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SEMI-BOUNDARIES IN HYPERSPACES 

ALEJANDRO ILLANES 

ABSTRACT. 

Let C(X) be the hyperspace of all subcontinua of a 
continuum X. In this paper we introduce the concept of 
semi-boundary. Given A E C(X)- {X}, a subcontinuum 
B of A is in the semi-boundary of C(A) if there exists a 
map 0 : [0, 1] -+ C(X) such that 0(0) = Band o(t) in 
not contained in A for every t > O. Using semi-boundaries 
we obtain characterizations of the interval, simple closed 
curves, local connectedness, acyclic finite graphs, hered
itarily indecomposable continua, atriodic continua and 
continua containing n-ods. 

INTRODUCTION. 

The X will denote a continuum ( i. e. a compact, connected 
space with metric d). The hyperspace C(X) consi~ts of all 
subcontinua of X with the Hausdorff metric H. Continuous 
functions are called maps. The unit closed interval in the real 
line is denoted by I. Given A E C(X)-{X}, the semi-boundary 
of C(A) is defined by SB(A) = {B E C(A) : there exists a map 
Q : I -+ C(X) such that 0(0) = Band o(t) is not contained in 
A for all t > OJ. Notice that SB(A) depends on the containing 
space X. For simplicity, this dependence is suppressed in the 
notation. 

Let us consider some examples: (a) Taking parametrized 
order arcs (see Def.l.l), it follows that SB({x}) = {x} for ev
ery x E X and A E SB(A) for all A E C(X) - {X}. (b) If 
A E C(f) - {f} and A is not a one-point set, then SB(A) 
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is an arc and A is an end point of this arc if and only if 
o E A or 1 E A. (c) If X is a single closed curve and A E 
C(X) - {X}, then SB(A) is an arc and A is not an end point 
of this arc. (d) Let X be the subspace of the Euclidean plane 
defined by X = (U{(0, 1In) (1, 1In) : n ~ I}) U (0, 0)(1, 0) U 
(0,0)(0, 1), where pq denotes the arc joining p and q. Define 
A = (U{(O, 0)(1 - lIn, lIn) : n ~ I} )U(O, 0)(1, O)U(O, 0)(0, 1). 
Then {(I-lIn, lIn)} E SB(A) for each nand {(l,O)} is not 
in SB(A). This show that SB(A) is not necessarily closed. 

In [12], S.B. Nadler, Jr., introduced and developed the con
cepts of arcwise, segmentwise and continuumwise accessiblili
ty. All of them are inserted in the following context: Given 
B E A C B C 2x = {A eX: A is a nonempty closed subset 
of X}, under which conditions is B arcwise (resp.' segmen
twise, continuumwise) accessible from B - A? That is, when 
does there exist an arc Q in B (resp. a segment Q in B, a con

. tinuum Q in B) such that Q n A = {B}? These concepts have 
been useful for the study of the structure of hyperspaces (see 
[12] and [4]). Semi-boundaries are also inserted in this context. 
Using Nadler's terminology, we could say that C E SB(A) if 
C is arcwise accessible from C(X) - C(A). 

Restricted semi-boundaries were used in [5]. Although semi
boundaries can be defined in every topological space, in this 
paper, we show that their use in hyperspaces has a special util
ity. The structure 'and characteristics of the semi-boundaries 
in C(X) reflect many properties of the space X, using them we 
obtain characterizations of the interval, simple closed curves, 
local connectedness, acyclic finite graphs, hereditarily inde
composable continua, atriodic continua and continua contain
ing n-ods. 

The notions not defined here will be taken as in the book of 
S. B. Nadler, JR. [13]. I acknowledge many fruitful discussions 
with Cesar Jimenez Espinosa on the topic of this paper. I wish 
to thank the referee for his useful comments and for suggesting 
to me Theorem 4.3 and its corollary. 
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1 BASIC FACTS. 

Definition. Given A, B E C(X) such that A C B # A, a 
parametrized order arc from A to B is a map 0 : I ---. C(X) 
such that 0(0) = A, 0(1) = B and if s < t, then o(s) C 
o(t) # 0(8). The existence of parametrized order arcs follows 
from [13, Thm. 1.8.]. Let C"(X) = C(X) - {X} and F1 (X) = 
{ {x} E C(X) : x E X}. We write X ~ Y to denote that X is 
homeomorphic to Y. 

1.2 Theorem. Let A E C"(X). 
(aJ B E SB(A) if and only if B E C(A) and there exists a 
map 0 : I ---. C(X) such that 0(0) = B,o(t) is not contained'
in A for each t > 0 and if 8 < t, then 0(8) C. a(t). Such a map 
will be named a removing map for B 
(b) If B E SB(A) and BCD c A, then D E SB(A). 
(c) A E SB(A). 
(d) SB(A) is pathwise connected. 
(e) SB(A) C Fr(C(A)) (boundary ofC(A) in C(X)). 
(f) If B, D E C(X), B n D # 0, B - D # 0, D - B # 0 and 
E is a component of B n D, then E E SB(B) n SB(D). 

Proof· 
(a) (=» Let (3 : I ---. C(X) be a ·map such that (3(O) = Band 
(J(t) is not contained in A for every t > o. Define 0 : I -+ C(X) 
by o(t) = U{{3(s) E C(X) : 8 E [O,t]}. 
(b) Let a be a removing map for B, define (3 : I ---. C(X) by 
{3(t) = D U a(t): Clearly, {3 is a removing map for D. 
(c) Every parametrized order arc from A to X is a removing 
arc for A. 
(d) Let B E SB(A) - {A}, let a be a parametrized order arc 
from B to A. By (b), 1m 0 C SB(A). 
(f) Take a parametrized order arc 0 from E to B. Given t > 
0, E C o(t) # E and a(t) C B, then o(t) is not contained in 
D. Thus E E SB(D). Similarly, E E SB(B). 

1.3 Theorem. Let A E C"(X) and B E C(A). Let (Bn)n C 
C(X) be a sequence such that Bn ---. B. Then each one of the 
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following conditions implies that B E SB{A) : 
(a) If B n is not contained in A and Bn+1 C B n for each n,. 
(b) If Bn is not contained in A and Bn n B :f 0 for each n; 
(c) If Bn E SB(A) and Bn n B :f 0 for each n. 

Proof. (a) For each n, choose a map On : [l/(n + 1), lIn] ~ 

C(X) such that Qn{l/(n + 1)) = Bn+1 ,on{1/n) = Bn and if 
s < t, then Qn(s) C on(t). Define a : I -+ C{X) by o{t) = 
On ( t) if t E [1 I (n+1), 1In] and o(0) = B. Then a is a removing 
map for B. 
(b) For each n, define Cn = B U Bn U Bn+1 U .... Then Cn E 
C(X), Cn ~ Band Cn is not contained in A and Cn+1 C Cn 

for every n. Thus (a) implies that B E SB(A). 
(c) For each n, let On be a removing map for Bn • Choose tn > 0 
such that H(Bn , Qn(tn )) < lin. Then on(tn ) -+ B,on(tn ) is 
not contained in A and B n Qn(tn ) :f 0 for each ·n. By (b), 
BE SB(A). 

1.4 Theorem. If A E CI\(X) and B E SB(A), then there 
exists a minimal element (with respect to the inclusion) C E 
SB(A) such that C C B. 

Proof. By Theorem 1.3 (c), the intersection of a countable nest 
of elements in SB(A) is in A. Then the proof follows from the 
Brower Reduction Theorem. ( see [7, p. 61]) 

2. HEREDITARILY INDECOMPOSABLE CONTINUA. 

2.1 Definition. A continuum is indecomposable provided that 
X is not the union of two proper subcontinua. It is hereditarily 
indecomposable provided that each of its subcontinua is inde
composable. 

It is easy to see that a continuum X is hereditarily indecom
posable if and only if whenever A and Bare subcontinua of X 
such that AnB:f 0, then A C B or B C A. 

The following theorem is related to Kelley's Theorem 8.2 in 
[6] and it is easy to prove using Theorem 1.2 (f). 
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Theorem. X is hereditarily indecomposable if and only if 
SB(A) = {A} for every A E C"(X). 

ARCS. 

3.1 Theorem. IfX is a nondegenerate continuum then X ~ I 
if and only if X ~ SB(A) for every A E G"(X) - F1(X). 

Proof. (<=) Let A E G"(X) - F1(X) and let B E SB(A) 
{A}. Since SB(A) is arcwise connected, there exists an arc 
a in X. Since SB(a) C G(a) ~ Disc X, SB(a) is a plane 
continuum. Identify a with the interval [0, 1]. If there exists 
E E SB(a) such that 0,1 ¢ E, then E is of the form E = [a, b] , 
with 0 < a ~ b < 1. Define 0' : [O,a] X [b,l] ..... G(X) by 
O'(s, t) = [8, t]. Then 0' is an injective map 'and Theorem 1.2 
(b) implies that Im(O') C SB(a). Thus X ~ SB(o:) contains 
a subspace C which is homeomorphic to the square I x I. 
Consider a simple triod Z (a space of the form of the letter Y) 

, contained in G. Then ~very subcontinuum of Z is in SB(Z). 
Then C(Z) C SB(Z). But C(Z) contains a cube I x I x I. It 
follows that X ~ SB(Z) contains a cube. This contradiction 
proves that if [a, b] E SB(a), then a = 0 or b= 1. Then SB(o:) 
is a subcontinuum of the set {[a, b] : bEl} U {[a, 1] : a E I} 
which is homeomorphic to I. Therefore X ~ SB(o:) ~ I. 

4. N-ODS. 

Definition. An n - od (resp. 00 - od) in X is an element 
B E C(X) for which there exists an A E C(X) such that 
B - A contains at least n components (resp. infinitely many 
components). X is said to be atriodic if it does not contain 
3-ods. Given A E C"(X), we will denote by m(A) the set of 
minimal elements in SB(A). 

In [5] it was proved that X contains n-ods (resp. co-ods) 
if and only if G(X) contains n-cells (resp. Hilbert cubes). 

4.2 Theorem. Let n ~ 1. Then X contains n - ods if and 
only if there exists E E G"(X) such that m(E) has at least n 
elements. 
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Proof. (=» Suppose that n ~ 2. Let A, B E C(X) be such that 
A C Band B - A has at least n components. Let D t , ... ,Dn 

be components of B - A. Then Cl(Di ) n A =F 0 and A U D i E 
C(X) for each i. Fix an open subset U of X such that A C U 
and Di - Cl(U) =F 0 for each i. Let E he the component of 
Cl(U) such that ACE. Given i and taking a parametrized 
order arc from A to A U Di , we can find a continuum which 
properly contains A and which is properly contained in (A U 
Di ) n U. Hence, E n Di =F 0. By Thm 1.2 (f), there exists an 
element Ii E SB(E) contained in Cl(Di ). Let Ei be a minimal 
element in SB(E) such that Ei C Fi . Since U is open, it is not 
possible that Ei C A, so Ei n D i =F 0. Hence E t , . .. ,En are 
pairwise different. 

(¢=) Let E E C"(X) be such that m(E) has at least n 
elements. Let E1 , ••• ,En E m(E). H there exist A and B E 

. C(X) such that An B has infinitely many components, then 
X contains co-ods ([11, Thm, 14]). Suppose then that An B 
has finitely many components for every A, B E C(X). For 
each i, choose a removing map Qi for Ei • Given i, Ej is not 
contained in E i for every j =F i, so a number ti > 0 can be 
choosen in such a way that Ej is not contained in Qi(ti) for 
every j =F i. Given i =F j, we will show that there exists s > 0 
such that Qi(S) nQj(ti) C E. If Ei nQj(tj) = 0, then it is easy 
to find s. Suppose then that C1 , ••• ,Cr are the components of 
EinQj(tj). Suppose also that there is not such an s. Given k > 
1, Qi(l/k) n Qj(tj) is not contained in E. Let C be the union 
of the components of Qi(l/k) n Qj(tj) which do not intersect 
E i • Then C is a compact set disjoint from E j , and there exists 
a number Zk E (0, 11k) such that Qi(Zk) n C = 0. Choose a 
point x in Qi(Zk) n Qj(tj) - E. Let Dk be the component of 
Qi(l/k) nQj(tj) such that x E Dk. Then DknEi =F 0, so there 
exists 1 < 1k < r such that Clk c Dk. 

Let 10 E {I, ... ,r} be such that 10 = 1k for infinitely many 
k. Suppose that k1 < k2 < ... are such that 10 = 1km for 
all m. Given m ~ 2, Dkm E C(X), Dkm is not contained 
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in E, C10 C Dkm and Dkm is a component of Qi(l/km ) n 
OJ(tj) C oi(1/km - 1 ) n OJ(tj), so Dkm is contained in Dkm _ 1 • 

Since Dkm C oi(l/km ) --+ Ei C E, we have that (Thill. 1.3 
(a» D = n{Dkm : m ~ I} E SB(E) and D C Ei n OJ(tj). 
Thus Ei = D C OJ(tj). This contradicts the choice of tj and 
proves the existence of s. 

Then, given i, we may choose Si E (0, t i ) such that Oi(Si) n 
OJ(tj) C E for every j # i. Define B = E u 01(SI) u ... u 
Qn(sn) E C(X). Then B is an n-od.. 

4.3 Theorem. X is an atriodic continuum if and only ifSB(A) 
is either a point or an arc for every A E C"(X). 

Proof. We will use the following consequence of Thm. 1.8 in 
[1]: X is an atriodic continuum if and only if there is not three 
subcontinua of X with nonempty intersection and such that 
no one of them is contained in the union of the other two. 

(=» By theorems 1.2 (c), 1.4 and 4.2, m(A) has only one 
or two elements. We only analyze the case m(A) = {B1 , B2 } 

where B1 # B2 , the proof of the other one is analogous. Choose 
two parametrized order arcs {31 and (32 from B1 to A and B2 

to A, respectively. And fix removing maps 01 and 02 for B1 

and B2 , respectively. 
We assert that if B1 C B C A and B E C(X), then B E 

1m Pl. Suppose, on the contrary, that B f/. 1m {31. Let to = 
max {tEl: (31(t) C B}. Then (31(tO) C B # P1(tO). Fix a 
point p E B - Pl(tO) and let t1 > to be such that p ¢ (31(tO). 
Choose a point q in PI (t 1 ) - B. Then there exists t2 > 0 such 
that p, q ¢ Q1(t2). Then Q1(t2) is not contained in A. Thus 
B, Pl(t1) and 01(t2) are three subcontinua of X with nonempty 
intersection and no one of them is contained in the union of the 
other two. This is a contradiction which proves the assertion. 

A similar assertion holds for B2 • Then, SB(A) = 1m PI U 
1m {32 (see theorems 1.2 (b)and 1.4). 

H there exists and element EElm{31 nI m{32 such that E # 
A, choose a point Xo E A-E. Notice that B I , B2 E S B(E) and 
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01 and 02 are removing maps for B1 and B2 , respectively (with 
respect to E). As in the proof of the sufficiency of Theorem 4.2, 
it is possible to find S1, S2 > 0 such that 01 (81) n Q2 (S2) c E. 
We may suppose that Xo rt 01(S1) U02(S2). Thus A, E U01(S1) 
and E U 02(S2) are three subcontinua of X with nonempty 
intersection and no one of them is contained in the union of 
the other two. This contradiction proves that 1m /31 n1m /32 = 
{A}. 

Hence SB(A) = 1m /31 U 1m /32 is an arc. 

(¢::) Suppose that X is not atriodic. Theorem 4.2 implies 
that there exists E E G"(X) such that m(E) has at least three 
different elements B1 , B2 , and B3 • Let (31 : I --+ G(X) (resp. 
(32 and (33) be a parametrized order arc from B1 (resp. B2 and 
B3 ) to E. Then for each i = 1,2,3, 1m /3i is a subarc of the 
arc SB(E) joining B i to E. This implies that Bi E 1m Bj for 
some i =F j. Thus B j C Bi which is a contradiction. Therefore 
X is atriodic. 

4.4 Corollary. If X is a Peano continuum, then X is either 
an arc or a simple closed curve if and only if SB(A) is an arc 
for all proper nondegenerate subcontinua A of x. 
Proof. (=» Is immediate, (<=) By Theorem 4.3, X. is an atri
odic Peano continuum. Then X is either an arc or a simple 
closed curve. 

4.5 Theorem. If there exists E E G"(X) such that m(E) is 
infinite, then X contains oo-ods. 

Proof. Let E E G"(X) be such that m(E) is infinite. Choose 
a sequence E1 , E2 , • •• of pairwise different elements in m(E). 
We may suppose that En --+ Eo for some Eo E G(X). Suppose 
that A n B has finitely many components for every A and B 
in G(X). 

H Eo C En for infinitely many n, by Thm. 1.3 (c), Eo E 
SB(E). But each En is minimal, so infinitely many of them 
are equal to Eo. This contradiction proves that this case is not 
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possible. Then we may suppose that Eo is not contained in En 
for every n. 

For each n, let On be a removing map for En. Let t > 0 be 
such that on(t) does not contain Eo, then there exists M > 0 
such that Em is not contained in on(t) for every m ~ M. 
Thus there exists t n > 0 such that Em is not contained in 
On(tn) for every m # n. Proceeding as in the proof of the 
necessity in Thm. 4.2, a number Sn E (0, tn) can be found in 
such a way that on(sn) n (OI(t1) u ... U On-l(tn- 1)) C E and 
H(En,on(sn)) < lin. 

Define B = E U 01(SI) U 02(82) U .... Then on(sn) - E is 
open and closed in B - E for each n. Therefore, B is an oo-od. .. 

The converse of Theorem 4.5 is not true as it is shown in the 
following example. 

4.6 Example. Choose an hereditarily indecomposable contin
uum Z contained in the Euclidean plane ]R2 such that (0,0) E 
Z. For each n, let Zn = {(l/n)(x,y,(l/n) II (x,y) II) E ]R3 : 

(x,y) E Z}. Then each Zn is a subcontinuum in ]R3 such that 
Zn ~ Z. If n # m, then Zn n Zm = {OJ and Zn -+ {OJ. 

Define X = ZIUZ2U... . Then X is a continuum and X -{OJ 
has infinitely many components. Thus X is an 00 - ode 

Let E E C"(X), we will show that m(E) is finite.. We ana
lyze three cases: 

(a) 0 ¢ E. Then there exists n such that E C Zn - {OJ. 
Since Zn is hereditarily indecomposable, then .SB(E) = {E} 
and m(E) = {E}. 

(b) 0 E E. Then En Zn E C(X) for each n. Let A E m(E), 
if 0 ¢ A, then A C ZnnE- {OJ for some n. Then if B E C(X) 
is such that A C Band 0 ¢ B, then B C Zn n E. This implies 
that A ¢ SB(E). This contradiction proves that 0 E A. 

(b.l) Zn is not contained in E for infinitely many n. Take 
A E m(E). Then 0 E A. Since Zn -+ {OJ, by Thm. 1.3 (b) we 
have {OJ E SB(E). Thus {OJ = A. Hence m(E) = {{O}}. 
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(b.2) The set of n such that Zn is not contained in E is a 
finite set {nt, ... ,nr}. Notice that En Zni E SB(E) for every 
i. Given A E m(E), we assert that E n Zni C A for some 
i. Suppose that this is not true. Let a be a removing map 
for A. So there exists t > 0 such that a(.t) does not contain 
any E n Z"i. Since E n Z"i and a(t) n Z"i are intersecting 
sllbcontinua of Z"" we have that 'a(t) n Zn, C En Zni for each 
i. Then a(t) C E. This contradiction proves that En Zni C A 
for some i. Then A belongs to the set {E n Zni' ... ,E n Znr}. 
Therefore m(E) is finite. 

5. LOCALLY CONNECTED CONTINUA. 

5.1 Theorem. The following assertions are equivalent. 
(a) X is locally connected, 
(b) If A E C"(X) and p E Fr(A), then {p} E SB(A) and, 
(c) SB(A) = Fr(C(A)) for every A E C"(X). 

Proof. (a) ~ (b) follows from Thm. 1.3 (a). 
(b) ~ (a). Suppose that X is not locally connected. Then 

there exists an open subset U of X and there exists a compo
nent D of U such that D is not open. Let p E D - Int(D). 
Then p E Fr(Cl(D)) and {p} ¢ SB(CI(D)). 

(a) => (c). Let B E Fr(C(A)), then there exists' b E Fr(A) 
such that b E B. By (b), {b} E SB(A). Thm 1.2 (b) implies 
that B E SB(A). 

(c) => (b). Let A E G"(X) and p E Fr(A), then {p} E 
Fr(C(A)) = SB(A). 

Using the Baire Category Theorem, the following lemma is 
easy to prove. 

5.2 Lemma. Let {An: n 2: I} be a countable family of pair
wise disjoint closed subsets' of X and let U be an open subset of 
X such that An n U # 0 for every nand U C U{An : n ~ I}. 
Then (Int(An)) n U # 0 for infinitely many n. 
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5.3 Theorem. Suppose that X is a pathwise connected contin
uum. Then X is locally connected if and only ifm(A) C F1(A) 
for every A E C"(X). 

Proof. (~) Let A· E C"(X) and let B E m(A). Then B E 
Fr(C(A)), so there exists b E B such that b E Fr(A),. By 

,Thm. 5.1, {b} E SB(A), so B = {b} E F1 (A). 

(<=) Suppose that X is not locally connected. Then there 
exists an open subset U of X and there exists a component D* 
of U such that D* is not open. Choose Po E D* - Int(D*). Let 
~ V be open subsets of X such that Po EWe CI(W) eVe. 
CI(U) c U. Notice that infinitely many components of CI(U) 
intersect W. 

Let D = {D : D is a component of CI(U) and D n CI(V) ~ 

0}. Let L be an arc in X. Given x E L n Cl(V), there exists 
a subarc L z of L such that 8 E L z , x is not an end point 
of L z and Lz .C U. Since L n Cl(V) is a compact subset of 
L, L nCl(V) can be covered by finitely many sets of the form 
Lz . Thus L n Cl(V) can be covered by finitely many elements 
of D. Therefore L intersects at most finitely many sets of the 
form D n Cl(V) with D E D. 

Choose a point Xo E X - Cl(U). Given D E D, yve assert 
that there exists finitely many elements D1 ,. •• ,Dn in D and 
there exists arcs L1, ••• ,Ln in X - V such that Dn = D, Xo E 
L1 , L1 nD1nCl(V) ~ 0and i E {2, ... ,n}, L i nDi - 1 nCl(V) ~ 
oand Li n Di n Cl(V) =1= 0. 

To prove this, let xED n Cl(V) and let "I : I --+ X be 
an injective map such that "1(0) = Xo and "1(1) = x. Let 
{Cl , ... ,Cm } = {E ED: 1m 'YnC1(V)nE t 0} with C1 = D. 
Let t l = min 'Y-l(D n Cl(V)). If "1([0, t l )) does not intersect 
CI(V), put n = 1, D1 = D and L1 = "1([0, tl]). If "1([0, tl )) 
intersects Cl(V), let 81 = max 'Y-1 (Cl(V)) n [0, tl ). Then we 
may suppose that "1(81) E C2 • Let t 2 = min 'Y- l (C2 nCI(V)). If 
"1([0, t 2 )) does not intersect Cl(V), put n = 2, D2 = D, L2 = 
1([81, tl])' D1 = C2 and L1 = "1([0, t2]). If "1([0, t 2 )) n Cl(V) t 
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0, this procedure can be continued to obtain n, D1 , • •• ,Dn and 
£1, ... ,Ln. 

Given D E D, a sequence C = (n, L 1 , ••• ,Ln , D1 , ••• , Dn ) 

with the properties mentioned above will be called a chain end
ing in D. The size of C is n. Define n(D) = min {n : there ex
ists a chain C ending in D such that n is the size of C}. Choose 
a chain C(D) = (n(D), L1(D), ... ,Ln(D)(D), E1 (D), ... , 
En(D)(D)) ending in D. 

Let D 1 = {D : D is a component of Cl(U) and DnCl(W) # 
0}. Then D1 c D. For each m, let Em = {D E D1 : n(D) = m} 
and Fm = {D ED: n(D) = m}. Then Em C Fm. 

We will construct an A E C"(X) such that m(A) is not 
contained in F1 (A). We consider three cases: 

(a) There exists rn such that Em is infinite. 
Since every element of Em intersects Cl(W), we have that 

there exists a point Yo E Cl(W) such that every neighborhood 
of Yo intersects infinitely many elements of Em. Consider rno = 
min {n : every neighborhood of Yo intersects infinitely many 
elements of Fn }. Let Do be the component of Cl(U) such that 
Yo E Do. Then there exist an open subset Wo of X such that 
Yo E Wo C ~ Since there exists a neighborhood of Yo which 
intersects only finitely many elements of {D ED: n(D) < 
mol, then we may suppose that either Won ({D ED: n(D) < 
mo}) = 0or Wo n ({D ED: n(D) < mol = Won Do. In both 
cases Wo n (U{D ED: n(D) < rno}) c Do. 

Choose a sequence (Dr)r of pairwise different elements of 
Fmo such that Dr n N1/r(yo) # 0 ( if e > 0, N e(yo) denotes the 
open ball of radius e about Yo) and Dr # Do for each rand 
Dr --+ D' for some D' E C(X). Since Yo E D' c Cl(U), then 
D' C Do. 

Given r, let Fr = L1(Dr) U ... U Lmo(Dr) U E1(Dr) U ... U 
Emo(Dr) and let Br = Cl(Fr UFr+1 U ... ). Then Fr,Br E 
C(X), Dr C Fr C Br and Br+1 C Br for each r. Thus Br --+ 

Bo = n{Br : r 2:: I}. For each r, notice that n(Ei(Dr )) = i for 
all i = 1, ... ,rno, thus Fr n Wo C Do U Dr. Then Wo n Br = 
Wo n Cl(Fr U Fr+1 U ... ) eel(Wo n (Fr U Fr+1 U ... )) c 
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Cl(DoUDrUDr+IU ) = DoUDrUDr+IU... · Thus WonBr C 
Do U Dr U Dr+l U · This implies that Won Bo C Do. 

Let WI be an open subset of U such that Yo E WI C 
Cl(W1) CWo. Let A be the component of -Do U (X - WI) 
which contains Bo. Then A E C(X) and Bo E C(A). To 
see that Bo E SB(A), take r ~ 1. Let 8 > r be such that 
N1/.(yo) C WI. Let x E N1/.(Yo)nDa, then x rt DoU(X - WI). 
Thus 0 =F B. n (X - A) C Br n (X - A). By Thm. 1.3 (a), we 
have that Bo E SB(A). 

Let B* E m(A) be such that B* C Bo (Thm. 1.4). If 
B* E F1(A), then there exists a E Bo, such that {a} E SB(A). 
Let a be a removing map from {a}. If a E Wo, then a E Do and'
there exists t > 0 such that o(t) C Cl(U). Thus o(t) c Do. So 
o(t) C A which is absurd. If a rt Wo, then there exists t > 0 
such that o(t) n Cl(W1) = 0. This implies that o(t) C A. This 
contradiction proves that B* is an element of m{A) - F1(A) 
and completes this case. 

(b)Em is finite for each m. 
Then D1 is countable. Let D2 = {D E D1 : D n W =F 0}, 

then D2 is countable. Since W C U{D : D E D2 }, Lemma 
5.2 implies that Int{D) n W =F 0 for infinitely many D E D2 • 

Choose a sequence D1 , D2 , ••• of pairwise different elements 
of D2 such that Int(Dr ) n W =F 0 for each r. Choose points 
X r E Int(Dr ) n ~ We may suppose that Dr ~ D' for some 
D' E C(X) and X r ~ Yo for some Yo E D'. Given r > 8, r 
is called a son of s if, considering the chosen chain C(Dr ) = 
(n(Dr ), L1(Dr ), ••• , Ln{Dr )(Dr ), E1(Dr ), ••• En {Dr )(Dr )) for 
Dr, we have that Da = Ei(Dr) for some i E {I, ... ,n(Dr)}. 
Now we consider two cases. 

(b.l) {s : 8 has finitely many sons} is finite. 
Then there exists a sequence (8r ) such that 81 < 82 < ... 

and 8 r +l is son of 8 r for every r. 
Given r, let Fr = D.r and Zr = x ar • Since 8 r+l is son of Sr, 

then Fr = Ei{Fr+1 ) for some i E {I, ... ,n(Fr+l ) - I}. Since 
n(Ei{Fr+I)) = i, then n(Fr) < n{Fr +l ) and Fr = En{Fr)(Fr +I). 
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Define Gr = En(Fr)(Fr+1) U Ln(Fr)+I(Fr+1) U En(Fr)+I(Fr+1) U 
... U Ln(Fr+l)(Fr+l) U En(Fr+l)(Fr+l). Then Gr E C(X) and 
Fr, F,.+1 C B,.. Define B,. = Cl(Gr U G"+1 U ... ). Then Br E 
C(X) and Br+1 C B,.. Thus B,. -+ Bo = n{Br : r 2: I}. 

IT r < 8 and i E {n(F.,), ... ,n(F"+l)}" n(Ei(F.,+l)) = i 2: 
n(F.) > n(F,.). Then F,.nWnG., = 0. Hence Int(F,.)nWnB., = 
0. Therefore Int(F,.) nW nBo = 0 for every r. For each r, fix 
e,. > 0 such that er < l/r and Cl(Ne,.(z,.)) C Int(Fr) n w 
Then Cl(Ner(zr)) n Bo = 0. Let R = {Yo} U (U{Cl(Ner(zr)) : 
r ~ I}). Then R is compact and R n Bo C {Yo}. 

For each b E Bo- {Yo}, let 6b > 0 be such that Cl(Ns,,(b)) n 
R = 0. If b = Yo E Bo, then choose 6b > 0 such that Cl(Ns,,(b)) C 
V. For each b E Bo, let Qb be the component of Cl(Ns,,(b)) such 
that b E Qb. 

Define A = Cl(U{ Qb : b E Bo}). Then Bo C A, A E C(X) 
and if b E Bo, then {b} ¢ SB(A). 

Given r, we will show that Br is not contained in A. Let Do 
be the component of Cl(U) such that Yo E Do. Then D' C Do. 
Suppose that Fk # Do with k = r or r + 1. Then Fk C Br • 

Given b E Bo - {Yo}, Nek(Zk) n Qb = 0 and if b = }to E Bo, 
then Qb C Do· Therefore Qb n N ek(zk) C Do n Fk = 0. ThIS 
implies that Nek(Zk) n A = 0. Thus Zk E B,. - A. 

By Thm. 1.3 (a), Bo E SB(A). Let B. E m(A) be such that 
B. C Bo. Then B. ¢ F1(X) and B* E m(A) - F1(A). 

(b.2) {8 : 8 has finitely many sons} is infinite. 
Let (8 r )r be a sequence such that 81 < 82 < ... ,8r has 

finitely many sons and 8,.+1 is not a son of SI, ••• ,S,. for every 
r. 

For each r, let Fr = D.r, Zr = X.r ,Gr = L1(Fr) U ... U 
Ln(Fr) (Fr)U E1(Fr ) U... U En(Fr)(F,.) and Br = Cl(Gr UGr+1U 
... ). Thus G,., Br E C(X) and Br +1 C Br • Then B,. -+ Bo = 
n{B,. : r > I}. If r < k, Sk is not a son of s,., then Fr is 
different from each one of the sets E 1(FIc)' ••• ,En(FIc)(Fk ). Thus 
F,. n W n Gk = 0. Hence Int(Fr ) n W n Bo = 0. 

Foreachr,leter > obe such that e,. < l/randCl(Ne,.(z,.)) C 
Int(F,.)nW Define R = {Yo}U(U{Cl(Ne,.(zr)) : r ~ I}). Then 
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R is compact and R n Bo C {Yo}. 
For each b E Bo - {yo}, let Db > 0 be such that Cl(Nob(b)) n 

R = 0. If b= yo E No, then choose Db > 0 such that Cl(Nob(b)) C 
~ For each bE Bo, let Qb be the component of Cl(N6b (b)) such 
that b E Qb. 

Define A = CI(U{ Qb : b E Bo}). Then Bo C A, A E C(X) 
and if bE Bo, then {b} f/. SB(A). 

Proceeding as in (b.l), Br - A ~ 0 for every r Then Bo E 
SB(A) and if B* E m(A) is such that B* c Bo, then B* E 
m(A) - F1 (A). 

This completes the proof of the theorem. 

6. ACYCLIC FINITE GRAPHS. 

6.1 Theorem. Suppose that X is pathwise connected. If lim 
sup m(An ) is at most countable for every sequence (An)n in 
G"(X) which converges in C(X), then X is a dendrite. 

Proof. First, we will prove that if A E C(X), then each arc a 
with end points in A is contained in A. Suppose, on the con
trary, that there exists an arc Q with end points a and b, such 
that a, b E A and a is not contained in A. We may suppose 
that (a - {a,b}) n A = 0. Let {xn : n 2: I} be a countable 
dense subset of a - {a, b}. For each n, choose a subarc On of 
a - {a, b} such that if Pn and qn 'are the end points of On, then 
X n E an - {Pn' qn} and diameter (an) < lin. Define An = AU 
( 0 - ( On - {Pn' qn})). Then An -+ AU 0, {Pn}, {qn} E S B (An) 
and 0 C lim sUP{Pn} C lim sup m(An). Then lim sup m(An) 
is uncountable. This contradiction shows that 0 C A. 

Then we have the following consequences: 
(a) A is pathwise connected for every A E C(X), 
(b) X does not contain simple closed curves, 
(c) If a, b E X and a :/= b, there exists a unique arc in X 

joining them. This arc will be denoted by ab and aa will denote 
the set {a}, 

(d) X is hereditarily unicoherent and, 
(e) X is a dendroid. 
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Now we will prove that X is locally connected. Suppose 
that this is not true. Then there exists an open subset U of 
X and there exists a component D of U such that D is not 
open. Choose a point p E D - Int(D). Let V be an open 
subset of X such that p EVe Cl(V) c U. Let (Dn)n be a 
sequence of pairwise different components of Cl(V) such that 
DnnD = 0and N1/n{p)nDn =1= 0for each n. We may suppose 
that Dn --+ Do for some Do E C(X). Then p E Do C D and 
since Dn n Fr(V) =1= 0, then Do n Fr(V) =1= 0. Hence Do has 
uncountably many points. 

Choose a countable dense subset {an: n ~ I} of Do. Choose 
a point Xl E U - D such that d(al,xI) < 1. Let ql E Cl(D) 
be such that Xlql n Cl(D) = {ql} and let Zt E Xtqt - {Xt,ql} 
be such that diameter (XIZl) < 1. Notice that a2' ft Xlql, then 
there exists a point X2 E U - (D U Xlql) such that d(a2' X2) < 
1/2. Let q2 E Cl(D) be such that X2q2 n Cl(D) = {q2} and 
let Z2 E X2q2 - {X2Q2} be such that diameter (X2Z2) < 1/2 
and X2Z2 n XIQl = 0. Proceeding in this way it is possible 
to construct sequences of points (xn)n, (qn)n and (zn)n of X 
such that, for each n, diameter (xnzn) < lIn, Zn E xnqn 
{xn, qn}, Xn E U - (D U Xlql Un ... U xn-lqn-l), d(an, xn) < 
1/n,xnqnnCI(D) = {Qn} and xnZnn(Xlq1U UXn-Iqn-l) = 0 

For each n, define An = CI(D) U Zlql U U znqn. Then 
An E C(X) and An C An+1 • Thus (An)n is a sequence in 
CI\(X) which converges in C(X). Since XnZn n An = {zn}, we 
have that {zn} E m(An ). 

Each point in Do is an accumulation point of the set {an : 
n ~ I}. Then every point in Do is an accumulation point of 
the set {zn : n ~ I}. This implies that Do C lim sup m(An ). 

Hence lim sup m(An ) is an uncountable set. This contradiction 
proves that X is locally connected. Therefore X is a dendrite. 

The converse of Theorem 6.1 is not true as it is shown in the 
following example. 

6.2 Example. For each rational number z = r I s in the in
terval (0, 1) with rand s relatively prime positive integers, 
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let' L:z be the segment L:z = {(z,y) E ]R2 : 0 ~ y ~ lis}. Let 
X = (1 x {O}) U (U{Lz : Z is a rational number in (0, 1)}). Then 
X is a dendrite. For each n, let An = 1 x {Ole Then F1(An) C 
SB(An ), so F1(An) = m(An). Thus lim sup m(An) = lim sup 
F1(An ) = I x {Ole Therefore lim sup m(An ) has uncountably 
many points. 

The following theorem is related to [6, Lemma 5.2]. 

6.3 Theorem. Let x be a pathwise connected continuum. Then 
X is an acyclic finite graph if and only if lim sup m(An ) is fi
nite for every sequence (An)n in GA(X) which converges in· 
G(X). 

Proof. ({::) By Thms. 6.1, 5.1 and 5.3, X is a dendrite. Taking 
constant sequences, we have that m(A) is finite for every A E 
GA(X) and m(A) = {{x}: x E Fr(A)}. We will prove then 
that if X is a dendrite where every A E C(X) has a finite 
boundary, then X is an acyclic finite graph. 

Choose a convex metric d for X (see [1] and [8]), then De(x) E 
G(X) for every e > 0 and x E X, where De(x) = {y EX:
d(x, y) < e} If x =F y, xy will denote the unique arc in X 
joining x and y, and xx will denote the set {x}. If e > 0 and 
x E X, let Le(x) = U{xy : y E Fr(De(x)}. Since Fr(De(x)) 
is finite, Le(x) is a finite union of arcs and Le(x) c De(x). 

Given x ·E X, we will show that there exists ex > 0 such 
that Dex(x) = Lex(x). Suppose, on the contrary, that De(x) 
is not contained in Le(x) for every e > o. Then it is possible to 
construct sequences (en)n C (0,00) and (xn)n, (zn)n C X such 
that Xn E Den(x)-Len(x), en+l < min {d{x,xn), lin}, Zn E 
xXn - {x,xn } and XnZn n (Den+l(x) U Len(x)) = 0 for every n. 

Define A = U{xzn : n ~ 1}. Then A E G(X). Notice that 
Den(x) n (XXI U ... U XXn+l) C Len(x). Then XnZn n (XXI U 
... U XXn-l) = 0. This implies that XnZn n A = {xn} and 
Zn ¢ {ZI' ... ,Zn-l}. Thus {ZI' Z2, ... } is an infinite subset of 
Fr(A). This is a contradiction because Fr(A) is finite. Then 
we have shown the existence of ex. 
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Taking finitely many sets of the form Lez(x) covering X, we 
have that X is a dendrite which is a finite union of arcs. It is 
easy to prove that X is an acyclic finite graph. 

(=>) We are supposing that X do.es not contain simple closed 
curves and X is of the form: X = L1 U ...·U Lm where each Li 

is an arc and L i nLj = 0 or L i n Lj is a point which is an end 
point of both Li and L j . For each i, let ai and bi be the end 
points of L i and let Ji = L i - {ai, bile 

Let (An)n be a sequence in C"(X) which converges in C(X). 
Let A = lim An. We will show that ( lim sup m(An)) n 
{ {w} : w E Ji} has at most two points for each i. Suppose, 
on the contrary, that there exist three different one-point sets 
{x}, {y} and {z} in the set lim sup m(An ) n { {w} : w E Ji } 

for some i. We will identify Ji with I = [0, 1]. We may suppose 
that x < y < z. Then the intervals (0, y) and (y, 1) are open 
subsets of X. 

By Theorems 5.1 and 5.3, m(B) = { {w} E F1(X) : w E 
Fr(B)} for all B E C"(X). Since {x}, {z} E lim sup m(An ) = 
lim sup { {w} : W E Fr(A)} C lim sup F1(An ), then x, z E lim 
sup An = A = lim An. Thus sequences (xn)n and (zn)n can be 
chosen such that X n --+ x, Zn --+ Z and xn, Zn E An for every n. 
Fix two points Yl E (x, y) and Y2 E (y, z). Then there exists N 
such that X n E (0, Yl) and Zn E (Y2' 1) for every n ~ N. Since X 
contain no simple closed curves, (xn, zn) C An. Then (Yl' Y2) 
is an open subset of X contained in An. Hence Y E (Yl' Y2) 
and (Yl,Y2) n Fr(An ) = 0 for each n ~ N. Thus {y} f/. lim 
sup { {w} E F1(X) : w E Fr(An )}) = lim sup m(An ). This 
contradiction proves that (lim sup m(An )) n { {w} : w E Ji } 

has at most two points for each i. 
Since lim sup m(An ) C F1(X) and F1(X) = {al' ... ,am} U 

{b1, ••• ,bm } U { {w} : w E J1 U ... U Jm }, we conclude that 
lim sup m(An ) is finite. 

7. SIMPLE· CLOSED CURVES. 

7.2 Definition. Define S : C"(X) --+ C(C(X)) by S(A) = 
CI(SB(A)). 
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7.2 Theorem. Let A E C"(X). IfSIC(A) is continuous, then 
A is, hereditarily unicoherent. 

Proof. Suppose that there exists Hand !( E C(X) such that 
H n K is disconnected and H U !( -:f; X. Let P and Q be two 
nonempty closed subset of X such that P U Q = H n I{. Fix 
a point pEP and let a : !' --+ C(X) be a parametrized order 
arc joining {p} and H. Let to = min {t : a(t) n Q -:f; 0}. Then 
a(to)nQ -:f; 0and to > o. Choose an increasing sequence (tn)n 
in [0, to) such that tn --+ to. 

Let Bo = a(to) U ]( and let Bn = a(tn) U !( E C(X), then 
Bn --+ Bo. For all n, let Cn be the component of Bn n o(to) , 
which contain o(tn ). Since Bn no(to) = attn) U (a(to) n !() = 
[o:(tn ) U (o:(to) n P)] U (o(to) n Q) and o(tn ) U (o(to) n P) 
and a(to) n Q are two nonempty disjoint closed subsets of X, 
we have that Bn is not contained in a(to) and a(to) is not 
contained in Bn • Thus, by Thm. 1.2 (f), Cn E SB(Bn ) C 
S(Bn ). Since a(tn ) C Cn C a(to), Cn --+ a(to). Therefore, by 
hypothesis, a(to) E 8(Bo). 

Let U and V be disjoint open subsets of X such that P C 
U, Q c V and CI(U) n CI(V) = 0. Then a(to) - (U U V) and 
K - (U U V) are disjoint nonempty closed subsets of X. Let 
Wand Z be open subsets of X such that o(to) - (U U V) C W 
and K - (U u V) c Z. . 

Since o(to) E S(Bo), there exists a sequence (Cn)n in SB(Bo) 
such that Cn --+ o(to). Since o(to) is not contained in K, 
there exists R such that CR is not contained in ](, CR C 

U U V U W, CR n U 1= 0 and CR nV 1= 0. Then CRn a(to) 1= 0. 
Choose a point q E a(to) n Q. Let L 1 be the component 

of o:(to) n Q such that q ELI. Then £1 C V and by taking 
a parametrized order arc from L1 to K it is possible to find 
L E C(X) such that L 1 C L C ](, L1 -:f; Land LeV. Then L 
is not contained in a(to). So L n (V - a(to)) 1= 0. 

Define M = CRUa(to)UL E C(Bo). Since CR E SB(Bo), by 
Thm. 1.2 (b), M E SB(Bo) C 8(Bo) = lim 8(Bn ) and M is 
not contained in a(to). Thus there exists a sequence (Mn)n C 
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C(X) such that M n E SB(Bn ) for each nand M n --+ M. 
Then there exists N such that Mn C U U V U ~ Mn n U =F 
0, M n n V =F 0 and M n n (V - o:(to)) =F 0. 

Notice that MN C (I<nCl(V))U(o:(tN)UCl(U)),0 =F MNn 
(V-a(to)) C ]<nCI(V)nMN, 0 =F MNn.u C MNn(a(tN)U 
CI(U)), (Kn CI(V)) n (a(tN) U CI(U)) C ]< nCI(V) no:(tN) C 
(KnHnGI(V))na(tN) = Qna(tN) = 0. This contradicts the 
connectivity of MN and completes the proof of the theorem. 

7.3 Corollary. If S is continuous, then every proper subcon
tinuum of X is unicoherent. 

7.4 Definition. A generalized Warzaw circle is an arcwise 
connected circle like continuum which is not a simple closed 
curve. By Theorem 6 in [9], X is a generalized Warzaw circle 
if and only if there exists a bijective map f : [0,00) --+ X such 
that f[0,1] = CI(f[t, 00)) - fft, 00) for every t > 1. Such an f 

 is said to be a rolling map for X. 

7.5 Lemma. Let X be generalized Warzaw circle with a rolling 
map f. Then C(X) = {f[a, b] : 0 ~ a ~ b}U {frO, b] Uf[a, 00) : 
b > I}. 

Next we will restate Theorem 2 in [10] of Nadler and Quinn: 

7.6 Theorem. X is an atriodic pathwise connect.ed space if 
and only if X is a simple closed curve, an arc or a generalized 
Warzaw circle. 

7.7 Lemma. Let X be a generalized Warzaw circle with a 
rolling map f. Let A = frO, 1]. Then SB(A) = {f[a, 1] : a E I}. 

7.8 Theorem. Let X be a pathwise connected space, then the 
following assertions are equivalent: 
(a) X is a simple closed curve, 
(b) S is continuous, 
(c) SB(A)-{A} is disconnected for every A E C"(X)-F1(X) 
and, 
(d) SB(A) n F1(X) has exactly two elements for every A E 
G"(X) - F1(X). 
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Proof. Clearly (a) =? (b), (c) and (d). 
(b) =? (a). By Corollary 7.3, every proper subcontinuum of 

X is unicoherent. If X contains a simple closed curve S, then 
X is equal to S. Suppose then that X does not contain simple 
closed curves. Then every pair of different p·oints x and y in X 
can be joined by a unique arc which will be denoted by xy, xx 
will denote the set {x}. 

First, we will prove that X is hereditarily pathwise connect
ed. Suppose, on the contrary, that there exists A E C(X) 
and there exist two different point Xo and Yo in A such that 
XoYo n A = {xo, Yo}. Then A - {xo, Yo} and XoYo - {xo, Yo} are 
separated sets and AUxoyo is not unicoherent, so AUxoyo = X,
Cor. 7.3. 

Choose a point Po E {xoYo} - XoYo. Given a E A, Xo or Yo is 
in apo. Define H = {a E A : Xo E apo} and K = {a E A : Yo E
 
apo}. Then A = H U]{ and H n]( = 0. Since A is connected,
 

 we may suppose that Cl(H) n]{ :F 0. Given a E H, axo - {xc}
 
is a connected subset of (A - {xo, Yo}) U (xoYo - {xo, Yo}). Then
 
axo C A. Thus axo C H. Hence H is pathwise connected.
 
Similarly, K is pathwise connected. 

Choose a point Xl E Cl(H) n K and we may suppose that 
XlYO n Cl(H) = {Xl}. Then Xl :F xo. Notice that Po E X1 XO
{X1,XO} and Cl(H) n XIXO = {X1,XO}. Then Cl(H) U X1XO is 
not unicoherent. Therefore X = Cl(H) U X1XO. 

We assert that Cl(H) n!( = {Xl}. To see this, suppose that 
there exists a point X2 E Cl(H) n K - {Xl}. Then X2 f/. X1XO. 
Hence X2 E Int(Cl(H)). This implies that {X2} ¢ S(Cl(H)). 
Choose a dense subset {ai, a2, ... } of H. Given n, let Bn = 
XOal U ... U xoan C H. Then X2 ¢ Bn • Let mn be such that 
d(X2,amn ) < lin and amn ¢ Bn , then mn > n. Choose a 
point Cn E xoamn - {amn } such that Cnamn n Bn = 0 and 
d(amn,Cn) < lIn. Define Cn = Bn U XoCn E C(Cl(H)), then 
Cnamn n en = {en}. Thus {en} E SB(Cn ) C S(Cn ). Notice 
that Cn -+ Cl(H) and {en} -+ {X2}. By hypothesis, S(Cn ) -+ 

S(Cl(H)), so {X2} E S(Cl(H)). This contradiction proves that 
Cl(H) n K = {Xl}. 
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Choose a parametrized order arc 0 from {Xl} to Cl(H). 
For each n, let tn = lin. For each n choose a point Pn E 
o(tn) - (o(tn+l ) U XOXI). Then Pn E Cl(H) C A and Pn =F Xl· 
Thus Pn E H, Xo E PnPO and Po E PnXI. Since o(tn ) n PnXI C 
(PnPO - {Po}) U (POXI) - {Po}) and intersects both sets, we have 
that a(tn ) UPnXl is a not unicoherent. Then X = o(tn ) UPnXl. 
Therefore, for each n, Pn E Pn+IXI - {Pn+l} and this implies 
that (Pn+lPn - {Pn}) n PnXI = 0. Then Pn+IPn C o(tn ). Hence 
PnPn+1 -+ {Xl}. 

Consider the set S = XiPl U PIP2 U P2P3 U · . . . Since Pn E 
Pn+lXl for each nand PnPn+1 -+ {Xl}' we have that S is a sim
ple closed curve. This contradicts our supposition and proves 
that X is hereditarily pathwise connected, 

Then X is an hereditarily pathwise connected continuum 
which does not contain simple closed curves. This implies that 
X is hereditarily unicoherent. Therefore X is a dendroid. From 
 lemma 3 in [2], it follows that there exist two points Wo, Zo in 
X such that WOZo is a maximal arc in X. 

Since S is not continuous for X ~ Interval, X =F WOZo. Let 
U be an open subset of X such that WOZo C Cl(U) =F X. Let A 
be the component of Cl(U) such that WoZo C A. Choose e > 0 
such that Zo ¢ Ne(wo). Given n, let An be the component of 
A - Ne/n(wo) which contains ZOe Then An C An+1 for each n 
and An -+ Ao = Cl(U{An : n > I}) . 

Given n, choose a point W n C WOZo such that WOWn n An = 0 
and d(Wo, wn ) < lin. Define Bn = An U WnZo. Bn E C(X) and 
{wn } E SB(Bn ) C S(Bn ). Moreover Wn -+ wo. 

Given x E A - {wo, zo}, there exists y E WoZo such that 
xy n wozo = {y}. The maximality of WOZo implies that y =F 
Wo,Zo so there exists n such that Ne/n(wo) n xy = 0. Then 
x E An- This proves that A - {wo,Zo} C U{An : n ~ l} and 
A = Ac- By the continuity of S, we have that {wo} E S(A). 
Then there exists B E SB(A) such that B C U. Let (3 be 
a removing map for B. Then there exists t > 0 such that 
(3(t) C U and this implies that f3(t) C A which is absurd. 

This contradiction proves that X must contain a simple 
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closed curve and so X is a simple closed curve. 

(c) or (d) => (a). Suppose (c) or (d). First, we will prove 
that X is atriodic. Suppose, on the contrary, that X contains 
a triode Since X is arcwise connected, it is easy to prove that 
there exists C E C(X) and there exist arcs 11, 12, and 13 in X 
such that 1'1 - C, 12 - C and 13 - C are disjoint subsets of X 
and Ii n C is an end point ai of Ii for i = 1,2,3. 

For i = 1,2,3, let bi be the end point of Ii such that bi =F ai. 

Choose a point Ci E Ii - {ai, bi }. Let Bi be the subarc of Ii 
joining ai and Ci. Define A = C U f3l U f32 U f33. Then A E CI\(X) 
and {Cl}, {C2}, {C3} E SB(A). 

We will show that SB(A) - {A} is pathwise connected. Let 
C be the path component of {Cl} in the space SB(A) - {A}. 
Taking a parametrized order arc from {Cl} to PI U P2 U C. we 
have that PI U (32 U C E C. 

With a parametrized order arc from {C2} to PI U P2 U C, we 
obtain that {C2} E C. Similarly, {C3} E C. 

Let D E SB(A) - {A}. If Cl E D, taking a parametrized 
order arc from {CI} to D, we have that DEC. If Cl ¢ D, there 
exists dl E PI - { CI, al} such that the subarc 0 of PI joining CI 

and dl is such that 0 n D = 0. Then Dl = (A - 0) U {dl } is a 
proper subcontinuum of A such that C2, C3 E DI , DeDI. By 
Thm. 1.2 (b), D I E SB(A). Taking parametrized ord~r arcs 
from {C2} to DI and from D to DI , we obtain that D l E C and 
DEC. 

Therefore SB(A) - {A} is pathwise connected and SB(A) 
contains three one-point sets. These conclusions are contrary 
to (c) and (d) respectively. Hence X must be atriodic. 

Clearly an interval does not satisfy (c) nor (d). H X is a 
generalized Warzaw circle with a-rolling map f, let A = frO, 1]. 
By lemma 7.7, SB(A) = {f[a, 1] : a E I}. Then the unique 
one-point set in SB(A) is /(1) and SB(A)-{A} is a semi-open 
interval. Thus X does not satisfy (c) nor (d). 

Then Thm. 7.6 implies that X is a simple closed curve. 
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8.	 Two EXAMPLES 

8.1 Example. Let X be an hereditarily indecomposable con
tinuum. Then, by Thm. 2.1, SB(A) = {A} for each A E 
C"(X). Thus S(A) = {A} and m(A) = {A}. Therefore S 
is continuous and lim sup m(An ) is finite for every sequence 
(An)n in C"(X) which converges in C(X). Thus pathwise con
nectedness is a necessary condition in Theorems 6.1 and 6.3 
and the equivalence between (a) and (b) in Theorem 7.8. 

8.2 Example. Let X be a solenoid. Then every element in 
C(A) is an arc which can be enlarged through both end points. 
Thus X satisfies (c) and (d) in Theorem 7.8 and m(A) consists 
of two one-point sets for every A E C"(X) - F1(X). Then 
pathwise connectedness is a necessary condition in Theorem 
5.3 and in the equivalences (a) ¢:> ( c) and (a) <=> (d) in Theorem 
7.8. 
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