
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



Topology Proceedings 
Vol 16, 1991 

SEMI-BOUNDARIES IN HYPERSPACES 

ALEJANDRO ILLANES 

ABSTRACT. 

Let C(X) be the hyperspace of all subcontinua of a 
continuum X. In this paper we introduce the concept of 
semi-boundary. Given A E C(X)- {X}, a subcontinuum 
B of A is in the semi-boundary of C(A) if there exists a 
map 0 : [0, 1] -+ C(X) such that 0(0) = Band o(t) in 
not contained in A for every t > O. Using semi-boundaries 
we obtain characterizations of the interval, simple closed 
curves, local connectedness, acyclic finite graphs, hered­
itarily indecomposable continua, atriodic continua and 
continua containing n-ods. 

INTRODUCTION. 

The X will denote a continuum ( i. e. a compact, connected 
space with metric d). The hyperspace C(X) consi~ts of all 
subcontinua of X with the Hausdorff metric H. Continuous 
functions are called maps. The unit closed interval in the real 
line is denoted by I. Given A E C(X)-{X}, the semi-boundary 
of C(A) is defined by SB(A) = {B E C(A) : there exists a map 
Q : I -+ C(X) such that 0(0) = Band o(t) is not contained in 
A for all t > OJ. Notice that SB(A) depends on the containing 
space X. For simplicity, this dependence is suppressed in the 
notation. 

Let us consider some examples: (a) Taking parametrized 
order arcs (see Def.l.l), it follows that SB({x}) = {x} for ev­
ery x E X and A E SB(A) for all A E C(X) - {X}. (b) If 
A E C(f) - {f} and A is not a one-point set, then SB(A) 
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is an arc and A is an end point of this arc if and only if 
o E A or 1 E A. (c) If X is a single closed curve and A E 
C(X) - {X}, then SB(A) is an arc and A is not an end point 
of this arc. (d) Let X be the subspace of the Euclidean plane 
defined by X = (U{(0, 1In) (1, 1In) : n ~ I}) U (0, 0)(1, 0) U 
(0,0)(0, 1), where pq denotes the arc joining p and q. Define 
A = (U{(O, 0)(1 - lIn, lIn) : n ~ I} )U(O, 0)(1, O)U(O, 0)(0, 1). 
Then {(I-lIn, lIn)} E SB(A) for each nand {(l,O)} is not 
in SB(A). This show that SB(A) is not necessarily closed. 

In [12], S.B. Nadler, Jr., introduced and developed the con­
cepts of arcwise, segmentwise and continuumwise accessiblili­
ty. All of them are inserted in the following context: Given 
B E A C B C 2x = {A eX: A is a nonempty closed subset 
of X}, under which conditions is B arcwise (resp.' segmen­
twise, continuumwise) accessible from B - A? That is, when 
does there exist an arc Q in B (resp. a segment Q in B, a con­

. tinuum Q in B) such that Q n A = {B}? These concepts have 
been useful for the study of the structure of hyperspaces (see 
[12] and [4]). Semi-boundaries are also inserted in this context. 
Using Nadler's terminology, we could say that C E SB(A) if 
C is arcwise accessible from C(X) - C(A). 

Restricted semi-boundaries were used in [5]. Although semi­
boundaries can be defined in every topological space, in this 
paper, we show that their use in hyperspaces has a special util­
ity. The structure 'and characteristics of the semi-boundaries 
in C(X) reflect many properties of the space X, using them we 
obtain characterizations of the interval, simple closed curves, 
local connectedness, acyclic finite graphs, hereditarily inde­
composable continua, atriodic continua and continua contain­
ing n-ods. 

The notions not defined here will be taken as in the book of 
S. B. Nadler, JR. [13]. I acknowledge many fruitful discussions 
with Cesar Jimenez Espinosa on the topic of this paper. I wish 
to thank the referee for his useful comments and for suggesting 
to me Theorem 4.3 and its corollary. 
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1 BASIC FACTS. 

Definition. Given A, B E C(X) such that A C B # A, a 
parametrized order arc from A to B is a map 0 : I ---. C(X) 
such that 0(0) = A, 0(1) = B and if s < t, then o(s) C 
o(t) # 0(8). The existence of parametrized order arcs follows 
from [13, Thm. 1.8.]. Let C"(X) = C(X) - {X} and F1 (X) = 
{ {x} E C(X) : x E X}. We write X ~ Y to denote that X is 
homeomorphic to Y. 

1.2 Theorem. Let A E C"(X). 
(aJ B E SB(A) if and only if B E C(A) and there exists a 
map 0 : I ---. C(X) such that 0(0) = B,o(t) is not contained'
in A for each t > 0 and if 8 < t, then 0(8) C. a(t). Such a map 
will be named a removing map for B 
(b) If B E SB(A) and BCD c A, then D E SB(A). 
(c) A E SB(A). 
(d) SB(A) is pathwise connected. 
(e) SB(A) C Fr(C(A)) (boundary ofC(A) in C(X)). 
(f) If B, D E C(X), B n D # 0, B - D # 0, D - B # 0 and 
E is a component of B n D, then E E SB(B) n SB(D). 

Proof· 
(a) (=» Let (3 : I ---. C(X) be a ·map such that (3(O) = Band 
(J(t) is not contained in A for every t > o. Define 0 : I -+ C(X) 
by o(t) = U{{3(s) E C(X) : 8 E [O,t]}. 
(b) Let a be a removing map for B, define (3 : I ---. C(X) by 
{3(t) = D U a(t): Clearly, {3 is a removing map for D. 
(c) Every parametrized order arc from A to X is a removing 
arc for A. 
(d) Let B E SB(A) - {A}, let a be a parametrized order arc 
from B to A. By (b), 1m 0 C SB(A). 
(f) Take a parametrized order arc 0 from E to B. Given t > 
0, E C o(t) # E and a(t) C B, then o(t) is not contained in 
D. Thus E E SB(D). Similarly, E E SB(B). 

1.3 Theorem. Let A E C"(X) and B E C(A). Let (Bn)n C 
C(X) be a sequence such that Bn ---. B. Then each one of the 
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following conditions implies that B E SB{A) : 
(a) If B n is not contained in A and Bn+1 C B n for each n,. 
(b) If Bn is not contained in A and Bn n B :f 0 for each n; 
(c) If Bn E SB(A) and Bn n B :f 0 for each n. 

Proof. (a) For each n, choose a map On : [l/(n + 1), lIn] ~ 

C(X) such that Qn{l/(n + 1)) = Bn+1 ,on{1/n) = Bn and if 
s < t, then Qn(s) C on(t). Define a : I -+ C{X) by o{t) = 
On ( t) if t E [1 I (n+1), 1In] and o(0) = B. Then a is a removing 
map for B. 
(b) For each n, define Cn = B U Bn U Bn+1 U .... Then Cn E 
C(X), Cn ~ Band Cn is not contained in A and Cn+1 C Cn 

for every n. Thus (a) implies that B E SB(A). 
(c) For each n, let On be a removing map for Bn • Choose tn > 0 
such that H(Bn , Qn(tn )) < lin. Then on(tn ) -+ B,on(tn ) is 
not contained in A and B n Qn(tn ) :f 0 for each ·n. By (b), 
BE SB(A). 

1.4 Theorem. If A E CI\(X) and B E SB(A), then there 
exists a minimal element (with respect to the inclusion) C E 
SB(A) such that C C B. 

Proof. By Theorem 1.3 (c), the intersection of a countable nest 
of elements in SB(A) is in A. Then the proof follows from the 
Brower Reduction Theorem. ( see [7, p. 61]) 

2. HEREDITARILY INDECOMPOSABLE CONTINUA. 

2.1 Definition. A continuum is indecomposable provided that 
X is not the union of two proper subcontinua. It is hereditarily 
indecomposable provided that each of its subcontinua is inde­
composable. 

It is easy to see that a continuum X is hereditarily indecom­
posable if and only if whenever A and Bare subcontinua of X 
such that AnB:f 0, then A C B or B C A. 

The following theorem is related to Kelley's Theorem 8.2 in 
[6] and it is easy to prove using Theorem 1.2 (f). 
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Theorem. X is hereditarily indecomposable if and only if 
SB(A) = {A} for every A E C"(X). 

ARCS. 

3.1 Theorem. IfX is a nondegenerate continuum then X ~ I 
if and only if X ~ SB(A) for every A E G"(X) - F1(X). 

Proof. (<=) Let A E G"(X) - F1(X) and let B E SB(A) ­
{A}. Since SB(A) is arcwise connected, there exists an arc 
a in X. Since SB(a) C G(a) ~ Disc X, SB(a) is a plane 
continuum. Identify a with the interval [0, 1]. If there exists 
E E SB(a) such that 0,1 ¢ E, then E is of the form E = [a, b] , 
with 0 < a ~ b < 1. Define 0' : [O,a] X [b,l] ..... G(X) by 
O'(s, t) = [8, t]. Then 0' is an injective map 'and Theorem 1.2 
(b) implies that Im(O') C SB(a). Thus X ~ SB(o:) contains 
a subspace C which is homeomorphic to the square I x I. 
Consider a simple triod Z (a space of the form of the letter Y) 

, contained in G. Then ~very subcontinuum of Z is in SB(Z). 
Then C(Z) C SB(Z). But C(Z) contains a cube I x I x I. It 
follows that X ~ SB(Z) contains a cube. This contradiction 
proves that if [a, b] E SB(a), then a = 0 or b= 1. Then SB(o:) 
is a subcontinuum of the set {[a, b] : bEl} U {[a, 1] : a E I} 
which is homeomorphic to I. Therefore X ~ SB(o:) ~ I. 

4. N-ODS. 

Definition. An n - od (resp. 00 - od) in X is an element 
B E C(X) for which there exists an A E C(X) such that 
B - A contains at least n components (resp. infinitely many 
components). X is said to be atriodic if it does not contain 
3-ods. Given A E C"(X), we will denote by m(A) the set of 
minimal elements in SB(A). 

In [5] it was proved that X contains n-ods (resp. co-ods) 
if and only if G(X) contains n-cells (resp. Hilbert cubes). 

4.2 Theorem. Let n ~ 1. Then X contains n - ods if and 
only if there exists E E G"(X) such that m(E) has at least n 
elements. 
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Proof. (=» Suppose that n ~ 2. Let A, B E C(X) be such that 
A C Band B - A has at least n components. Let D t , ... ,Dn 

be components of B - A. Then Cl(Di ) n A =F 0 and A U D i E 
C(X) for each i. Fix an open subset U of X such that A C U 
and Di - Cl(U) =F 0 for each i. Let E he the component of 
Cl(U) such that ACE. Given i and taking a parametrized 
order arc from A to A U Di , we can find a continuum which 
properly contains A and which is properly contained in (A U 
Di ) n U. Hence, E n Di =F 0. By Thm 1.2 (f), there exists an 
element Ii E SB(E) contained in Cl(Di ). Let Ei be a minimal 
element in SB(E) such that Ei C Fi . Since U is open, it is not 
possible that Ei C A, so Ei n D i =F 0. Hence E t , . .. ,En are 
pairwise different. 

(¢=) Let E E C"(X) be such that m(E) has at least n 
elements. Let E1 , ••• ,En E m(E). H there exist A and B E 

. C(X) such that An B has infinitely many components, then 
X contains co-ods ([11, Thm, 14]). Suppose then that An B 
has finitely many components for every A, B E C(X). For 
each i, choose a removing map Qi for Ei • Given i, Ej is not 
contained in E i for every j =F i, so a number ti > 0 can be 
choosen in such a way that Ej is not contained in Qi(ti) for 
every j =F i. Given i =F j, we will show that there exists s > 0 
such that Qi(S) nQj(ti) C E. If Ei nQj(tj) = 0, then it is easy 
to find s. Suppose then that C1 , ••• ,Cr are the components of 
EinQj(tj). Suppose also that there is not such an s. Given k > 
1, Qi(l/k) n Qj(tj) is not contained in E. Let C be the union 
of the components of Qi(l/k) n Qj(tj) which do not intersect 
E i • Then C is a compact set disjoint from E j , and there exists 
a number Zk E (0, 11k) such that Qi(Zk) n C = 0. Choose a 
point x in Qi(Zk) n Qj(tj) - E. Let Dk be the component of 
Qi(l/k) nQj(tj) such that x E Dk. Then DknEi =F 0, so there 
exists 1 < 1k < r such that Clk c Dk. 

Let 10 E {I, ... ,r} be such that 10 = 1k for infinitely many 
k. Suppose that k1 < k2 < ... are such that 10 = 1km for 
all m. Given m ~ 2, Dkm E C(X), Dkm is not contained 
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in E, C10 C Dkm and Dkm is a component of Qi(l/km ) n 
OJ(tj) C oi(1/km - 1 ) n OJ(tj), so Dkm is contained in Dkm _ 1 • 

Since Dkm C oi(l/km ) --+ Ei C E, we have that (Thill. 1.3 
(a» D = n{Dkm : m ~ I} E SB(E) and D C Ei n OJ(tj). 
Thus Ei = D C OJ(tj). This contradicts the choice of tj and 
proves the existence of s. 

Then, given i, we may choose Si E (0, t i ) such that Oi(Si) n 
OJ(tj) C E for every j # i. Define B = E u 01(SI) u ... u 
Qn(sn) E C(X). Then B is an n-od.. 

4.3 Theorem. X is an atriodic continuum if and only ifSB(A) 
is either a point or an arc for every A E C"(X). 

Proof. We will use the following consequence of Thm. 1.8 in 
[1]: X is an atriodic continuum if and only if there is not three 
subcontinua of X with nonempty intersection and such that 
no one of them is contained in the union of the other two. 

(=» By theorems 1.2 (c), 1.4 and 4.2, m(A) has only one 
or two elements. We only analyze the case m(A) = {B1 , B2 } 

where B1 # B2 , the proof of the other one is analogous. Choose 
two parametrized order arcs {31 and (32 from B1 to A and B2 

to A, respectively. And fix removing maps 01 and 02 for B1 

and B2 , respectively. 
We assert that if B1 C B C A and B E C(X), then B E 

1m Pl. Suppose, on the contrary, that B f/. 1m {31. Let to = 
max {tEl: (31(t) C B}. Then (31(tO) C B # P1(tO). Fix a 
point p E B - Pl(tO) and let t1 > to be such that p ¢ (31(tO). 
Choose a point q in PI (t 1 ) - B. Then there exists t2 > 0 such 
that p, q ¢ Q1(t2). Then Q1(t2) is not contained in A. Thus 
B, Pl(t1) and 01(t2) are three subcontinua of X with nonempty 
intersection and no one of them is contained in the union of the 
other two. This is a contradiction which proves the assertion. 

A similar assertion holds for B2 • Then, SB(A) = 1m PI U 
1m {32 (see theorems 1.2 (b)and 1.4). 

H there exists and element EElm{31 nI m{32 such that E # 
A, choose a point Xo E A-E. Notice that B I , B2 E S B(E) and 
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01 and 02 are removing maps for B1 and B2 , respectively (with 
respect to E). As in the proof of the sufficiency of Theorem 4.2, 
it is possible to find S1, S2 > 0 such that 01 (81) n Q2 (S2) c E. 
We may suppose that Xo rt 01(S1) U02(S2). Thus A, E U01(S1) 
and E U 02(S2) are three subcontinua of X with nonempty 
intersection and no one of them is contained in the union of 
the other two. This contradiction proves that 1m /31 n1m /32 = 
{A}. 

Hence SB(A) = 1m /31 U 1m /32 is an arc. 

(¢::) Suppose that X is not atriodic. Theorem 4.2 implies 
that there exists E E G"(X) such that m(E) has at least three 
different elements B1 , B2 , and B3 • Let (31 : I --+ G(X) (resp. 
(32 and (33) be a parametrized order arc from B1 (resp. B2 and 
B3 ) to E. Then for each i = 1,2,3, 1m /3i is a subarc of the 
arc SB(E) joining B i to E. This implies that Bi E 1m Bj for 
some i =F j. Thus B j C Bi which is a contradiction. Therefore 
X is atriodic. 

4.4 Corollary. If X is a Peano continuum, then X is either 
an arc or a simple closed curve if and only if SB(A) is an arc 
for all proper nondegenerate subcontinua A of x. 
Proof. (=» Is immediate, (<=) By Theorem 4.3, X. is an atri­
odic Peano continuum. Then X is either an arc or a simple 
closed curve. 

4.5 Theorem. If there exists E E G"(X) such that m(E) is 
infinite, then X contains oo-ods. 

Proof. Let E E G"(X) be such that m(E) is infinite. Choose 
a sequence E1 , E2 , • •• of pairwise different elements in m(E). 
We may suppose that En --+ Eo for some Eo E G(X). Suppose 
that A n B has finitely many components for every A and B 
in G(X). 

H Eo C En for infinitely many n, by Thm. 1.3 (c), Eo E 
SB(E). But each En is minimal, so infinitely many of them 
are equal to Eo. This contradiction proves that this case is not 
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possible. Then we may suppose that Eo is not contained in En 
for every n. 

For each n, let On be a removing map for En. Let t > 0 be 
such that on(t) does not contain Eo, then there exists M > 0 
such that Em is not contained in on(t) for every m ~ M. 
Thus there exists t n > 0 such that Em is not contained in 
On(tn) for every m # n. Proceeding as in the proof of the 
necessity in Thm. 4.2, a number Sn E (0, tn) can be found in 
such a way that on(sn) n (OI(t1) u ... U On-l(tn- 1)) C E and 
H(En,on(sn)) < lin. 

Define B = E U 01(SI) U 02(82) U .... Then on(sn) - E is 
open and closed in B - E for each n. Therefore, B is an oo-od. .. 

The converse of Theorem 4.5 is not true as it is shown in the 
following example. 

4.6 Example. Choose an hereditarily indecomposable contin­
uum Z contained in the Euclidean plane ]R2 such that (0,0) E 
Z. For each n, let Zn = {(l/n)(x,y,(l/n) II (x,y) II) E ]R3 : 

(x,y) E Z}. Then each Zn is a subcontinuum in ]R3 such that 
Zn ~ Z. If n # m, then Zn n Zm = {OJ and Zn -+ {OJ. 

Define X = ZIUZ2U... . Then X is a continuum and X -{OJ 
has infinitely many components. Thus X is an 00 - ode 

Let E E C"(X), we will show that m(E) is finite.. We ana­
lyze three cases: 

(a) 0 ¢ E. Then there exists n such that E C Zn - {OJ. 
Since Zn is hereditarily indecomposable, then .SB(E) = {E} 
and m(E) = {E}. 

(b) 0 E E. Then En Zn E C(X) for each n. Let A E m(E), 
if 0 ¢ A, then A C ZnnE- {OJ for some n. Then if B E C(X) 
is such that A C Band 0 ¢ B, then B C Zn n E. This implies 
that A ¢ SB(E). This contradiction proves that 0 E A. 

(b.l) Zn is not contained in E for infinitely many n. Take 
A E m(E). Then 0 E A. Since Zn -+ {OJ, by Thm. 1.3 (b) we 
have {OJ E SB(E). Thus {OJ = A. Hence m(E) = {{O}}. 
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(b.2) The set of n such that Zn is not contained in E is a 
finite set {nt, ... ,nr}. Notice that En Zni E SB(E) for every 
i. Given A E m(E), we assert that E n Zni C A for some 
i. Suppose that this is not true. Let a be a removing map 
for A. So there exists t > 0 such that a(.t) does not contain 
any E n Z"i. Since E n Z"i and a(t) n Z"i are intersecting 
sllbcontinua of Z"" we have that 'a(t) n Zn, C En Zni for each 
i. Then a(t) C E. This contradiction proves that En Zni C A 
for some i. Then A belongs to the set {E n Zni' ... ,E n Znr}. 
Therefore m(E) is finite. 

5. LOCALLY CONNECTED CONTINUA. 

5.1 Theorem. The following assertions are equivalent. 
(a) X is locally connected, 
(b) If A E C"(X) and p E Fr(A), then {p} E SB(A) and, 
(c) SB(A) = Fr(C(A)) for every A E C"(X). 

Proof. (a) ~ (b) follows from Thm. 1.3 (a). 
(b) ~ (a). Suppose that X is not locally connected. Then 

there exists an open subset U of X and there exists a compo­
nent D of U such that D is not open. Let p E D - Int(D). 
Then p E Fr(Cl(D)) and {p} ¢ SB(CI(D)). 

(a) => (c). Let B E Fr(C(A)), then there exists' b E Fr(A) 
such that b E B. By (b), {b} E SB(A). Thm 1.2 (b) implies 
that B E SB(A). 

(c) => (b). Let A E G"(X) and p E Fr(A), then {p} E 
Fr(C(A)) = SB(A). 

Using the Baire Category Theorem, the following lemma is 
easy to prove. 

5.2 Lemma. Let {An: n 2: I} be a countable family of pair­
wise disjoint closed subsets' of X and let U be an open subset of 
X such that An n U # 0 for every nand U C U{An : n ~ I}. 
Then (Int(An)) n U # 0 for infinitely many n. 
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5.3 Theorem. Suppose that X is a pathwise connected contin­
uum. Then X is locally connected if and only ifm(A) C F1(A) 
for every A E C"(X). 

Proof. (~) Let A· E C"(X) and let B E m(A). Then B E 
Fr(C(A)), so there exists b E B such that b E Fr(A),. By 

,Thm. 5.1, {b} E SB(A), so B = {b} E F1 (A). 

(<=) Suppose that X is not locally connected. Then there 
exists an open subset U of X and there exists a component D* 
of U such that D* is not open. Choose Po E D* - Int(D*). Let 
~ V be open subsets of X such that Po EWe CI(W) eVe. 
CI(U) c U. Notice that infinitely many components of CI(U) 
intersect W. 

Let D = {D : D is a component of CI(U) and D n CI(V) ~ 

0}. Let L be an arc in X. Given x E L n Cl(V), there exists 
a subarc L z of L such that 8 E L z , x is not an end point 
of L z and Lz .C U. Since L n Cl(V) is a compact subset of 
L, L nCl(V) can be covered by finitely many sets of the form 
Lz . Thus L n Cl(V) can be covered by finitely many elements 
of D. Therefore L intersects at most finitely many sets of the 
form D n Cl(V) with D E D. 

Choose a point Xo E X - Cl(U). Given D E D, yve assert 
that there exists finitely many elements D1 ,. •• ,Dn in D and 
there exists arcs L1, ••• ,Ln in X - V such that Dn = D, Xo E 
L1 , L1 nD1nCl(V) ~ 0and i E {2, ... ,n}, L i nDi - 1 nCl(V) ~ 
oand Li n Di n Cl(V) =1= 0. 

To prove this, let xED n Cl(V) and let "I : I --+ X be 
an injective map such that "1(0) = Xo and "1(1) = x. Let 
{Cl , ... ,Cm } = {E ED: 1m 'YnC1(V)nE t 0} with C1 = D. 
Let t l = min 'Y-l(D n Cl(V)). If "1([0, t l )) does not intersect 
CI(V), put n = 1, D1 = D and L1 = "1([0, tl]). If "1([0, tl )) 
intersects Cl(V), let 81 = max 'Y-1 (Cl(V)) n [0, tl ). Then we 
may suppose that "1(81) E C2 • Let t 2 = min 'Y- l (C2 nCI(V)). If 
"1([0, t 2 )) does not intersect Cl(V), put n = 2, D2 = D, L2 = 
1([81, tl])' D1 = C2 and L1 = "1([0, t2]). If "1([0, t 2 )) n Cl(V) t 
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0, this procedure can be continued to obtain n, D1 , • •• ,Dn and 
£1, ... ,Ln. 

Given D E D, a sequence C = (n, L 1 , ••• ,Ln , D1 , ••• , Dn ) 

with the properties mentioned above will be called a chain end­
ing in D. The size of C is n. Define n(D) = min {n : there ex­
ists a chain C ending in D such that n is the size of C}. Choose 
a chain C(D) = (n(D), L1(D), ... ,Ln(D)(D), E1 (D), ... , 
En(D)(D)) ending in D. 

Let D 1 = {D : D is a component of Cl(U) and DnCl(W) # 
0}. Then D1 c D. For each m, let Em = {D E D1 : n(D) = m} 
and Fm = {D ED: n(D) = m}. Then Em C Fm. 

We will construct an A E C"(X) such that m(A) is not 
contained in F1 (A). We consider three cases: 

(a) There exists rn such that Em is infinite. 
Since every element of Em intersects Cl(W), we have that 

there exists a point Yo E Cl(W) such that every neighborhood 
of Yo intersects infinitely many elements of Em. Consider rno = 
min {n : every neighborhood of Yo intersects infinitely many 
elements of Fn }. Let Do be the component of Cl(U) such that 
Yo E Do. Then there exist an open subset Wo of X such that 
Yo E Wo C ~ Since there exists a neighborhood of Yo which 
intersects only finitely many elements of {D ED: n(D) < 
mol, then we may suppose that either Won ({D ED: n(D) < 
mo}) = 0or Wo n ({D ED: n(D) < mol = Won Do. In both 
cases Wo n (U{D ED: n(D) < rno}) c Do. 

Choose a sequence (Dr)r of pairwise different elements of 
Fmo such that Dr n N1/r(yo) # 0 ( if e > 0, N e(yo) denotes the 
open ball of radius e about Yo) and Dr # Do for each rand 
Dr --+ D' for some D' E C(X). Since Yo E D' c Cl(U), then 
D' C Do. 

Given r, let Fr = L1(Dr) U ... U Lmo(Dr) U E1(Dr) U ... U 
Emo(Dr) and let Br = Cl(Fr UFr+1 U ... ). Then Fr,Br E 
C(X), Dr C Fr C Br and Br+1 C Br for each r. Thus Br --+ 

Bo = n{Br : r 2:: I}. For each r, notice that n(Ei(Dr )) = i for 
all i = 1, ... ,rno, thus Fr n Wo C Do U Dr. Then Wo n Br = 
Wo n Cl(Fr U Fr+1 U ... ) eel(Wo n (Fr U Fr+1 U ... )) c 
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Cl(DoUDrUDr+IU ) = DoUDrUDr+IU... · Thus WonBr C 
Do U Dr U Dr+l U · This implies that Won Bo C Do. 

Let WI be an open subset of U such that Yo E WI C 
Cl(W1) CWo. Let A be the component of -Do U (X - WI) 
which contains Bo. Then A E C(X) and Bo E C(A). To 
see that Bo E SB(A), take r ~ 1. Let 8 > r be such that 
N1/.(yo) C WI. Let x E N1/.(Yo)nDa, then x rt DoU(X - WI). 
Thus 0 =F B. n (X - A) C Br n (X - A). By Thm. 1.3 (a), we 
have that Bo E SB(A). 

Let B* E m(A) be such that B* C Bo (Thm. 1.4). If 
B* E F1(A), then there exists a E Bo, such that {a} E SB(A). 
Let a be a removing map from {a}. If a E Wo, then a E Do and'
there exists t > 0 such that o(t) C Cl(U). Thus o(t) c Do. So 
o(t) C A which is absurd. If a rt Wo, then there exists t > 0 
such that o(t) n Cl(W1) = 0. This implies that o(t) C A. This 
contradiction proves that B* is an element of m{A) - F1(A) 
and completes this case. 

(b)Em is finite for each m. 
Then D1 is countable. Let D2 = {D E D1 : D n W =F 0}, 

then D2 is countable. Since W C U{D : D E D2 }, Lemma 
5.2 implies that Int{D) n W =F 0 for infinitely many D E D2 • 

Choose a sequence D1 , D2 , ••• of pairwise different elements 
of D2 such that Int(Dr ) n W =F 0 for each r. Choose points 
X r E Int(Dr ) n ~ We may suppose that Dr ~ D' for some 
D' E C(X) and X r ~ Yo for some Yo E D'. Given r > 8, r 
is called a son of s if, considering the chosen chain C(Dr ) = 
(n(Dr ), L1(Dr ), ••• , Ln{Dr )(Dr ), E1(Dr ), ••• En {Dr )(Dr )) for 
Dr, we have that Da = Ei(Dr) for some i E {I, ... ,n(Dr)}. 
Now we consider two cases. 

(b.l) {s : 8 has finitely many sons} is finite. 
Then there exists a sequence (8r ) such that 81 < 82 < ... 

and 8 r +l is son of 8 r for every r. 
Given r, let Fr = D.r and Zr = x ar • Since 8 r+l is son of Sr, 

then Fr = Ei{Fr+1 ) for some i E {I, ... ,n(Fr+l ) - I}. Since 
n(Ei{Fr+I)) = i, then n(Fr) < n{Fr +l ) and Fr = En{Fr)(Fr +I). 
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Define Gr = En(Fr)(Fr+1) U Ln(Fr)+I(Fr+1) U En(Fr)+I(Fr+1) U 
... U Ln(Fr+l)(Fr+l) U En(Fr+l)(Fr+l). Then Gr E C(X) and 
Fr, F,.+1 C B,.. Define B,. = Cl(Gr U G"+1 U ... ). Then Br E 
C(X) and Br+1 C B,.. Thus B,. -+ Bo = n{Br : r 2: I}. 

IT r < 8 and i E {n(F.,), ... ,n(F"+l)}" n(Ei(F.,+l)) = i 2: 
n(F.) > n(F,.). Then F,.nWnG., = 0. Hence Int(F,.)nWnB., = 
0. Therefore Int(F,.) nW nBo = 0 for every r. For each r, fix 
e,. > 0 such that er < l/r and Cl(Ne,.(z,.)) C Int(Fr) n w 
Then Cl(Ner(zr)) n Bo = 0. Let R = {Yo} U (U{Cl(Ner(zr)) : 
r ~ I}). Then R is compact and R n Bo C {Yo}. 

For each b E Bo- {Yo}, let 6b > 0 be such that Cl(Ns,,(b)) n 
R = 0. If b = Yo E Bo, then choose 6b > 0 such that Cl(Ns,,(b)) C 
V. For each b E Bo, let Qb be the component of Cl(Ns,,(b)) such 
that b E Qb. 

Define A = Cl(U{ Qb : b E Bo}). Then Bo C A, A E C(X) 
and if b E Bo, then {b} ¢ SB(A). 

Given r, we will show that Br is not contained in A. Let Do 
be the component of Cl(U) such that Yo E Do. Then D' C Do. 
Suppose that Fk # Do with k = r or r + 1. Then Fk C Br • 

Given b E Bo - {Yo}, Nek(Zk) n Qb = 0 and if b = }to E Bo, 
then Qb C Do· Therefore Qb n N ek(zk) C Do n Fk = 0. ThIS 
implies that Nek(Zk) n A = 0. Thus Zk E B,. - A. 

By Thm. 1.3 (a), Bo E SB(A). Let B. E m(A) be such that 
B. C Bo. Then B. ¢ F1(X) and B* E m(A) - F1(A). 

(b.2) {8 : 8 has finitely many sons} is infinite. 
Let (8 r )r be a sequence such that 81 < 82 < ... ,8r has 

finitely many sons and 8,.+1 is not a son of SI, ••• ,S,. for every 
r. 

For each r, let Fr = D.r, Zr = X.r ,Gr = L1(Fr) U ... U 
Ln(Fr) (Fr)U E1(Fr ) U... U En(Fr)(F,.) and Br = Cl(Gr UGr+1U 
... ). Thus G,., Br E C(X) and Br +1 C Br • Then B,. -+ Bo = 
n{B,. : r > I}. If r < k, Sk is not a son of s,., then Fr is 
different from each one of the sets E 1(FIc)' ••• ,En(FIc)(Fk ). Thus 
F,. n W n Gk = 0. Hence Int(Fr ) n W n Bo = 0. 

Foreachr,leter > obe such that e,. < l/randCl(Ne,.(z,.)) C 
Int(F,.)nW Define R = {Yo}U(U{Cl(Ne,.(zr)) : r ~ I}). Then 
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R is compact and R n Bo C {Yo}. 
For each b E Bo - {yo}, let Db > 0 be such that Cl(Nob(b)) n 

R = 0. If b= yo E No, then choose Db > 0 such that Cl(Nob(b)) C 
~ For each bE Bo, let Qb be the component of Cl(N6b (b)) such 
that b E Qb. 

Define A = CI(U{ Qb : b E Bo}). Then Bo C A, A E C(X) 
and if bE Bo, then {b} f/. SB(A). 

Proceeding as in (b.l), Br - A ~ 0 for every r Then Bo E 
SB(A) and if B* E m(A) is such that B* c Bo, then B* E 
m(A) - F1 (A). 

This completes the proof of the theorem. 

6. ACYCLIC FINITE GRAPHS. 

6.1 Theorem. Suppose that X is pathwise connected. If lim 
sup m(An ) is at most countable for every sequence (An)n in 
G"(X) which converges in C(X), then X is a dendrite. 

Proof. First, we will prove that if A E C(X), then each arc a 
with end points in A is contained in A. Suppose, on the con­
trary, that there exists an arc Q with end points a and b, such 
that a, b E A and a is not contained in A. We may suppose 
that (a - {a,b}) n A = 0. Let {xn : n 2: I} be a countable 
dense subset of a - {a, b}. For each n, choose a subarc On of 
a - {a, b} such that if Pn and qn 'are the end points of On, then 
X n E an - {Pn' qn} and diameter (an) < lin. Define An = AU 
( 0 - ( On - {Pn' qn})). Then An -+ AU 0, {Pn}, {qn} E S B (An) 
and 0 C lim sUP{Pn} C lim sup m(An). Then lim sup m(An) 
is uncountable. This contradiction shows that 0 C A. 

Then we have the following consequences: 
(a) A is pathwise connected for every A E C(X), 
(b) X does not contain simple closed curves, 
(c) If a, b E X and a :/= b, there exists a unique arc in X 

joining them. This arc will be denoted by ab and aa will denote 
the set {a}, 

(d) X is hereditarily unicoherent and, 
(e) X is a dendroid. 
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Now we will prove that X is locally connected. Suppose 
that this is not true. Then there exists an open subset U of 
X and there exists a component D of U such that D is not 
open. Choose a point p E D - Int(D). Let V be an open 
subset of X such that p EVe Cl(V) c U. Let (Dn)n be a 
sequence of pairwise different components of Cl(V) such that 
DnnD = 0and N1/n{p)nDn =1= 0for each n. We may suppose 
that Dn --+ Do for some Do E C(X). Then p E Do C D and 
since Dn n Fr(V) =1= 0, then Do n Fr(V) =1= 0. Hence Do has 
uncountably many points. 

Choose a countable dense subset {an: n ~ I} of Do. Choose 
a point Xl E U - D such that d(al,xI) < 1. Let ql E Cl(D) 
be such that Xlql n Cl(D) = {ql} and let Zt E Xtqt - {Xt,ql} 
be such that diameter (XIZl) < 1. Notice that a2' ft Xlql, then 
there exists a point X2 E U - (D U Xlql) such that d(a2' X2) < 
1/2. Let q2 E Cl(D) be such that X2q2 n Cl(D) = {q2} and 
let Z2 E X2q2 - {X2Q2} be such that diameter (X2Z2) < 1/2 
and X2Z2 n XIQl = 0. Proceeding in this way it is possible 
to construct sequences of points (xn)n, (qn)n and (zn)n of X 
such that, for each n, diameter (xnzn) < lIn, Zn E xnqn ­
{xn, qn}, Xn E U - (D U Xlql Un ... U xn-lqn-l), d(an, xn) < 
1/n,xnqnnCI(D) = {Qn} and xnZnn(Xlq1U UXn-Iqn-l) = 0 

For each n, define An = CI(D) U Zlql U U znqn. Then 
An E C(X) and An C An+1 • Thus (An)n is a sequence in 
CI\(X) which converges in C(X). Since XnZn n An = {zn}, we 
have that {zn} E m(An ). 

Each point in Do is an accumulation point of the set {an : 
n ~ I}. Then every point in Do is an accumulation point of 
the set {zn : n ~ I}. This implies that Do C lim sup m(An ). 

Hence lim sup m(An ) is an uncountable set. This contradiction 
proves that X is locally connected. Therefore X is a dendrite. 

The converse of Theorem 6.1 is not true as it is shown in the 
following example. 

6.2 Example. For each rational number z = r I s in the in­
terval (0, 1) with rand s relatively prime positive integers, 
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let' L:z be the segment L:z = {(z,y) E ]R2 : 0 ~ y ~ lis}. Let 
X = (1 x {O}) U (U{Lz : Z is a rational number in (0, 1)}). Then 
X is a dendrite. For each n, let An = 1 x {Ole Then F1(An) C 
SB(An ), so F1(An) = m(An). Thus lim sup m(An) = lim sup 
F1(An ) = I x {Ole Therefore lim sup m(An ) has uncountably 
many points. 

The following theorem is related to [6, Lemma 5.2]. 

6.3 Theorem. Let x be a pathwise connected continuum. Then 
X is an acyclic finite graph if and only if lim sup m(An ) is fi­
nite for every sequence (An)n in GA(X) which converges in· 
G(X). 

Proof. ({::) By Thms. 6.1, 5.1 and 5.3, X is a dendrite. Taking 
constant sequences, we have that m(A) is finite for every A E 
GA(X) and m(A) = {{x}: x E Fr(A)}. We will prove then 
that if X is a dendrite where every A E C(X) has a finite 
boundary, then X is an acyclic finite graph. 

Choose a convex metric d for X (see [1] and [8]), then De(x) E 
G(X) for every e > 0 and x E X, where De(x) = {y EX:
d(x, y) < e} If x =F y, xy will denote the unique arc in X 
joining x and y, and xx will denote the set {x}. If e > 0 and 
x E X, let Le(x) = U{xy : y E Fr(De(x)}. Since Fr(De(x)) 
is finite, Le(x) is a finite union of arcs and Le(x) c De(x). 

Given x ·E X, we will show that there exists ex > 0 such 
that Dex(x) = Lex(x). Suppose, on the contrary, that De(x) 
is not contained in Le(x) for every e > o. Then it is possible to 
construct sequences (en)n C (0,00) and (xn)n, (zn)n C X such 
that Xn E Den(x)-Len(x), en+l < min {d{x,xn), lin}, Zn E 
xXn - {x,xn } and XnZn n (Den+l(x) U Len(x)) = 0 for every n. 

Define A = U{xzn : n ~ 1}. Then A E G(X). Notice that 
Den(x) n (XXI U ... U XXn+l) C Len(x). Then XnZn n (XXI U 
... U XXn-l) = 0. This implies that XnZn n A = {xn} and 
Zn ¢ {ZI' ... ,Zn-l}. Thus {ZI' Z2, ... } is an infinite subset of 
Fr(A). This is a contradiction because Fr(A) is finite. Then 
we have shown the existence of ex. 
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Taking finitely many sets of the form Lez(x) covering X, we 
have that X is a dendrite which is a finite union of arcs. It is 
easy to prove that X is an acyclic finite graph. 

(=>) We are supposing that X do.es not contain simple closed 
curves and X is of the form: X = L1 U ...·U Lm where each Li 

is an arc and L i nLj = 0 or L i n Lj is a point which is an end 
point of both Li and L j . For each i, let ai and bi be the end 
points of L i and let Ji = L i - {ai, bile 

Let (An)n be a sequence in C"(X) which converges in C(X). 
Let A = lim An. We will show that ( lim sup m(An)) n 
{ {w} : w E Ji} has at most two points for each i. Suppose, 
on the contrary, that there exist three different one-point sets 
{x}, {y} and {z} in the set lim sup m(An ) n { {w} : w E Ji } 

for some i. We will identify Ji with I = [0, 1]. We may suppose 
that x < y < z. Then the intervals (0, y) and (y, 1) are open 
subsets of X. 

By Theorems 5.1 and 5.3, m(B) = { {w} E F1(X) : w E 
Fr(B)} for all B E C"(X). Since {x}, {z} E lim sup m(An ) = 
lim sup { {w} : W E Fr(A)} C lim sup F1(An ), then x, z E lim 
sup An = A = lim An. Thus sequences (xn)n and (zn)n can be 
chosen such that X n --+ x, Zn --+ Z and xn, Zn E An for every n. 
Fix two points Yl E (x, y) and Y2 E (y, z). Then there exists N 
such that X n E (0, Yl) and Zn E (Y2' 1) for every n ~ N. Since X 
contain no simple closed curves, (xn, zn) C An. Then (Yl' Y2) 
is an open subset of X contained in An. Hence Y E (Yl' Y2) 
and (Yl,Y2) n Fr(An ) = 0 for each n ~ N. Thus {y} f/. lim 
sup { {w} E F1(X) : w E Fr(An )}) = lim sup m(An ). This 
contradiction proves that (lim sup m(An )) n { {w} : w E Ji } 

has at most two points for each i. 
Since lim sup m(An ) C F1(X) and F1(X) = {al' ... ,am} U 

{b1, ••• ,bm } U { {w} : w E J1 U ... U Jm }, we conclude that 
lim sup m(An ) is finite. 

7. SIMPLE· CLOSED CURVES. 

7.2 Definition. Define S : C"(X) --+ C(C(X)) by S(A) = 
CI(SB(A)). 
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7.2 Theorem. Let A E C"(X). IfSIC(A) is continuous, then 
A is, hereditarily unicoherent. 

Proof. Suppose that there exists Hand !( E C(X) such that 
H n K is disconnected and H U !( -:f; X. Let P and Q be two 
nonempty closed subset of X such that P U Q = H n I{. Fix 
a point pEP and let a : !' --+ C(X) be a parametrized order 
arc joining {p} and H. Let to = min {t : a(t) n Q -:f; 0}. Then 
a(to)nQ -:f; 0and to > o. Choose an increasing sequence (tn)n 
in [0, to) such that tn --+ to. 

Let Bo = a(to) U ]( and let Bn = a(tn) U !( E C(X), then 
Bn --+ Bo. For all n, let Cn be the component of Bn n o(to) , 
which contain o(tn ). Since Bn no(to) = attn) U (a(to) n !() = 
[o:(tn ) U (o:(to) n P)] U (o(to) n Q) and o(tn ) U (o(to) n P) 
and a(to) n Q are two nonempty disjoint closed subsets of X, 
we have that Bn is not contained in a(to) and a(to) is not 
contained in Bn • Thus, by Thm. 1.2 (f), Cn E SB(Bn ) C 
S(Bn ). Since a(tn ) C Cn C a(to), Cn --+ a(to). Therefore, by 
hypothesis, a(to) E 8(Bo). 

Let U and V be disjoint open subsets of X such that P C 
U, Q c V and CI(U) n CI(V) = 0. Then a(to) - (U U V) and 
K - (U U V) are disjoint nonempty closed subsets of X. Let 
Wand Z be open subsets of X such that o(to) - (U U V) C W 
and K - (U u V) c Z. . 

Since o(to) E S(Bo), there exists a sequence (Cn)n in SB(Bo) 
such that Cn --+ o(to). Since o(to) is not contained in K, 
there exists R such that CR is not contained in ](, CR C 

U U V U W, CR n U 1= 0 and CR nV 1= 0. Then CRn a(to) 1= 0. 
Choose a point q E a(to) n Q. Let L 1 be the component 

of o:(to) n Q such that q ELI. Then £1 C V and by taking 
a parametrized order arc from L1 to K it is possible to find 
L E C(X) such that L 1 C L C ](, L1 -:f; Land LeV. Then L 
is not contained in a(to). So L n (V - a(to)) 1= 0. 

Define M = CRUa(to)UL E C(Bo). Since CR E SB(Bo), by 
Thm. 1.2 (b), M E SB(Bo) C 8(Bo) = lim 8(Bn ) and M is 
not contained in a(to). Thus there exists a sequence (Mn)n C 
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C(X) such that M n E SB(Bn ) for each nand M n --+ M. 
Then there exists N such that Mn C U U V U ~ Mn n U =F 
0, M n n V =F 0 and M n n (V - o:(to)) =F 0. 

Notice that MN C (I<nCl(V))U(o:(tN)UCl(U)),0 =F MNn 
(V-a(to)) C ]<nCI(V)nMN, 0 =F MNn.u C MNn(a(tN)U 
CI(U)), (Kn CI(V)) n (a(tN) U CI(U)) C ]< nCI(V) no:(tN) C 
(KnHnGI(V))na(tN) = Qna(tN) = 0. This contradicts the 
connectivity of MN and completes the proof of the theorem. 

7.3 Corollary. If S is continuous, then every proper subcon­
tinuum of X is unicoherent. 

7.4 Definition. A generalized Warzaw circle is an arcwise 
connected circle like continuum which is not a simple closed 
curve. By Theorem 6 in [9], X is a generalized Warzaw circle 
if and only if there exists a bijective map f : [0,00) --+ X such 
that f[0,1] = CI(f[t, 00)) - fft, 00) for every t > 1. Such an f 

 is said to be a rolling map for X. 

7.5 Lemma. Let X be generalized Warzaw circle with a rolling 
map f. Then C(X) = {f[a, b] : 0 ~ a ~ b}U {frO, b] Uf[a, 00) : 
b > I}. 

Next we will restate Theorem 2 in [10] of Nadler and Quinn: 

7.6 Theorem. X is an atriodic pathwise connect.ed space if 
and only if X is a simple closed curve, an arc or a generalized 
Warzaw circle. 

7.7 Lemma. Let X be a generalized Warzaw circle with a 
rolling map f. Let A = frO, 1]. Then SB(A) = {f[a, 1] : a E I}. 

7.8 Theorem. Let X be a pathwise connected space, then the 
following assertions are equivalent: 
(a) X is a simple closed curve, 
(b) S is continuous, 
(c) SB(A)-{A} is disconnected for every A E C"(X)-F1(X) 
and, 
(d) SB(A) n F1(X) has exactly two elements for every A E 
G"(X) - F1(X). 
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Proof. Clearly (a) =? (b), (c) and (d). 
(b) =? (a). By Corollary 7.3, every proper subcontinuum of 

X is unicoherent. If X contains a simple closed curve S, then 
X is equal to S. Suppose then that X does not contain simple 
closed curves. Then every pair of different p·oints x and y in X 
can be joined by a unique arc which will be denoted by xy, xx 
will denote the set {x}. 

First, we will prove that X is hereditarily pathwise connect­
ed. Suppose, on the contrary, that there exists A E C(X) 
and there exist two different point Xo and Yo in A such that 
XoYo n A = {xo, Yo}. Then A - {xo, Yo} and XoYo - {xo, Yo} are 
separated sets and AUxoyo is not unicoherent, so AUxoyo = X,
Cor. 7.3. 

Choose a point Po E {xoYo} - XoYo. Given a E A, Xo or Yo is 
in apo. Define H = {a E A : Xo E apo} and K = {a E A : Yo E
 
apo}. Then A = H U]{ and H n]( = 0. Since A is connected,
 

 we may suppose that Cl(H) n]{ :F 0. Given a E H, axo - {xc}
 
is a connected subset of (A - {xo, Yo}) U (xoYo - {xo, Yo}). Then
 
axo C A. Thus axo C H. Hence H is pathwise connected.
 
Similarly, K is pathwise connected. 

Choose a point Xl E Cl(H) n K and we may suppose that 
XlYO n Cl(H) = {Xl}. Then Xl :F xo. Notice that Po E X1 XO­
{X1,XO} and Cl(H) n XIXO = {X1,XO}. Then Cl(H) U X1XO is 
not unicoherent. Therefore X = Cl(H) U X1XO. 

We assert that Cl(H) n!( = {Xl}. To see this, suppose that 
there exists a point X2 E Cl(H) n K - {Xl}. Then X2 f/. X1XO. 
Hence X2 E Int(Cl(H)). This implies that {X2} ¢ S(Cl(H)). 
Choose a dense subset {ai, a2, ... } of H. Given n, let Bn = 
XOal U ... U xoan C H. Then X2 ¢ Bn • Let mn be such that 
d(X2,amn ) < lin and amn ¢ Bn , then mn > n. Choose a 
point Cn E xoamn - {amn } such that Cnamn n Bn = 0 and 
d(amn,Cn) < lIn. Define Cn = Bn U XoCn E C(Cl(H)), then 
Cnamn n en = {en}. Thus {en} E SB(Cn ) C S(Cn ). Notice 
that Cn -+ Cl(H) and {en} -+ {X2}. By hypothesis, S(Cn ) -+ 

S(Cl(H)), so {X2} E S(Cl(H)). This contradiction proves that 
Cl(H) n K = {Xl}. 
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Choose a parametrized order arc 0 from {Xl} to Cl(H). 
For each n, let tn = lin. For each n choose a point Pn E 
o(tn) - (o(tn+l ) U XOXI). Then Pn E Cl(H) C A and Pn =F Xl· 
Thus Pn E H, Xo E PnPO and Po E PnXI. Since o(tn ) n PnXI C 
(PnPO - {Po}) U (POXI) - {Po}) and intersects both sets, we have 
that a(tn ) UPnXl is a not unicoherent. Then X = o(tn ) UPnXl. 
Therefore, for each n, Pn E Pn+IXI - {Pn+l} and this implies 
that (Pn+lPn - {Pn}) n PnXI = 0. Then Pn+IPn C o(tn ). Hence 
PnPn+1 -+ {Xl}. 

Consider the set S = XiPl U PIP2 U P2P3 U · . . . Since Pn E 
Pn+lXl for each nand PnPn+1 -+ {Xl}' we have that S is a sim­
ple closed curve. This contradicts our supposition and proves 
that X is hereditarily pathwise connected, 

Then X is an hereditarily pathwise connected continuum 
which does not contain simple closed curves. This implies that 
X is hereditarily unicoherent. Therefore X is a dendroid. From 
 lemma 3 in [2], it follows that there exist two points Wo, Zo in 
X such that WOZo is a maximal arc in X. 

Since S is not continuous for X ~ Interval, X =F WOZo. Let 
U be an open subset of X such that WOZo C Cl(U) =F X. Let A 
be the component of Cl(U) such that WoZo C A. Choose e > 0 
such that Zo ¢ Ne(wo). Given n, let An be the component of 
A - Ne/n(wo) which contains ZOe Then An C An+1 for each n 
and An -+ Ao = Cl(U{An : n > I}) . 

Given n, choose a point W n C WOZo such that WOWn n An = 0 
and d(Wo, wn ) < lin. Define Bn = An U WnZo. Bn E C(X) and 
{wn } E SB(Bn ) C S(Bn ). Moreover Wn -+ wo. 

Given x E A - {wo, zo}, there exists y E WoZo such that 
xy n wozo = {y}. The maximality of WOZo implies that y =F 
Wo,Zo so there exists n such that Ne/n(wo) n xy = 0. Then 
x E An- This proves that A - {wo,Zo} C U{An : n ~ l} and 
A = Ac- By the continuity of S, we have that {wo} E S(A). 
Then there exists B E SB(A) such that B C U. Let (3 be 
a removing map for B. Then there exists t > 0 such that 
(3(t) C U and this implies that f3(t) C A which is absurd. 

This contradiction proves that X must contain a simple 
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closed curve and so X is a simple closed curve. 

(c) or (d) => (a). Suppose (c) or (d). First, we will prove 
that X is atriodic. Suppose, on the contrary, that X contains 
a triode Since X is arcwise connected, it is easy to prove that 
there exists C E C(X) and there exist arcs 11, 12, and 13 in X 
such that 1'1 - C, 12 - C and 13 - C are disjoint subsets of X 
and Ii n C is an end point ai of Ii for i = 1,2,3. 

For i = 1,2,3, let bi be the end point of Ii such that bi =F ai. 

Choose a point Ci E Ii - {ai, bi }. Let Bi be the subarc of Ii 
joining ai and Ci. Define A = C U f3l U f32 U f33. Then A E CI\(X) 
and {Cl}, {C2}, {C3} E SB(A). 

We will show that SB(A) - {A} is pathwise connected. Let 
C be the path component of {Cl} in the space SB(A) - {A}. 
Taking a parametrized order arc from {Cl} to PI U P2 U C. we 
have that PI U (32 U C E C. 

With a parametrized order arc from {C2} to PI U P2 U C, we 
obtain that {C2} E C. Similarly, {C3} E C. 

Let D E SB(A) - {A}. If Cl E D, taking a parametrized 
order arc from {CI} to D, we have that DEC. If Cl ¢ D, there 
exists dl E PI - { CI, al} such that the subarc 0 of PI joining CI 

and dl is such that 0 n D = 0. Then Dl = (A - 0) U {dl } is a 
proper subcontinuum of A such that C2, C3 E DI , DeDI. By 
Thm. 1.2 (b), D I E SB(A). Taking parametrized ord~r arcs 
from {C2} to DI and from D to DI , we obtain that D l E C and 
DEC. 

Therefore SB(A) - {A} is pathwise connected and SB(A) 
contains three one-point sets. These conclusions are contrary 
to (c) and (d) respectively. Hence X must be atriodic. 

Clearly an interval does not satisfy (c) nor (d). H X is a 
generalized Warzaw circle with a-rolling map f, let A = frO, 1]. 
By lemma 7.7, SB(A) = {f[a, 1] : a E I}. Then the unique 
one-point set in SB(A) is /(1) and SB(A)-{A} is a semi-open 
interval. Thus X does not satisfy (c) nor (d). 

Then Thm. 7.6 implies that X is a simple closed curve. 
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8.	 Two EXAMPLES 

8.1 Example. Let X be an hereditarily indecomposable con­
tinuum. Then, by Thm. 2.1, SB(A) = {A} for each A E 
C"(X). Thus S(A) = {A} and m(A) = {A}. Therefore S 
is continuous and lim sup m(An ) is finite for every sequence 
(An)n in C"(X) which converges in C(X). Thus pathwise con­
nectedness is a necessary condition in Theorems 6.1 and 6.3 
and the equivalence between (a) and (b) in Theorem 7.8. 

8.2 Example. Let X be a solenoid. Then every element in 
C(A) is an arc which can be enlarged through both end points. 
Thus X satisfies (c) and (d) in Theorem 7.8 and m(A) consists 
of two one-point sets for every A E C"(X) - F1(X). Then 
pathwise connectedness is a necessary condition in Theorem 
5.3 and in the equivalences (a) ¢:> ( c) and (a) <=> (d) in Theorem 
7.8. 
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