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A REMARK CONCERNING PERFECTLY 
NORMAL SPACES WITH :DISTINCT LOCAL 

AND GLOBAL DIMENSION 

ELZBIETA PC)L* 

ABSTRACT. We show that there exists a perfectly nor
mal space which has small transfinite dimension but is 
not countable dimensional and that there exist perfect
ly normal spaces of arbitrarily large finite dimension (re
sp. not strongly countable-dimensional) which are locally 
homeomorphic to the irrationals. 

1. INTRODUCTION 

The aim of this note is to give the following two examples, 
modifying constructions form [7] and [5]. The terminology is 
explained in the next section. 

1.1 Example. A perfectly normal space X with small transfi
nite dimension defined which is not a countable union of zero
dimensional subspaces. 

This example provides an answer to Problem 8.11 in [4]. An 
example (even locally compact) of that kind constructed under 
the continuum hypothesis can be found in [4], Example 3.17. 

1.2 Example. Perfectly normal spaces~, n = 1,2, ... and 
Y s'uch that each ~ and Y is locally homeomorphic to the 
ifTationals, but dim Yn = nand Y is not a countable union 
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of closed finite-dimensional subspaces. In particular the spaces 
Yn and Y are homogeneous. 

The spaces ~ and Yare of weight NI and each separable 
subset of Yn or Y is contained in an open-and-closed subspace 
of this space homeomorphic to the irrationals. 

Belnov -Ill-gave, examples of homogeneous hereditarily nor
mal spaces with different local and global dimensions. Example 
1.2 provides some stronger results in this direction. 

2. TERMINOLOGY AND NOTATION 

Our terminology follows [2], [3] and [4]; I denotes the close'd 
unit interval and P is the set of irrational numbers from I. 

2.1. The covering dimension of a space X is denoted by 
dim X. The small transfinite dimension trind is the exten
sion by the transfinite induction of the Menger-Urysohn in

- ductive dimension ind. A space X is countable-dimensional if 
X = U~IXi, where dim Xi < 00, and is strongly countable
dimensional if X = U~IFi. where each Fi is closed in X and 
dim Fi < 00. 

2.2. For an ordinal 0 we denote by D(o) the set of all ordi
nals less than 0 with the discrete topology and by. W(a) the 
same set with the order topology. A cardinal is an initial ordi
nal of a given cardinality; WI is the first uncountable cardinal, 
and c+ denotes the first cardinal after the continuum c. A set 
S C W(a) is stationary if S meets every closed unbounded 
subset of W(a). 

2.3. For an ordinal 0 let B(o:) = D(o)W with the Cartesian 
product topology (topologically, B(0:) is the Baire space of 
weight equal to cardinality of 0 if 0 ~ Wo; see Example 4.1.23 
of [2]). As shown in [6] (cf[7]), if A is regular cardinal, then the 
family {B(P) : P< A} consists of closed subsets of B(A) and 
satisfies the following conditions: 

B(l) C B(2) C ... C B(P) c ... C B(A), 
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B({3) = cl(U~<pB(/)) for every limit ordinal (3 < A, and 
B(A) = Up<>.B((3). 
In the sequel by B(A) we will denote the set B(A) with the 

topology T defined by taking the family 

{U n B({3) : U is open in B(A) and {3 < A} 

as a base of T. As was proved in 16] for A = WI and in [5] for 
any regular cardinal A, the space B(~~) is perfectly normal and 
collectionwise normal. 

For a < Aput BOt = B(a)\ Up<Ot B((3) and for any set S c 
W(A) put B(S) = UOtEsBOt . Note that BOt is closed subset of.
B(A) on which the topology of the subspace of B(A) coincides 
with the topology of subspace of B(~~) and that for any a < A 
the set Up<OtBp is open in B(A) and the set Up<OtBp is closed 
in B(A). 

3. AUXILIARY LEMMAS 

We will need two simple lemmas to prove some properties of 
our examples. 

3.1 Lemma. If a perfectly normal s,pace X can be represented 
as the union of a transfiite sequence Xl, X 2 , ••• ,XQ , ••• ,a < A 
of pairwise disjoint closed. subspaces such that ind .XQ = 0, 
the union UP<QXp is open and the u'nion UP<QXp is closed for 
every a < A, then the space X has small transfinite dimension. 

Proof. We will show by induction with respect to Q that for 
each Q ~ A the space X~ = UfJ<cxXp has trind. 

For Q = 1 this is true. Assume that for every {3 < a trind 
X pexists. To show that trind X~ exists consider an arbitrary 
point x E X~ and an arbitrary closed set F C X~ such that 
x ¢ F; we will find a partition L between x and F such that 
trind L exists. 

Suppose first that 0 is a limit ordinal. Let f3 < a be such 
that x E Xp. Then X~+l is an open-and-closed neighbourhood 
of a point x in X~, and by the inductive assumption there 
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exists a partition L between x and F n XP+I in Xp+I (hence 
in X~) such that trind L exists. 

Suppose now that Q = P+1; then X~ = XpU X p• If x E Xp 
and f3 is a limit ordinal, then we can proceed as in the first 
case. If x E X pand P= ,+ 1, then X pis open-and-closed in 
X~ and we can use the inductive assumption in a similar way. 

H x E X p, then the zero-dimensionality of Xp yields that 
the empty set is a partition between x and F n X p in X p• 

Thus there exists a partition L in X~ between x and F such 
that L nXp = 0 (see Lemma 1.2.9 and Remark 1.2.10 of [2] ). 
Hence L C Xpand trind L exists because by the inductive 
assumption trind X pexists (and trind L ~ trind X p). . 
3.2 Lemma. Let A be a countable ordinal· and suppose that a 
metrizable space X can be represented as the union of a trans
finite sequence Xl, X 2 , ••• ,XOl , ••• ,Q < A of pairwise disjoint 
subspaces such that X OI is completely metrizable, the 
union Up<OlXp is open and the union Up<OtXp is closed for 
every Q < A. Then X is completely metriza-ble. 

Proof. We will show by induction with respect to Q th~t 

the subspace X~ = Up<OtXp of X is completely metrizable for 
every Q < A. Suppose that for every f3 < Q the space X p is 
completely metrizable (obviously"this is true for f3 = 1). 

H Q is a limit ordinal, then let {Qn}~=l be a sequence of 
non-limit ordinals such that a = liman and an < an+l for 
every n = 1,2, .... Then for every n = 1,2, ... the subspace 
X~n \X~n_l is open-and-closed in X~ and is completely metriz
able by the inductive assumption. Thus X~ is the union of a 
discrete family {X~n \X~n_l}~=l of completely metrizable sub
spaces, hence it is completely metrizable. 

H Q = P+ 1, then X~ = X pU X p, where both X pand X p 
are completely metrizable, hence X~ is completely metrizable. 

4. CONSTRUCTIONS OF THE EXAMPLES 

4.1.Construction of the space X from Example 1.1 
As the space X we'can take a perfectly normal not countable
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dimensional space Y constructed in Example 1 of [5] or its 
subspace Xl constructed in Example 2 of [5]. Recall that the 
space Y was obtained by taking the decomposition {So: a < 
c} of W (c+) into c disjoint stationar)' sets, arranging all points 
of the Hilbert cube [W into a transfinite sequence [W = {xo : 

a < c} and putting 

Y = UP<c+Yp, where Yp = Bt~ X {xo} if {3 E So. 
It was also shown in [5], Example 2, that for some ordinal al ~ 

c+ the space Xl = UP<al Yp is locally countable-dimensional, 
but not countable-dimensional (both spaces Y and Xl are tak
en with the topology of the subspace of the Cartesian product' 
B(c+) x [W). 

It is easy to see that the decomposition of Y into the sets 
Yp, (3 < c+, satisfies the conditions of Lemma 3.1. Indeed, 
each Yp is homeomorphic with the subspace of the Baire space 
B(c+), hence ind Yp = o. Moreover, for every Q < c+ the 
set UP<al'p = Y n (Up<oB({3) x JW) is open in Y and the set 
UP~aYP = Y n (B(a + 1) x [W) is closed in Y (see sec. 2.3). 
Thus by Lemma 3.1 trind Yexists. The same is true for the 
subspace Xl of Y. 

Note that by the same argument the spaces X o and X 2 con
structed in Example 2 of [5] have trind. It follows that there ex
ists a perfectly normal locally weakly infinite-dimensional (re
spectively, locally O-countable-dimensional) space having trind 
which is not weakly infinite-dimensional (respectively, which is 
not O-countable-dimensional) (see [4] or [5] for these notions). 

4.2 Constructions of spaces Yn and Y from Example 
1.2 (A) The space ~ is obtained by a minor modification of 
an n-dimensional perfectly normal space Xn which is locally 
O-dimensional and'locally second-countable, constructed in [7], 
Theorem 2. Let us recall that the space Xn was obtained by 
splitting W(Wl) into n+l disjoint stationary sets 80,81 , ••• ,Sn 
and taking the subspace of the space B(Wl) X In defined by 

X n = U~=oB(Sm) x R':, 
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where R:: is the set of points in In, exactly m of whose coor
dinates are rational. 

Now, since dim R': = 0 by the enlargement theorem (see [2], 
Theorem 1.5.11) there exists a Gq-subset R': of In such that 
R:: c Rr;: and dimRr;: = O. Let 

~= .U~=oB(Sm) x R': 
be the subspace of B(Wl) X In. Since ~ contains Xn as a 
subspace, dim Yn = n (cf [2], Corollary 3.1.20). Represent Yn 

as 
Yn = UO<Wl Yo where Yo = Bo x R;: if 0 E 8m • 

Then every Yo is O-dimensional and completely metrizable and 
the decomposition of the space Y~ = UP<oYp into the closed 
subsets Yi, Y2, ... ,Yp, ••• ,(3 < 0 satisfies the conditions of 
Lemma 3.2. Thus Y~ is completely metrizable. Moreover, y~ is 
separable, O-dimensional (by the sum theorem) and obviously 

. does not contain any non-empty compact open subspace, hence 
it is homeomorphic to the space of irrational numbers by a 
theorem of Alexandroff and Urysohn (see [2], Problem 1.3.E). 

Finally, observe that the spaces ~ are homogeneous. In
deed, for every two points x and y of Yn there exists an open
and-closed subspace U of ~ homeomorphic with the irrationals 
and containing both.x and y. Namely, one can ta:ke as U the 
subspace X~, where 0 is a non-limit ordinal and x, y E X~. 

(B) The space Y is obtained by a modification of the space 
X constructed in Example 3 of [5]. Recall that the space 
X was obtained in the following way. Let Z be a compact 
countable-dimensional but not strongly countable-dimensional 
space which is the union of a family {Ii}~l of disjoint sub
sets homeomorphic to i-dimensional cubes and of a subset 
P = Z\ U~l Ii homeomorphic to the space of irrationals (see 
[4], Example 1.12). For each i = 1,2, ... and m = 0, 1, ... ,i 
let Ri denote the set of points in Ii exactly m of whose coor
dinates are rational and let ki, be a O-dimensional Gq-subset 
of Ii containing R"{". Let us split W(Wl) into countably many 
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disjoint stationary sets Si, i = 1,2, ... and let Si = U~=oSr, 
where S'(" are also disjoint and stationary in W(Wl). As was 
proved in [5], Example 3, the subspace 

X = Ua<w1Xa , where Xa = Ba >~ (Ri U P) if Q E Si, 

of the space B(Wl) x Z is a perfectly normal, locally O-dimen
sional and locally second-countable space which is not strongly 
countable-dimensional. Thus the subspace 

Y = Ua<w1Ya, where Ya = Ba x (Ri U P) if Q E Si. 

of B(Wl) x Z is also not strongly countable-dimensional, since 
it contains X (cf [4], Proposition 2.2). Moreover, similarly as 
in (A) one shows that the space Y is locally·homeomorphic to 
the irrationals (since every space Y~ := UP<aYP, where Q < WI, 

is an open-and -closed subspace of }" homeomorphic with P) 
and thus it is homogeneous. 

Note that the spaces Yn constructed above are not tech 
complete. This follows from the fact that every C(1-subset of 
B(Wl) X In contoaining ~ contains a subset homeomorphic to 
In(see [7], sec. 2.4, Lemma). 
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