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RECENT RESULTS ON HOMOGENEOUS
 
CURVES AND ANR'S
 

PAWEL KRUPSKI 

ABSTRACT. In the first part of the paper we discuss 
some new results concerning homogeneous curves. The 
second part deals with higher dimensional locally con­
nected, locally compact homogeneous spaces. They are 
shown to be local Cantor manifolds which allows us to de­
rive some observations about homogeneous ANR's. This 
is related to the conjecture that homogeneous ANR's are 
generalized manifolds. 

Throughout the paper all spaces are assumed to be met­
ric separable and all mappings are continuous. A space X is 
homogeneous if for every two points x, y E X there is a home­
omorphism h : X --+ X such that h(x) = y. The set of all 
self-homeomorphisms of X is denoted by H(X). 

1. NEW CHARACTERIZATIONS OF HOMOGENEOUS CURVES. 

The reader is referred to an excellent presentation of the 
characterization problem and its history by Rogers [14] (see 
also [9]). We begin with three theorems obtained after [14]. 
The following definition will be convenient. Small subcontinua 
of the continuum X are said to have a property P if there 
exists a number e > 0 such that any subcontinuum of X with 
diameter less than e has property 1'. 

Theorem 1.1. If X is a nondegenerate homogeneous contin­
uum such that small subcontinua of X are unicoherent, then 
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X contains either an arc or arbitrarily small nondegenerate 
indecomposable subcontinua. 

Theorem 1.2 [13]. A homogeneous continuum X is a solenoid 
if and only if small subcontinua of X are arcs. 

A subcontinuum K of X is called terminal if for any other 
subcontinuum L of X that meets K, either 1< C L or L C K. 

The following theorem obtained in [7] and [15] is known as 
the Terminal Decomposition Theorem. 

Theorem 1.3. Each homogeneous curve admits a unique con­
tinuous decomposition into terminal, hereditarily indecompos­
able, tree-like, homogeneous and mutually homeomorphic sub­
continua such that the decomposition space is a homogeneous 
curve containing no nondegenerate proper terminal subcontin­
ua. 

Theorem 1.1. was formulated in [7] for hereditarily unicoher­
ent X; however the proof gives the conclusion if the hypothesis
is satisfied only by small subcontinua. In the same spirit, The­
orem 1.2 improves a characterization of solenoids by Hagopian
[5] who assumed that all proper subcontinua were arcs. 

In view of Theorem 1.3, it is important to know how to 
detect terminal subcontinua. A method is devel~ped in [7]. 
The idea is to use Theorem 1.1 and imposing some additional 
conditions on X, produce terminal subcontinua from already 
existing (small) indecomposable ones. 

We can get intersecting characterizations of some homoge­
neous curves by investigating the structure of small subcontin­
ua and, then, by applying Theorems 1.2 and 1.3. 

The following technical definition will be used. Let P be a 
class of polyhedra. A continuum X is said to be partially P­
like if there exist a nurrlber e > 0 and a sequence of finite open 
covers Cn of X with mesh Cn -+ 0, each of them containing a 
subfamily V n such that the nerve of V n belongs to P and there 
is a point dn E UVn satisfying p(dn,cl(U(Cn\Vn))) > e, where 
p is a metric in X (if Cn = V n for each n, X is partially P-like 
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by definition). Obviously, P-like continua are partially P-like. 
H we are concerned with one-dimensional continua, then class 
l' consists of certain graphs. In what follows, all graphs are 
assumed to be connected and nondegenerate. 

A class 'P of graphs is called hereditary if. each subgraph 'P' 
of a graph P E 'P also belongs to 1'. The classes of arcs, trees, 
graphs of genus < k and k-junctioned graphs (i.e. with at 
most k ramification points) are examples of hereditary classes 
of graphs. 

A variation of partially tree-like continua is considered in [8] 
under the name of somewhat tree-like continua. The definition
differs in that we assume the 1)n's are tree-chains, diamU1)n >
e and U(Cn\1)n n U1)n is contained in only one end-link of 1)n. 

Theorem 1.4. If P is a hereditary class of graphs and X is 
a partially P-like homogeneous continuum, then X is a curve 
whose small subcontinua are P-like. 

Proof. Let e > 0 and open covers Cn of X be such that mesh 
Cn --+ 0, Cn contains a subfamily 1)n whose nerve belongs to P 
and there is a point dn E U1)n such that p(dn , cl(U(Cn \1)n))) > 
e. Assume that lim dn = d. Let Y be the component of d 
in the closure of the open e/ 6-ball around d. Take n so large 
that there exists an e/3-homeomorphism h E H(X) moving d 
to dn (here we use the well-known Effros Theorem as stated, 
e.g. in [7, p.125]). Then h(Y) C Ul'n, whence Y is P-like. 
Now, consider Effros' 6 for ellS and assume, additionally, that 
6 < e/36. H Z denotes an arbitrary component of the closure 
of the open 6-ball around d, then there is an e/lS- homeomor­
phism 9 E H(X) such that d E g(Z). The continuum g(Z) is 
contained in Y and thus, it is 'P-like. Since each component 
of a closed neighborhood of d is P-like, the homogeneity of X 
yields small subcontinua of X are 'P-like 

The next theorem was obtained in [8] by methods described 
earlier. 



PAWEL KRUPSKI 112 

Theorem 1.5. Any somewhat tree-like homogeneous curve con­
tains arbitrarily small nondegenerate terminal subcontinua. 

One can notice that if a curve is not somewhat tree-like, then 
it can be represented as an inverse limit of graphs without end­
points (i.e. graphs whose every vertex is of order > 1). 

Theorem 1.6. If a homogeneous curve contains no nondegen­
erate proper terminal subcontinua, then it is an inverse limit 
of graphs without end-points. 

Two classes of finitely cyclic and of finitely junctioned curves 
are considered in [8] and [4], respectively. A curve X is finitely 
cyclic if graphs in an inverse limit expansion of X have genus 
< k for some k; X is finitely junctioned if the graphs have 
at most k ramification points for some k. It can be shown 
that if the graphs have no end-points then "finitely cyclic" 

 implies finitely junctioned". Finitely junctioned homogeneous 
curves have small subcontinua being arc-like. If such a curve 
contains no terminal proper nondegenerate subcontinua, then 
one can show more (using Theorem 1.1): small subcontinua 
are arcs [4]. Thus the curve is a solenoid, by Theorem 1.2. 
Applying the Terminal Decomposition Theorem, we get two 
characterizations. 

Theorem 1.7 [4]. A homogeneous finitely junctioned curve 
must be a pseudo-arc, a solenoid of pseudo-arcs or a solenoid. 

Theorem 1.8 [8]. A finitely cyclic homogeneous curve must 
be a tree-like continuum, a solenoid or it admits a decomposi­
tion as in Theorem 1.9 with quotient space a solenoid. 

One wished elements of the terminal decomposition were al­
ways pseudo-arcs, by this is just one of the hardest open prob­
lems in the theory of homogeneous curves. They are pseudo­
arcs for finitely junctioned curves, because small subcontinua 
and, consequently, elements of the decomposition are arc-like. 
Now, besides that problem, it remains to study curves which 
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are both infinitely junctioned and infinitely cyclic. It would al­
so be natural to assume, in view of the Terminal Decomposition 
Theorem, that they contain no nontrivial terminal subcontin­
ua. Examples are the Menger universal curve as well as other 
homogeneous curves involving the Menger c·urve in a construc­
tion [14]. Presumably, the Menger curve must be contained in 
such curves. So far however, it is not known if they contain 
arcs. 

We end this chapter by deriving some observations on the 
curves. 

In what follows X is a homogeneous curve that contains no 
nondegenerate proper terminal subcontinua. 

Proposition 1.9. The following statements are equivalent. 
(a) X is infinitely junctioned. 
(b) X is infinitely cyclic. 
(c) For every closed countable subset P of X,X\P con­

tains a non-are-like continuum. 

Proposition 1.10. X is not partially arc-like or X ia a sole­
noid. 

Proposition 1.11. For any inverse limit expansion X = 
lim(Gn, In) into graphs Gn , if X if infinitely junctioned, then .... 
UnP;-l(V(Gn)) is dense in X where Pn is a projection of X 
onto Gn and V(Gn ) is the set of all vertices of Gn • Graphs Gn 

can be chosen to have no end-points. 

Proposition 1.9 follows from [4], Proposition 1.10 is a conse­
quence of Theorem 1.4 and [4], while Proposition 1.11 follows 
from Proposition 1.10 and Theorem 1.6. 

2. LOCAL CANTOR MANIFOLDS AND HOMOGENEOUS 

ANR's. 

A locally compact n-dimensional space is called a Cantor 
manifold if no subset of dimension < n - 2 separates it. If the 
space is infinite-dimensional (strongly infinite-dimensional), then 
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it is a Cantor manifold if it contains no finite-dimensional 
(weakly infinite-dimensional, resp.) separator. 

It is proved in [6] that locally compact connected homoge­
neous spaces are Cantor manifolds. One can apply the idea 
from [6] to get a local version of the theorem. 

A locally compact, locally connected space is said to be a 
local Cantor manifold if each connected open subset is a Cantor 
manifold of the same dimension (finite or infinite). 

Theorem 2.1. Any locally compact, locally connected homo­
geneous space is a local Cantor manifold. 

An essential role in the proof is played by a version of Effros' 
Theorem stated in [2, p.584] for compacta, which is however 
valid for locally compact spaces X with the same proof, be­
cause the group of homeomorphisms H(X) is a Borel subset of 
the mapping space XX with the compact-open topology [6]. 

Proposition 2.2. If (X, p) is a locally compact homogeneous 
space, a E X and e > 0, then there exists a 6 > 0 such that 
if p(x, a) < 6, then there is h E H(X) such that h(a) = x and 
jJ( h, id) < e, where jJ is a metric in X x compatible with the 
compact-open topology. 

We can now sketch a proof of Theorem 2.1. Suppose X is a 
locally compact, locally connected homogeneous space which 
is not a local Cantor manifold. For simplicity consider the case 
dim X = n (other are analogous). Let U be a connected open 
subset separated by a subset A of dimension :5 n - 2 into two 
open subsets U1 and U2 • We can assume that A is closed and 
nowhere dense in U. Pick a E A n U1 n U2 and sufficiently 
small compact neighborhood V of a in U. By the Hurewicz 
Theorem V contains an n-dimensional Cantor manifold C. By 
Proposition 2.2 we can assure that a E C C U. The set C 
intersects one of the sets Ut or U2 , say Ut . Then, applying 
Proposition 2.2 once again, C can be slightly pushed toward 
U2 so that it intersects both U1 and U2 • This means that C is 
separated by A, a contradiction. 
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Theorem 2.1 includes a positive answer to the problem by 
Lysko[10] of whether finite-dimensional homogeneous compact 
ANR's are local Cantor manifolds. We are going to show some 
other applications to homogeneous ANR's. A famous problem 
posed by Bing and Borsuk [1] is whether· an n-dimensional 
homogeneous compact ANR X must be an n-manifold for n > 
2. A weaker version of the problem is whether X is a homology 
manifold, which means that Hk(X,X\{x}) = 0 for k < n· 
and Hn(X,X\{x}) = Z. Following Mitchell [12], we denote by 
H(n) the property that Hk(X, X\{x}) = 0 for all x E X and 
k ~ n, and by D(n, m) the disjoint (n, m)-cells property which
means that any two mappings !,9 of the standard cells Bn and
Bm, respectively, into X can be approximated by mappings 
I' : Bn ..... X and g' : Bm ..... X with the disjoint images. 
The reader is referred to [12] for various results concerning 
relationships between D(n, m), H(n) and other properties. 

Theorem 2.3. Any locally compact, locally connected homo­
geneous space X of dimension greater than 2 has the D(l, 1). 
If the space X is a compact ANR, then it also satisfies H(2). 

To prove Theorem 2.3 it suffices to observe that no arc sepa­
rates a connected open subset of X, by Theorem 2.1. Then one 
can repeat the proof of [3, Proposition 2.2] to get the D(l, 1). 
The property H(2) follows from D(l, 1) by [12]. 

Recall that a subset· A of X is called LCCk (locally cocon­
nected in dimensions < k) if for each a E A and each neigh­
borhood U C X of a there is a neighborhood V C X of a such 
that for i ~ k any 'map f : Si ..... V - A has an extension 
I : Bi+l ..... U - A ( Si denotes the standard i-sphere). 

In the sequel we shall consider the following properties of a 
space X. 

(An) X E D(O,n); 
(Bn) for every x E X any mapping f : Bn ~ X of the n-cell 

is approximated by mappings with images in X\{x}; 
(Cn ) for every x E X {x} is LCCn - I ; 

(D) for every x E Xix} is a Z-set in X; 
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(E)	 for every e > 0 there exists f : X --+ X such that f is 
non-surjective and f is e-close to the identity. 

Theorem 2.4. If X is a locally compact, homogeneous space, 
then 

(1)	 (An) {:} (Bn)
 
and
 

(2)	 V'n(An ) {:} (D). 
If X is a homogeneous compact ANR, then 

(3)	 (D) {:} (E)
 
and if dim X > 2, then
 

(4)	 (An) {:} (Cn). 

Proof. A proof of (An) => (Bn) is a matter of a simple ap­

plication of Proposition 2.2. The inverse implication is clear.
 
Statement (2) follows from (1) and form the definition of a Z­

set (see [11]). HX is an ANR, then {x} is a Z-set if and only if
 

. for every e > 0 there exists a mapping f : X --+ X\ {x} which
 
is e-close to the identity [11]. To show (3) is now a routine
 
application of Effros' Theorem. 

(An) implies (Cn) because (Bn) does. This is true for any 
ANR (not necessarily homogeneous) and follows from the ho­
motopy extension property. For a proof of (Cn ) => (An) we 
need the following lemma. 

Lemma. II each mapping f : Bk --+ X is approximated by a 
mapping I' : Bk --+ X\{x} then each mapping 9 : Sk --+ X is 
approximated by a mapping g' : Sk --+ X\ {x }. 

Indeed, suppose x E g(Sk). If g(Sk) = {x}, then define 
g'(Sk) - {x'}, where a point x' is close to x. If g-l(X) :/= Sk, 
then take a k-dimensional disk Dk C Sk which contains g-l(X) 
in its interior. Put 11 = IIDk and 12 = glcl(Sk\Dk). Ap­
proximate 11 by mapping I~ : Dk -+ X\{x }. There is a small 
homotopy form 111bd D k to 1{lbd D k with values in X\{x}. 
By the small homotopy extension property, the mapping 12 is 
approximated by a mapping f~ : cl(Sk\Dk) --+ X\{x} which 
extends I{ Ibd D k • The mapping g' : Sk --+ X\ { x} defined by 
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9'IDk = f~ and 9'lcl(8k\Dk
) = I~ approximates 9 and this 

completes the proof of the Lemma. 
We shall prove (Cn) ===> (An) by induction. The proper­

ty D(O,l) follows from D(l,l) which is satisfied in virtue of 
Theorem 2.3. Assume now (Cn- l ) ===> (An-I). The proper­
ties (An-I) and (Bn- l ) being equivalent, we will employ the 
latter one. Let {x} be Lccn-l and let I : Bn ~ X be giv­
en. Triangulate Bn into small n-cells B l , B2 , • •• ,Bk and put 
Si = 8Bi , S = UiSi. We will first construct an approxima­
tion 9 : 81 ~ X\{x} of liS. By the Lemma, there exists 
a mapping 91 : 81 ~ X\ {x} that approximates I I81 and 91 

extends to an approximation 11 : 8 ~ X of f. Now, 11182 is
approximated by a mapping 92 : 82 ~ X\.{x} and 92 extends 
to an approximation /2 : 8 ~ X of 11. The mapping /2 can be 
chosen to be so close to 11 that 12(81) c X\{x }. We continue 
this process: given Ii : 8 --+ X such that li(Si u ... U Si) C 

 X\ {x}, we construct an approximation li+l : S --+ X of Ii 
such that li+l(81 U ... U Si+l) C X\{x}. Finally, the mapping 
9 = fk : 8 ~ X\{x} is an approximation of liS. 

Now, the property Lccn-l allows us to extend each 91Si to. 
a mapping 9i : Bi ~ X\{x}. The mapping 9 : Bn ~ X\{x}
defined by 91Bi = 9i approximates I. This proves (Cn ) ===> 
(En) <==> (An). 
Problem. Suppose X is an infinite-dimensional (homoge­
neous) compact ANR and e > o. Does there exist a non­
surjective mapping I : X ~ X such That I is e-close to the 
identity mapping of X? 

If the answer is positive, then by Theorem 2.4, the inclusion 
X\ {x} ~ X is a homotopy equivalence and the property H (n ) 
holds for every n. 
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