1,t1]), D1 = C3 and Ly = ([0, 22]). If 7([0,¢2)) N CI(V) #
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@, this procedure can be continued to obtain n, Dy,... , D, and
L,,...,L,.

Given D € D, a sequence C = (n,Ly,... ,Ln,Dy,...,Dy)
with the properties mentioned above will be called a chain end-
ing in D. The size of C is n. Define n(D) = min {n : there ex-
ists a chain C ending in D such that n is the size of C'}. Choose
a chain C(D) = (n(D),Ly(D),...,Lnp)(D),E(D),...,
E.p)(D)) ending in D.

Let D, = {D : D is a component of Cl(U) and DNCI(W) #
0}. Then D, C D. For each m, let E,, = {D € D, : n(D) = m}
and F,, = {D € D : n(D) = m}. Then E,, C F,.

We will construct an A € C*(X) such that m(A) is not
contained in F;(A). We consider three cases:

(a) There exists m such that E,, is infinite.

Since every element of E,, intersects CI(W), we have that
there exists a point yo € CI(W) such that every neighborhood
of yo intersects infinitely many elements of E,,. Consider mg =
min {n : every neighborhood of y, intersects infinitely many
elements of F,,}. Let Dy be the component of CI(U) such that
Yo € Do. Then there exist an open subset Wy of X such that
Yo € Wp C V. Since there exists a neighborhood of yo which
intersects only finitely many elements of {D € D : n(D) <
mo}, then we may suppose that either WoN({D € D : n(D) <
mo}) =0 or WoN ({D € D : n(D) < mg} = WyN Dy. In both
cases Wo N (U{D € D : n(D) < my}) C D,.

Choose a sequence (D,)r of pairwise different elements of
Fr, such that D, N Ny, (yo) # 0 (if € > 0, Ne(yo) denotes the
open ball of radius € about yp) and D, # D, for each r and
D, — D' for some D' € C(X). Since yo € D' C CI(U), then
D' C D,.

Given r, let F, = Ly(D,)U...U Ly, (D,)U Ey(D,)U...U
E..,(D,) and let B, = CI(F,U F,4; U...). Then F,,B, €
C(X),D, C F, C B, and B,4; C B, for each r. Thus B, —
By = N{B, : r > 1}. For each r, notice that n(E;(D,)) =i for
all: =1,...,mo, thus F, N Wy C DoU D,. Then Wo N B, =
WoNCUF, UF,U...) C Ci(WoNn (F,UF41U...)) C
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CI(D()UD,-UD,-.*.]U. . .) = DoUD,UDr+1U. ... Thus Woan C
DoUD,UD, ;U.... This implies that Wy, N By C D.

Let W; be an open subset of U such that yop € W; C
Cl(W;) C Wp. Let A be the component of Dy U (X — W)
which contains By. Then A € C(X) and By, € C(A). To
see that By € SB(A), take r > 1. Let s > r be such that
Ni/s(yo) C Wy. Let z € Nyy,(yo)ND,, then z € DoU(X —W)).
Thus § # B,N(X — A) C B,N(X — A). By Thm. 1.3 (a), we
have that By € SB(A).

Let Bx € m(A) be such that Bx C By (Thm. 1.4). If
Bx € F;(A), then there exists a € By, such that {a} € SB(A).
Let a be a removing map from {a}. If a € Wy, then a € Dy and
there exists t > 0 such that a(t) C CI(U). Thus a(t) C Do. So
a(t) C A which is absurd. If a € Wy, then there exists t > 0
such that a(t) N Cl(W;) = 0. This implies that a(t) C A. This
contradiction proves that Bx is an element of m(A) — F;(A)
and completes this case.

(b)E,, is finite for each m.

Then D, is countable. Let D, = {D € D, : DNW # 0},
then D, is countable. Since W C U{D : D € D,}, Lemma
5.2 implies that Int(D) N W # 0 for infinitely many D € D,.
Choose a sequence D, D,,... of pairwise different elements
of D, such that Int(D,) N W # @ for each r. Choose points
z, € Int(D,) N W. We may suppose that D, — D’ for some
D' € C(X) and z, — yo for some yo € D'. Given r > s, r
is called a son of s if, considering the chosen chain C(D,) =
(n(D,), L1(Dy),...,Ln(p.)(D)), Er(Dy),...En(p)(D,)) for
D,, we have that D, = E;(D,) for some i € {1,...,n(D,)}.
Now we consider two cases.

(b.1) {s : s has finitely many sons} is finite.

Then there exists a sequence (s,) such that s; < s; < ...
and s,4 is son of s, for every r.

Given r, let F, = D,_ and z, = z,,. Since s, is son of s,,
then F, = E;(F,41) for some i € {1,... ,n(Fr41) — 1}. Since
n(Ei(Fry1)) =1, then n(F;) < n(Fr41) and F; = Eyr,)(Fre1)-
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Define G, = EnF,)(Fr41) U LoFy+1(Fra1) U Eq(ry41(Frgr) U
..U L,.(F,+1)(Fr+1) U En(F,+1)(Fr+l)- Then G, € C(X) and
F,, F,;, C B,. Define B, = CI(G, UG,4; U...). Then B, €
C(X) and B,4; C B,. Thus B, —» Bo=N{B, :r > 1}.

Ifr <sandi€ {n(F),... ,n(Fop1)}, n(Ei(Fe41)) =1 >
n(F,) > n(F;). Then F,NWNG, = 0. Hence Int(F,)NWNB, =
0. Therefore Int(F,) N W N By = { for every r. For each r, fix
g, > 0 such that ¢, < 1/r and Cl(Ne,(z,)) C Int(F,) N W.
Then CI(Ne,(2z,)) N By = 0. Let R = {yo} U (U{CI(Ne,(2,)) :
r > 1}). Then R is compact and RN By C {yo}-

For each b € By — {yo}, let 8, > 0 be such that Cl(Ns, (b)) N
R =0.1fb = yo € By, then choose 8§, > 0 such that CI(Ns,(b)) C
V. For each b € By, let Q, be the component of CI(Nj,(b)) such
that b € Q,.

Define A = CI(U{Q : b € By}). Then By C A,A € C(X)
and if b € By, then {b} &€ SB(A).

Given r, we will show that B, is not contained in A. Let Dy
be the component of Cl(U) such that yo € Dy. Then D’ C D,.
Suppose that Fy # Dy with k = r or r + 1. Then F; C B,.
Given b € Bo - {yo}, N€k(2k) n Qb = 0 and if b = 1/0 € Bo,
then @, C D,. Therefore @, N Nex(2:) C Do N Fi = . This
implies that Nex(2,) N A = 0. Thus 2z, € B, — A.

By Thm. 1.3 (a), Bo € SB(A). Let Bx € m(A) be such that
Bx C By. Then Bx ¢ F;(X) and Bx € m(A) — F;(A).

(b.2) {s : s has finitely many sons } is infinite.

Let (s,)r be a sequence such that s; < s; < ...,s, has
finitely many sons and s,4; is not a son of s,,... ,s, for every
r.

For each r, let F, = D,,, 2, = z,, ,G, = Li(F;)U... U
LuFr,)(FY)UE(F;)U...UE,F,(F;) and B, = ClI(G,UG,41 U
...). Thus G,, B, € C(X) and B,;; C B,. Then B, —» By =
N{B, : r 2 1}. If r < k, s; is not a son of s,, then F, is
different from each one of the sets Ey(r,), ... , EnF,)(Fi). Thus
F.NnWnNG, =0. Hence Int(F,)NW N B, = 0.

For each r,let &, > 0 be such thate, < 1/r and Cl(Ne,(z,)) C
Int(F,)NW. Define R = {yo} U(U{CI(Ne,(z)) : r 2 1}). Then
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R is compact and RN By C {yo}-

For each b € By — {yo}, let 8, > 0 be such that Cl(Ng, (b)) N
R =0.1fb = yo € Ny, then choose §, > 0 such that Cl(Ns,(b)) C
V. For each b € By, let @, be the component of Cl(Nj, (b)) such
that b € Q,.

Define A = CI(U{Q; : b € By}). Then By C A, A € C(X)
and if b € By, then {b} & SB(A).

Proceeding as in (b.1), B, — A # @ for every r Then B, €
SB(A) and if Bx € m(A) is such that Bx C By, then Bx €

This completes the proof of the theorem.

6. AcycLIiC FINITE GRAPHS.

6.1 Theorem. Suppose that X is pathwise connected. If lim
sup m(A,) is at most countable for every sequence (A,)n in

C*(X) which converges in C(X), then X is a dendrite.

Proof. First, we will prove that if A € C(X), then each arc a
with end points in A is contained in A. Suppose, on the con-
trary, that there exists an arc a with end points a and b, such
that a,b € A and « is not contained in A. We may suppose
that (a — {a,b}) N A = 0. Let {z, : n > 1} be a countable
dense subset of a — {a,b}. For each n, choose a subarc a, of
a— {a,b} such that if p, and ¢, are the end points of ay, then
z, € ap— {Pn, ¢»} and diameter (a,) < 1/n. Define A, = AU
(a—(an—{Pn; ¢n}))- Then A, = AUe, {p.}, {g.} € SB(A,)
and a C lim sup{p,} C lim sup m(A,). Then lim sup m(A,)
is uncountable. This contradiction shows that o C A.

Then we have the following consequences:

(a) A is pathwise connected for every A € C(X),

(b) X does not contain simple closed curves,

(c) If a, b € X and a # b, there exists a unique arc in X
joining them. This arc will be denoted by ab and @a will denote
the set {a},

(d) X is hereditarily unicoherent and,

(e) X is a dendroid.
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Now we will prove that X is locally connected. Suppose
that this is not true. Then there exists an open subset U of
X and there exists a component D of U such that D is not
open. Choose a point p € D — Int(D). Let V be an open
subset of X such that p € V C CI(V) C U. Let (D,)n be a
sequence of pairwise different components of C!(V) such that
D,ND = 0 and N1/n(p)ND,, # 0 for each n. We may suppose
that D, — Dy for some Dy € C(X). Then p € Dy C D and
since D, N Fr(V) # 0, then Dy N Fr(V) # 0. Hence D, has
uncountably many points.

Choose a countable dense subset {a, : n > 1} of Dy. Choose
a point z; € U — D such that d(a;,z,) < 1. Let ¢; € CI(D)
be such that Z7gr N CI(D) = {q:} and let z; € Z1q; — {z1,¢1}
be such that diameter (Z1Z7) < 1. Notice that a; € Z1gqy, then
there exists a point z, € U — (D Uz,¢q;) such that d(a;, z;) <
1/2. Let ¢ € CI(D) be such that Z3¢z N CI(D) = {q2} and
let z; € T3q; — {Z2¢2} be such that diameter (73%;) < 1/2
and Z3z; N Z1q1 = 0. Proceeding in this way it is possible
to construct sequences of points (z,)n,(gn)n and (z,)n of z
such that, for each n, diameter (Z5%;) < 1/n, z, € T ¢, —
{znsqn}, 2, €U— (DU ZT7q U n...UT53Gro1),d(an, 2,) <
1/n,7,¢,NCI(D) = {¢g»} and 7,z N(ZTTGU. . . UTr1Gn1) = 0

For each n, define A, = CI(D)UZigtU... U Z.q,. Then
A, € C(X) and A, C Ap41. Thus (A,)n is a sequence in
C”(X) which converges in C(X). Since Tz, N A, = {2,.}, we
have that {z,} € m(A,).

Each point in D, is an accumulation point of the set {a, :
n > 1}. Then every point in Dy is an accumulation point of
the set {2z, : n > 1}. This implies that Dy C lim sup m(A,).
Hence lim sup m(A,) is an uncountable set. This contradiction
proves that X is locally connected. Therefore X is a dendrite.

The converse of Theorem 6.1 is not true as it is shown in the
following example.

6.2 Example. For each rational number z = r/s in the in-
terval (0,1) with r and s relatively prime positive integers,
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let L, be the segment L, = {(z,y) € R?: 0 < y < 1/s}. Let
X = (Ix{0})U(U{L; : z is a rational number in (0,1)}). Then
X is a dendrite. For each n,let A, = I x {0}. Then Fy(A,) C
SB(A,), so F;(A,) = m(A,). Thus lim sup m(A,) = lim sup
Fi(A,) = I x {0}. Therefore lim sup m(A,) has uncountably
many points.

The following theorem is related to [6, Lemma 5.2].

6.3 Theorem. Let z be a pathwise connected continuum. Then
X is an acyclic finite graph if and only if lim sup m(A,) is fi-
nite for every sequence (A,)n in C*(X) which converges in

c(X).

Proof. (<) By Thms. 6.1, 5.1 and 5.3, X is a dendrite. Taking
constant sequences, we have that m(A) is finite for every A €
CMNX) and m(A) = {{z} : = € Fr(A)}. We will prove then
that if X is a dendrite where every A € C(X) has a finite
boundary, then X is an acyclic finite graph.

Choose a convex metric d for X (see [1] and [8]), then De(z) €
C(X) for every € > 0 and z € X, where De(z) = {y € X :
d(z,y) < €} If z # y, Ty will denote the unique arc in X
joining z and y, and ZZT will denote the set {z}. If ¢ > 0 and
z € X, let Le(z) = U{Zy : y € Fr(De(z)}. Since Fr(De(z))
is finite, Le(z) is a finite union of arcs and Le(z) C De(z).

Given r € X, we will show that there exists €, > 0 such
that Dez(z) = Lez(z). Suppose, on the contrary, that De(z)
is not contained in Le(z) for every € > 0. Then it is possible to
construct sequences (€,)n C (0,00) and (z,)n, (2,)n C X such
that z, € De,(z) — Leqy(z), €ny1 < min {d(z,z,), 1/n}, 2, €
TT, — {z,z,} and T2, N (Depy1(z) U Ley(z)) = B for every n.

Define A = U{ZZ, : n > 1}. Then A € C(X). Notice that
De,(z) N (TZ; U ... UTT,57) C Ley(z). Then Tz, N (ZTZ7 U
...UTz,Z7) = 0. This implies that 7z, N A = {z,} and
zn & {z1,.-. yZn—1}. Thus {z;, 23, ...} is an infinite subset of
Fr(A). This is a contradiction because Fr(A) is finite. Then
we have shown the existence of ¢,.
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Taking finitely many sets of the form Le,(z) covering X, we
have that X is a dendrite which is a finite union of arcs. It is
easy to prove that X is an acyclic finite graph.

(=) We are supposing that X does not contain simple closed
curves and X is of the form: X = L, U...UL,, where each L;
is an arc and L;N L; = @ or L; N L; is a point which is an end
point of both L; and L;. For each ¢, let a; and b; be the end
points of L; and let J; = L; — {a;, b;}.

Let (A,)n be a sequence in C*(X) which converges in C(X).
Let A = lim A,. We will show that ( Iim sup m(A,)) N
{ {w} : w € J;} has at most two points for each :. Suppose,
on the contrary, that there exist three different one-point sets
{z}, {y} and {z} in the set lim sup m(A,) N { {w} : w € J;}
for some i. We will identify J; with I = [0, 1]. We may suppose
that z < y < z. Then the intervals (0,y) and (y,1) are open
subsets of X.

By Theorems 5.1 and 5.3, m(B) = { {w} € (X)) : w €
Fr(B)} for all B € C*(X). Since {z}, {2z} € lim sup m(A,) =
limsup { {w} : w € Fr(A)} C lim sup F1(A,), then z, z € lim
sup A, = A = lim A,. Thus sequences (z,)n and (z,)n can be
chosen such that z, — z, 2, — z and z,,, z, € A, for every n.
Fix two points y; € (z,y) and y; € (y, 2). Then there exists N
such that z,, € (0,y;) and z, € (y,,1) for every n > N. Since X
contain no simple closed curves, (z,,2,) C A,. Then (y;,y2)

is an open subset of X contained in A,. Hence y € (y1,¥2)
and (y1,y2) N Fr(A,) = 0 for each n > N. Thus {y} & lim

sup { {w} € FR(X) : w € Fr(A,)}) = lim sup m(A,). This
contradiction proves that (lim sup m(A,)) N { {w} : w € J;}
has at most two points for each z.

Since lim sup m(A,) C Fi(X) and F;(X) = {a1,... ,am} U
{by,... ,bp}U{ {w}:w € JyU...UJy,}, we conclude that
lim sup m(A,) is finite.

7. SIMPLE CLOSED CURVES.

7.2 Definition. Define § : C*X) — C(C(X)) by S(A) =
Cl(SB(A)).
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7.2 Theorem. Let A € CMNX). If S|C(A) is continuous, then

A is hereditarily unicoherent.

Proof. Suppose that there exists H and K € C(X) such that
H N K is disconnected and H U K # X. Let P and @ be two
nonempty closed subset of X such that PUQ = H N K. Fix
a point p € P and let a : I — C(X) be a parametrized order
arc joining {p} and H. Let t, = min {t : a(t) N Q # @}. Then
a(ty)NQ # 0 and t, > 0. Choose an increasing sequence (i, )n
in [0,%0) such that t, — ¢,.

Let By = a(ty) U K and let B, = a(t,) U K € C(X), then
B, — B,. For all n, let C,, be the component of B, N a(ty)
which contain a(t,). Since B, Na(to) = a(t,) U (a(te) N K) =
[a(t.) U (a(to) N P)] U (a(to) N @) and a(t,) U (a(to) N P)
and a(tp) N Q are two nonempty disjoint closed subsets of X,
we have that B, is not contained in a(tp) and a(tp) is not
contained in B,. Thus, by Thm. 1.2 (f), C, € SB(B,) C
S(By). Since a(t,) C C, C a(ty),C, — a(tp). Therefore, by
hypothesis, a(ty) € S(By).

Let U and V be disjoint open subsets of X such that P C
U, @ CV and CI(U)NCI(V) = 0. Then a(t,) — (UU V) and
K — (U U V) are disjoint nonempty closed subsets of X. Let
W and Z be open subsets of X such that a(ty) — (UUV)C W
and K- (UUV)CZ '

Since a(to) € S(Bo), there exists a sequence (Cy, )n in SB(By)
such that C, — a(tp). Since a(to) is not contained in K,
there exists R such that Cgr is not contained in K,Cr C
UUVUW,CrNU # 0 and CrRNV # 0. Then CrNa(to) # 0.

Choose a point ¢ € a(to) N Q. Let L, be the component
of a(ty) N @ such that ¢ € L;. Then L; C V and by taking
a parametrized order arc from L; to K it is possible to find
LeC(X)suchthat Ly CLCK,Ly # Land L C V. Then L
is not contained in a(tp). So L N (V — a(ty)) # 0.

Define M = CrUa(ty)UL € C(By). Since Cr € SB(By), by
Thm. 1.2 (b), M € SB(B,) C §(Bo) = lim §(B,) and M is
not contained in a(tp). Thus there exists a sequence (My)n C
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C(X) such that M, € SB(B,) for each n and M, — M.
Then there exists N such that M, CUUV UW, M, NU #
0, M, NV #0 and M, N (V — a(ty)) # 0.

Notice that My C (KNCI(V))U(a(tn)UCI(U)),0 # MyN
(V=—a(t)) C KNC(V)NMn, 0 # MyNU C MyN(a(ty)U
Cl(U)), (KnCl(V))N(a(ty)UCIU)) c KNCI(V)Na(ty) C
(KNHNCI(V))Nea(ty) = @Na(ty) = 0. This contradicts the
connectivity of My and completes the proof of the theorem.

7.3 Corollary. If § is continuous, then every proper subcon-
tinuum of X is unicoherent.

7.4 Definition. A generalized Warzaw circle is an arcwise
connected circle like continuum which is not a simple closed
curve. By Theorem 6 in [9], X is a generalized Warzaw circle
if and only if there exists a bijective map f : [0,00) — X such
that f[0,1] = CI(f[t,00)) — f[t,00) for every t > 1. Such an f
is said to be a rolling map for X.

7.5 Lemma. Let X be generalized Warzaw circle with a rolling
map f. Then C(X) = {f[a,b] : 0 < a < b}U{f[0,b]U f[a, 00) :
b>1}.

Next we will restate Theorem 2 in [10] of Nadler and Quinn:

7.6 Theorem. X is an atriodic pathwise connected space if
and only if X is a simple closed curve, an arc or a generalized
Warzaw circle.

7.7 Lemma. Let X be a generalized Warzaw circle with a
rolling map f. Let A = f[0,1]. Then SB(A) = {f[a,1] : a € I}.

7.8 Theorem. Let X be a pathwise connected space, then the
following assertions are equivalent:

(a) X is a simple closed curve,

(b) S is continuous,

(c) SB(A)—{A} is disconnected for every A € CN(X)—F1(X)
and,

(d) SB(A) N Fi(X) has ezactly two elements for every A €
CMNX) — Fi(X).
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Proof. Clearly (a) = (b), (c) and (d).

(b) = (a). By Corollary 7.3, every proper subcontinuum of
X is unicoherent. If X contains a simple closed curve S, then
X is equal to S. Suppose then that X does not contain simple
closed curves. Then every pair of different points z and y in X
can be joined by a unique arc which will be denoted by Ty, zZ
will denote the set {z}.

First, we will prove that X is hereditarily pathwise connect-
ed. Suppose, on the contrary, that there exists A € C(X)
and there exist two different point zo and yp in A such that
Zogo N A = {20, yo}. Then A — {zo,yo} and Zo¥5 — {20, o} are
separated sets and AUZgyg is not unicoherent, so AUZgy5 = X,
Cor. 7.3. ,

Choose a point py € {Zp¥o} — Zoyo. Given a € A, zy or yp is
in @pg. Define H ={a € A:zo €apy} and K ={a € A:yo €
@po}. Then A= HUK and HN K = . Since A is connected,
we may suppose that CI(H)N K # 0. Given a € H,aZ — {zo}
is a connected subset of (A — {zo, y0})U (ZTo¥o — {0, y0})- Then
azZo C A. Thus @y C H. Hence H is pathwise connected.
Similarly, K is pathwise connected.

Choose a point z; € CI(H) N K and we may suppose that
Z190 N CI(H) = {z,}. Then z;, # z,. Notice that p, € 7z —
{z1,z0} and CI(H) N T1T5 = {z1,20}. Then CI(H) U Z17, is
not unicoherent. Therefore X = Cl(H) U Z:7,.

We assert that CI(H)N K = {z,}. To see this, suppose that
there exists a point z; € CI(H) N K — {z,}. Then z, ¢ Z17,.
Hence z; € Int(CIl(H)). This implies that {z2} & S(CI(H)).
Choose a dense subset {a;,az,...} of H. Given n, let B, =
Toa; U...UZpa, C H. Then z; € B,. Let m, be such that
d(z2,am,) < 1/n and an, ¢ Bn, then m, > n. Choose a
point ¢, € Zga,,, — {@m,} such that @, N B, = 0 and
d(am,,cn) < 1/n. Define C, = B, UZ5¢, € C(CI(H)), then
CGmn, Ncn = {cz}. Thus {c,} € SB(C,) C §(C,). Notice
that C, — CI(H) and {c,} — {z.}. By hypothesis, S(C,) —
S(CI(H)), so {zx2} € S(CI(H)). This contradiction proves that
CI(H)N K = {z,}.
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Choose a parametrized order arc a from {z,} to CI(H).
For each n, let t, = 1/n. For each n choose a point p, €
a(t,) — (a(te41) UToz1). Then p, € CI(H) C A and p, # z;.
Thus p, € H, zo € P,,po and py € P,Z;. Since a(t,) N p,z; C
(PaPo — {Po}) U (PoZ1) — {po}) and intersects both sets, we have
that a(t,) UP,Z; is a not unicoherent. Then X = a(t,) UPbrz;.
Therefore, for each n, p, € Prt1Z1 — {Pn+1} and this implies
that (Pns1Pn — {Pn}) N PnZ1 = 0. Then Pri1p, C aft,). Hence
Pabnr1 — {1}

Consider the set S = Z1p; U p1p; UD2ps U ... . Since p, €
Pnp1Z; for each n and P, P17 — {z1}, we have that S is a sim-
ple closed curve. This contradicts our supposition and proves
that X is hereditarily pathwise connected,

Then X is an hereditarily pathwise connected continuum
which does not contain simple closed curves. This implies that
X is hereditarily unicoherent. Therefore X is a dendroid. From
lemma 3 in [2], it follows that there exist two points wy, 2o in
X such that WgZ is a maximal arc in X.

Since § is not continuous for X ~ Interval, X # wWgz,. Let
U be an open subset of X such that Wezs C CI(U) # X. Let A
be the component of Cl(U) such that Wz C A. Choose € > 0
such that zo € Ne(wp). Given n, let A, be the component of
A — Ne/n(wo) which contains zo. Then A, C An4; for each n
and A, — Ao =CIl(U{A,:n >1}) '

Given n, choose a point w, C Wz such that Wew,N A, =0
and d(wp, w,) < 1/n. Define B, = A, UW,%. B, € C(X) and
{w,} € SB(B,) C §(B,). Moreover w,, — wp.

Given z € A — {wo, 20}, there exists y € WoZ such that
Ty N Wozo = {y}. The maximality of Wozo implies that y #
wo, zo SO there exists n such that Ne/n(wo) N Ty = 0. Then
z € A,. This proves that A — {wp,20} C U{A, : n > 1} and
A = Ay. By the continuity of S, we have that {wo} € S(A).
Then there exists B € SB(A) such that B C U. Let 8 be
a removing map for B. Then there exists ¢ > 0 such that
B(t) C U and this implies that B(t) C A which is absurd.

This contradiction proves that X must contain a simple
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closed curve and so X is a simple closed curve.

(c) or (d) = (a). Suppose (c) or (d). First, we will prove
that X is atriodic. Suppose, on the contrary, that X contains
a triod. Since X is arcwise connected, it is easy to prove that
there exists C € C(X) and there exist arcs 4;,7;, and 43 in X
such that 43 — C, 42 — C and 43 — C are disjoint subsets of X
and 4; N C is an end point q; of 4; for i =1,2,3.

For i = 1,2,3, let b; be the end point of 4; such that b; # a;.
Choose a point ¢; € v; — {a;,b;}. Let B; be the subarc of «;
joining a; and ¢;. Define A = CUB,UB,UBs. Then A € CHNX)
and {¢}, {c;},{c3} € SB(A).

We will show that SB(A) — { A} is pathwise connected. Let
C be the path component of {c;} in the space SB(A) — {A}.
Taking a parametrized order arc from {c¢;} to 5, UB, UC. we

have that S UB,UC €C.

With a parametrized order arc from {c;} to 8, U B, UC, we
obtain that {c;} € C. Similarly, {c;} € C.

Let D € SB(A) — {A}. If ¢; € D, taking a parametrized
order arc from {¢,} to D, we have that D € C. If ¢; € D, there
exists d; € B, — {¢1,a,} such that the subarc a of 8, joining ¢,
and d, is such that aN D =0. Then D, = (A-a)U{d;} isa
proper subcontinuum of A such that ¢;,¢3 € Dy, D C D,. By
Thm. 1.2 (b), D, € SB(A). Taking parametrized order arcs
from {c;} to D; and from D to D, we obtain that D; € C and
DeC.

Therefore SB(A) — {A} is pathwise connected and SB(A)
contains three one-point sets. These conclusions are contrary
to (c) and (d) respectively. Hence X must be atriodic.

Clearly an interval does not satisfy (c) nor (d). If X is a
generalized Warzaw circle with a rolling map f, let A = f[0,1].
By lemma 7.7, SB(A) = {f[a,1] : @ € I}. Then the unique
one-point set in SB(A) is f(1) and SB(A)—{A} is a semi-open
interval. Thus X does not satisfy (c) nor (d).

Then Thm. 7.6 implies that X is a simple closed curve.
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8. Two EXAMPLES

8.1 Example. Let X be an hereditarily indecomposable con-
tinuum. Then, by Thm. 2.1, SB(A) = {A} for each A €
CA(X). Thus S(A) = {A} and m(A) = {A}. Therefore S
is continuous and lim sup m(A,) is finite for every sequence
(Aq)n in C*(X) which converges in C(X). Thus pathwise con-
nectedness is a necessary condition in Theorems 6.1 and 6.3
and the equivalence between (a) and (b) in Theorem 7.8.

8.2 Example. Let X be a solenoid. Then every element in
C(A) is an arc which can be enlarged through both end points.
Thus X satisfies (c) and (d) in Theorem 7.8 and m(A) consists
of two one-point sets for every A € C*X) — F;(X). Then
pathwise connectedness is a necessary condition in Theorem
5.3 and in the equivalences (a) <> (c) and (a) < (d) in Theorem
7.8.
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