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SUBGROUPS, QUOTIENT GROUPS AND
 
PRODUCTS OF lR-FACTORIZABLE GROUPS
 

MICHAEL TKACENKO 

1. INTRODUCTION 

Given a compact topological group G and a continuous func
tion 9 : G -+ lR, one can find a second-countable topological 
group H, a continuous homomorphism 1r : G -+ H and a con
tinuous function h : H -+ lR such that 9 = h · 1r (see Example 
37 of [21]), i.e., a compact topological group is lR-factorizable 
in the sense of Definition 1.12 of [29]. The conclusion remains 
valid for every pseudocompact topological group G, a result 
due to W. W. Comfort and K. A. Ross [11]. 

How far can one generalize the assertions above? The fol
lowing results were obtained in this direction. 

A. Every Lindelof topological group is lR-factorizable (see 
Assertion 1.1 of [29] and Assertion 10 of [28]). 

B. Every (not necessarily closed) subgroup of a Lindelof 
E-gronp is R-factorizable (Corollary 1.13 of [29]). 

The definition of a Lindelof E-group can be found in [31,29], 
where some useful properties of these groups are established. 
We recall only that the class of Lindelof E-groups contains 
all CT-compact groups and is closed with respect to countable 
products, passing to closed subgroups and to continuous ho
momorphic images. Since the completion of a totally bounded 
topological group is compact, the statement B implies that ev
ery totally bounded group is R.-factorizable (see Theorem 3.8 
of [27]). 
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One of our aims is to show that the assertions A and B can 
not be improved simultaneously, as Example·2.1 shows. 

A topological group G is said to be No-bounded provided 
that for each neighborhood V of the identity there exists a 
countable subset ]( ~ G such that ](V = G (see [15,4] ). 
In [15] I. I. Guran characterized No-bounded groups as sub
groups of Cartesian products of second-countable topological 
groups. Since No-boundedness is inherited by arbitrary sub
groups and every Lindelof topological group is No-bounded, 
Example 2.1 below shows that No-bounded groups need not 
be lR-factorizable. Thus we answer a question of M. Husek in 
the negative. Note that every lR-factorizable topological group 
is No-bounded (see the comment after Definition 1.12 of [29]). 
Another connection between these notions is established in As
sertion 2.2, which implies that the class of No-bounded groups 
coincides with the class of closed subgroups of lR-factorizable 
groups. 

The question on monotonicity of the dimension function dim 
in the class of topological groups is considered at the end of 
Section 2. It is well-known that the dimension dim can increase 
when passing to a (closed) subspace of a Tychonoff space [13]. 
Our Theorem 2.7 states that the inequality dimH ~ dimG is 
valid for any lR-factorizable subgroup H of an arbitrary topo
logical group G. This result generalizes Theorem 2.2 of [23], in 
which a subgroup H is assumed to be totally bounded. Addi
tional information on the problem of monotonicity is contained 
in the papers of D. B. Shakhmatov [23,24]. Other dimensional 
properties of lR-factorizable groups were investigated in [30]. 

In Section 3 we discuss some delicate properties of R-factor
izable groups. It is proved that every locally connected, R
factorizable group is pseudo-wI-compact (Theorem 3.8). How
ever it is an open .problem whether the assumption of local con
nectedness in the theorem can be omitted. Also we prove that 
the lR-factorization property is preserved by quotient groups 
(Theorem 3.10). The section contains a number of problems 
concerning R-factorizable groups. 
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The behavior of the lR-factorization property under the prod
uct operation is considered in Section 4. The main problem is 
the following one: must a product of an lR-factorizable group 
with a compact group be lR-factorizable? We prove in Theo
rem 4.3 that the answer is 'yes', if the first factor either has 
countable cellularity, or is No-stable, or is locally connected. 
More restrictive requirements on the first factor are necessary 
if the second factor is assumed to be pseudocompact (see The
orem 4.13). It is also shown that the product of an No-stable 
Lindelof group and an arbitrary subgroup or a Lindelof E
group is lR-factorizable (Theorem 4.16). This implies that the 
product of a Lindelof P-group with a totally bounded group is 
R-factorizable as well (Corollary 4.18). 

Theorem 4.8 seems to be somewhat surprising: it asserts 
that every k-group has countable o-tightness. This result is 
used in the proof of Theorem 4.13. 

In the end of the paper we introduce the notion of a weakly 
No-stable group and prove that a product of an lR-factorizable 
group with this property and a compact group is lR-factorizable 
(Theorem 4.20). This is the most complicated result of the 
paper which generalized Theorem 4.3 (modulo Theorem 3.8). 

2.	 SUBGROUPS OF LINDELOF AND lR-FACTORIZABLE 

GROUPS. MONOTONICITY OF THE DIMENSION dim. 

Example 2.1. There exists a Hausdorff Abelian topological 
·group G such that the completion Gof G is a Lindelof group, 
but G is not lR-factorizable. 

Construction. Let Z2 = {O, I} be a discrete group. Con
sider the Cartesian product II = IIa<wl Ga , where Ga = Z2 
for each Q < WI' and endow IT with the No-box topology T, 
the base of which consists of the sets of the form p;I(X) with 
a < WI and x E ITa = II~<aGp; here Pa : II -+ IIa is the 
projection. One can easily see that II = (II, T) is a Hausdorff 
Abelian topological group, each GcS-subset of which is open. In 
other words, II is a P-group. 
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For every 9 E IT denote supp(g) = {O' < Wt : 1f"a(g) = I}, 
where 1ra is the projection of IT onto Go' Let G* be a weak sum 
of the groups Go, Q < WI, i.e., G* = {g E II : I supp(g) I< No}. 
Consider G* as a subgroup of II. Obviously G* is a P-group, 
and hence G* is zerodimensional. By the result of Comfort [9], 
the group G* is Lindelof. Let 0 and 0 be neutral elements 0 

of the groups G*' and ITa resp., 0' < WI- The family 7(0) = 
{p;l(Oa) n G* : 0' < WI} constitutes a base of G* at the point 
0, consequently X(G*) = Nt. Since I G* 1= Nt, we conclude 
that w(G*) = N1 • Hence there exists a base B = {Oa : 0' < WI} 
for G* consisting of clopen sets_ 

The group G will be defined as a dense subgroup of G*. Fix 
an element g* E G*\{O} and define by recursion a sequence 
{Ha : 0' < WI} of countable subgroups of G* and sequences 
{Ua : 0' < WI}' {Va: 0' < WI} of clopen subsets of G* satisfying 
the following conditions for each 0' < WI : 

(1) Ha n Op ~ 0, if (J < 0'; 

(2) Ua n Va = 0; 
(3) Hp ~ Ha,Up ~ Ua,Vp ~ Va' if f3 < a; 
(4) Ha ~ Ua+l U Va+I ; 

(5) Pa(HanUa)npa(HanVa) ~ 0, if a is a non-limit ordinal; 
(6) g* ¢ Ha U Ua U Va. 

The construction is based on the following easy observation: 
(*) for every non-empty open subset 0 of G* and every 

countable subgroup H ~ G* \ {g*} there exists an element 
9 E 0 such that g* ¢ H+ < 9 >, where < 9 >= {O,g}. 

Note that < 9 > is a subgrou'p of G*, and H + < 9 > is 
also. Assume that a countable subgroup Ha ~ G* and the 
sets Ua, Va satisfying (1)-(6) are defined. Since 1Ha 1< No, 
one can find disjoint clopen subsets Ua +l , Va +l of G* so that 
Ua ~ Ua+l , Va ~ Va+1 and Ha ~ Ua+1 U Va+1 • Obviously, the 
sets Ua+1 and Va+1 can also be chosen to satisfy the conditions 
g* ¢ UOt+1 U VOt+1 and T = POt+I(UOt+1 ) n POt+I(VOt+I) ~ 0. Pick 
a point t E T. The set U' = Ua +1 nP;;l(t) is open and non
.empty; hence (*) implies that there exists an element aa E U' 
such that g* (/. Ha + < aa >= H~. Apply assertion (*) once 
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more to find an element bo of Vo+1 n P;~l(t) such that g* ¢ 
H~+' < bo >= H~. Finally, there exists ·an element Co E 0 0 

such that g* f/. H~+ < Co >= Ho +1 • It is easily seen that 
Ho+1 ' Uo+1 and Vo+1 satisfy the conditions (1 )-(6). 

At a limit step Q :5 WI put Ho = Up<OlHp, Ua = Up<OlUp 
and Va = Up<olVp• Thus, we have defined a dense subgroup 
G = HW1 of G* (see condition (I)) and disjoint open subsets 
U = UW1 ' V = VW1 of G*. Clearly, G ~ U U V (see condition 
(2)). 

Let f be a function on G defined by the rule: f(x) = 0 for 
each x E UnG, and f{x) = 1 for each x E VnG. Obviously, f 
is continuous. Let 7r : G ~ H be a continuous homomorphism 
of G to a metrizable group H. Then the kernel of 1r is of 
countable pseudocharacter in G, consequently, one can find 
Q < WI such that P;il (00 +1 ) n G ~ ker 1r. The condition (5) 
implies that Po+l (G n U) n POl+l (G n V) ~ 0, which in turn 

.implies 1r(GnU) n 1r( G n V) ~ 0. Hence there exist points 
x E U n G and y E V n G such that 1r{x) = 1r(Y), whereas 
f(x) = 0 and f{y) = 1. This means that the group G is not 
lR-factorizable. 

Every G6-subset of the Lindelof group G* is open, so G* is 
complete. Since G is dense in G*, the completion of G coincides 
with the Lindelof group G*. 

Example 2.1 shows that (dense) subgroups of lR-factorizable 
groups need not be R-factorizable. The result does not change 
when passing to a closed subgroup. 

Assertion 2.2. Every ~o-bounded Abelian group G embeds 
in some lR-factorizable Abelian group H as a closed subgroup. 

Proof. Being ~o-bounded, G embeds in a product of second
countable groups, say ](, as a subgroup [15]. Denote II = 
n:O=oKn , where ](n = ]( for each integer n. Let q be the weak 
sum of the groups ](n's, i.e. the subgroup of II consisting of all 
points which coincide with the neutral element of II on almost 
all coordinates. Obviously, (J' is dense in II provided that II is 
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endowed with the Tikhonov topology. Consider the mapping 
i of G to IT defined by the rule: 1rn i{g). = 9 for all 9 E G and 
n E N, where 1rn is the projection of II onto ](n. It is clear that 
i is a topological monomorphism of G to II, and H = i{G) +(T 
is a dense subgroup of II. The group ]{ is a product of second
countable groups, and so is II. Being dense in II, the group H 
is R-factorizable by Corollary 1.10 of [29] (another way is to 
apply Theorem 2 of [5]). From the definition of H follows that 
for every point p E H\i(G) there exist integers m and n such 
that 1rn {p) =F 1rm (p), and hence i(G) is closed in H. It remains 
to identify G with i(G). 

A similar method was applied in Theorem 2.4 of [12] to show 
that the torsion subgroup of the circle group (in fact, every 
totally bounded group) embeds in some pseudocompact group 
as a closed subgroup. With the help of a little modification of 
the previous proof one can show that a non-Abelian version of 
Assertion 2.2 holds (define H as the minimal subgroup of II 
containing i (G) and (T). 

We omit an easy proof of the following result which show 
that some subgroups inherit the lR-factorizable property. 

Assertion 2.3. Every C-embedded subgroup of an R-factor
izable group is lR-factorizable. 

It was mentioned in the introduction that the covering di
mension dim is not monotone in the realm of Tikhonov spaces. 
What can one say about monotonicity of dim in the class of 
topological groups? The question seems to be surprisingly 
difficult: no example that raises the dimension of a subgroup 
is known (see Problem 2.1 of [23])~ A positive answer to this 
question was given by D. B. Shakhmatov in the special case 
of a totally bounded subgroup (announcement [23, Th. 2.2], 
proof is in [24]). Here we strengthen this result by showing 
that the inequality dimH ~ dimG remains valid for each R
factorizable subgroup H of a topological group G. The proof 
of this theorem requires three lemmas, the first of which is 
folklore. 
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Lemma 2.4. The following conditions are equivalent for a com
pletely regular space X: 

(1)	 dimX ~ n; 
(2)	 for every continuous mapping f of X to a separable 

metrizable space Y there exist a separable metrizable 
space Z and continuous mappings 9 : Z --. Y, h : X --. 
Z such that f = gh and dimZ ~ n.' 

The proof of Lemma 2.4 can be found in [30, Section 2]. In 
what follows the phrase "a uniformly continuous metric (func
tion) on a group G" means that one should consider the left 
group uniformity ·V on G and a metric (function), which is 
uniformly continuous with respect to ·V. 

Lemma 2.5. For every uniformly continuous function f : G --. 
lR on JR-factorizable group G there exist a second-countable 
group H, a continuous homomorphism 1r : G --. H and a uni
formly continuous function h : H --. R. such that f = h 0 1r. 

Proof. Since f is uniformly continuous, for each n E N+ one 
can find a neighborhood Un of the identity eG such that 1 f( x)
f(y) 1< lIn whenever X-I • Y E Un. Being R-factorizable, the 
group G is ~o-bounded. This fact and Corollary 1 of [15] imply 
that for every n E N+ there exist a continuous homomorphism 
1rn of G onto a second-countable group Hn and a neighborhood 
Vn of the identity of H n such that 1r;l(Vn) ~ Un. Denote by 
1r the diagonal product of homomorphisms 1rn , n E N+, and 
put H = 1f(G). Then H is a subgroup of the product II = 
IIneN+Hn ; hence H is second-countable. Use the definition of 1r 
and H in order to find, for every n E N+, an open neighborhood 
Wn of the identity eH such that 1r-1(Wn ) ~ Un. It is clear that 
there exists a function h : H --. lR such that f = h 0 1r. Let us 
verify that h is uniformly continuous. 

Fix a positive integer n and elements x, y E H with X-I • 

y E Wn • Pick elements Xl, YI E G such that 1r(Xl) = x and 
1r(Yl) = y. Then 1r(xl1 

• YI) = X-I • Y E Wn , and the choice 
of Wn implies that xII · YI E U1• Therefore, 1!(Xl) - !(Yl)1 < 
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lin, i.e., Ih(x) - h(y)1 < lin. Thus h is uniformly continuous 
on the group H. 

Lemma 2.6. Let H be an JR-factorizable subgroup of a topo
logical group G. Then every uniformly continuous real-valued 
function on H extends to a continuous function on G. 

Proof. Suppose that a function f : H -+ lR is uniformly contin
uous. Apply Lemma 2.5 to find a continuous homomorphism 1r 
of H onto second-countable group !( and a uniformly continu
ous function h on 1< such that f = h 0 1r. Let B = {~ :n E N} 
be a countable base at the identity of 1<. Obviously, there 
exists a sequence {Un: n E N} of open symmetric neighbor
hoods of the identity eG such. that Un n H ~ 1r-1(Vn) and 
U~+1 ~ Un for each n E N. Set P = n~=oUn. Then P is a 
closed G.s-subgroup of G, and P n H ~ ker 1r. Denote by p the 
quotient mapping of G onto coset space GIP, p(x) = xP for 
each x E G. By Theorem 3 of [14], there exists a continuous 
left-invariant pseudometric d on G with the following property: 

(i) the implications X-I • Y E Un+1 => d(x, y) < 2-n => 
X-I • Y E Un hold for each n E Nand x,y E G. 

The property (i) implies that the equality d(x, y) = 0 is 
equivalent to X-I • yEP; hence one can define a metric J 
on GIP by the rule d(p(x),p(y)) = d(x,y) for each x,y E 
G. Obviously, this metric is well-defined. Endow G / P with 
the topology generated by the metric d. The mapping p : 
G -+ GIP remains continuous. Put H = p(H). Note that, 
if x, y E H and X-I • yEP, then X-I • yEP n H ~ ker1r, 
and hence 1r(x) = 1r(Y). Consequently, there exists a mapping 
j : H -+ !( such that 1r = j piH. We claim that j is uniformly 
continuous with respect to the metric d. Indeed, let n E N 
and Yl, Y2 E H satisfying the condition d(Yl' Y2) < 2-n be 
chosen. It is sufficient to show that j(Yl)-1 · j(Y2) E Vn • To 
this end, pick elements Xl, X2 E H so that P(Xi) = Yi, i = 1,2. 
Then d(Xl,X2) = d(Yl,Y2) < 2-n

, and hence (i) implies that 
xII · X2 E Un. In turn, this fact and the choice of Un together 
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imply that 1r(xl1.x2) E Vn , i.e., 1r(Xl)-1.1r(X2) E Vn • Evidently, 
1r(Xi) = jp(Xi) = j(Yi), i = 1,2, so j(Yl)-lj(Y2) E Vn • _ 

Consider the uniformly continuous mapping 9 = hj of H to 
R and extend 9 to a uniformly continuous mapping 9 : F -+ R, 
where F is the closure of fI in G/P (apply Theorem 8.3.10 of 
[13]). Since the space G/P is metric, 9extends to a continuous 
function g* : G/ P -+ R. It is clear that the function f* = g*p 
is the required extension of f. The diagram below clarifies the 
proof. 

Figure 1. 

Theorem 2.7. If H is an IR-factorizable subgroup of an arbi
trary topological group G, then dimH < dimG. 

Proof. Let f be a continuous mapping of H to a separable 
metrizable space Z. Since the group H is lR-factorizable, one 
can find a continuous homomorphism 1r of H onto a second
countable group H* and a continuous mapping 'P : H* -+ Z 
such that f = C(J 0 1r. By Theorem 3 of [14], the topology of 
the group H* is generated by some left-invariant metric d. Ev
idently, d is uniformly continuous on H*. Let {xn : n E N} 
he a countable dense subset of H*. For every n E N define 
a real-valued function tPn : H* -+ lR by the rule tPn(x) = 
d(x, xn ), x E H*. We claim that the functions tPn' n E N, 
are uniformly continuous. Indeed, let n E Nand f > o. Put 
V = {z E H* : d(z,e) < f}, where e is the identity of H*. 
Then I tPn(x) - tPn(Y) 1=1 d(x,xn) - d(y,xn) I~ d(x,y); and if 
X-I. Y E V, then d(x,y) = d(e,x-1y) < f. 
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One easily verifies that the diagonal product "p = Ll{"pn : n E 
N} is a homeomorphic embedding of H* into RN• By Lemma 
2.6, for each n E N the uniformly continuous function An = 
"pn 0 1rIH extends to a continuous function Xn : G --+ lR, and 
we put X = ~{Xn : n EN}, the diagonal product of functions 
Xn. Obviously, XIH = 1/J 0 1rIH. Lemma 2.4 implies that there 
exist a separable metrizable space P and continuous mappings 
e:G --+ P, 1J: P --+ ]RN such that X = 1J 0 eand dimP ~ 
dimG. Put Y = e(H),g = elH and h = ep 0 "p-llw(H.) 0 1Jly. 
The definition of h is correct because 1/J is a homeomorphism 
of H* onto 1/J(H*). It is clear that 9 and h are continuous, 
f = hg and dimY ~ dimP ~ dimG (use the fact that the 
function dim is monotone in the realm of separable metrizable 
spaces, see Theorems 7.1.1 and 7.3.3 of [13]). By equivalence 
of the conditions (1) and (2) of Lemma 2.4, we conclude that 
dimH ~ dimG. Figure 2 clarifies the proof. 

He • G 

f 11" 
~r 

R.(n) 
X e 

z· tP 
~n pr~ 

H* ,p • RN • '1 P 

1 h 
J 
y 

Figure 2. 

We say that a topological group G is u-precompact, if G is a 
union of a countable family of totally bounded subsets. By As
sertion 1.15 of [29], every u-precompact group is R.-factorizable. 
Hence, Theorem 2.7 implies immediately the following. 

Corollary 2.8. The inequality dimH ~ dimG holds for every 
u-precompact subgroup of a topological group G. 
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3. SOME POSITIVE RESULTS AND OPEN PROBLEMS 

Now we can summarize a part of results of Section 2 in 
the following way: lR-factorizable groups constitute a proper 
class in the variety of No-bounded groups and, in turn, Lin
delef groups and subgroups of Lindelof E-groups· are (proper) 
subclasses of the class. of lR-factorizable groups. 

It is easy to see that every topological group with the Souslin 
property is No-bounded [15]. Moreover, if a topological group G 
has countable cellularity (abbrev. G hasc.c.c.), then for every 
continuous real-valued function 9 on G there exists a closed 
normal subgroup N of type Gs in G such that 9 is constant on 
each coset on N in G [22]. The following problem arose as an 
attempt to improve the previous result. 

Problem 3.1. Is every c.c.c. topological group lR-factor
izable? What if a group is separable? 

This problem remains non-trivial in a very concrete situa
tion. 

Problem 3.2. Let S be the Sorgenfrey line and A(S) the 
free Abelian topological group over S. Is A(S) lR-factorizable? 

2NoIt is known that c(G) ~ for every No-bounded group G 
[26, Th.2.8]. Hence, one may expect positive solution to the 
following problem. 

Problem 3.3. Let 9 be a continuous real-valued function 
defined on an No-bounded group G. Are there a continuous 

2Nohomomorphism 1r of G onto a group H of weight ~ and a 
continuous function h ,on H such that 9 = h 0 1r? 

The problem below remains open for about ten years. 

Problem 3.4. [A. V. Arhangel'skii]. Does every subgroup 
of Z'" satisfy c.c.c. for each cardinal T? 

Problem 3.5.. Is every subgroup G of Z'" necessarily lR
factorizable? 
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The answer to Problem 3.5 is "yes", if G is dense in Z'T. To 
see this, apply Corollary 1 of [6], or use Corollary 1.10 of [29]. 
The following problem seems to be important. Its solution will 
help to answer some natural questions concerning products of 
lR-factorizable groups. 

Problem 3.6. a) Must every locally finite family of open 
subsets of an R.-factorizable group be countable? b) Is every 
lR-factorizable group G weakly Lindelof (i.e., every open cover 
of G contains a countable subfamily, a union of which is dense 
in G)? 

Here we give a positive solution to Problem 3.6, a) in the 
case of locally connected, IR-factorizable groups. First we need 
to establish an auxiliary result. 

Lemma 3.7. Let f : G -+ X be a continuous mapping of a 10
cally connected, JR-factorizable group G to a separable metriz
able space X. Then there exist a continuous homomorphism 
1r : G -+ H onto a group H with a countable base B and a con
tinuous mapping h : H -+ X such that f = h 0 1r and 1r-1(V) 
is connected for every V E B. In particular, H is locally con"· 
nected. 

Proof. Note that the group G has a base at the identity e 
consisting of open, connected cozero-sets. Indeed, let U be 
an open neighborhood of e, and a sequence {Un: n E N} of 
open neighborhoods of e can be chosen satisfying the conditions 
Uo = U, U;l = Un and U~+1 ~ Un for each n E N. Then 
the set U* = U{U1U2 ••• Un: n E N} is a connected, open 
neighborhood of e, which is a union of open connected sets. 
Apply Theorem 8.2 of [16] to conclude that U* is a cozero-set 
and U* ~ Uo = U. 

Now we claim that for every open cozero-set U of G there 
exist a group Hu of countable weight, an open subset Vu ~ Hu 
and a continuous homomorphism Au of G onto Hu such that 
U = AU1(VU). Indeed, let 9 be a continuous real-valued func
tion on G such that U = 9-1(0, +00). Since Gis JR-factorizable, 
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one can find a group Hu of countable weight, a continuous 
homomorphism Au : H -+ Hu and a continuous function 
h : Hu -+ lR such that 9 = h 0 Au. It remains to. put Vu = 
h-I(O, +00). 

By induction on n, define a sequence {1rn : n E N} of con
tinuous homomorphisms of G onto second-countable groups. 
Embed X into aNo , and find a continuous homomorphism 1ro 
of G onto a second-countable group Ho and a continuous map
ping ho : Ho -+ X such that f = ho 0 1ro. Let a continu
ous homomorphism 1rn : G -+ Hn be defined, w(Hn ) ~ No. 
Choose a countable base Cn at the identity of Hn , and put 
Bn = {Uv : V E Cn}, where Uv is an open, connected cozero
set, and e E Uv ~ 1r;I(V) for each V E Cn. Then define a 
homomorphism 1rn +1 as the diagonal product of 1rn and AU's, 
U E Bn •· Obviously, Hn+l = 1rn +I(G) is a subgroup of the 
product Hn x IIuE8nHu; hence w(Hn+1 ) ~ No. Note that the 
equality U = 1r;~I1rn+l(U) holds for each U E Bn. 

Let 1r be the diagonal product of homomorphisms 1rn , n E N, 
and H = 1r(G). Then the group H is second-countable and 
U = 1r- I 1r(U) for each U E B* = U{Bn : n EN}. Furthermore, 
B* consists of open connected neighborhoods of the identity e, 
and 1r(U) is open in H for each U E 8*. From the construction 
it follows that B = {1r (U) : U E B*} is a base of H. Let ?rOO 
be a homomorphism of H onto Ho such that ?ro = 1rOO 0 1r. 
Then 1rOO is continuous and we complete the proof by putting 
h = ho 0 1rOO. 

Theorem 3.8. Every locally finite family of open subsets of a 
locally connected R.-factorizable group G is countable. 

Proof. Suppose that there exists an uncountable locally finite 
family of open subsets of G. Then there exists an uncount
able discrete family {Oo : Q < WI} of non-void open subsets 
of G (see Lemma 1 of [22]). For every Q < WI pick a point 
X oE Uo and define a continuous function fo : G -+ [0, 1] such 
that fo(xo) = 1 and fo(G\Oo) = {Ole Then f = LO<Wl fo 
is a continuous function, 0 ~ f ~ 1. By Lemma 3.7, there 
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exist a continuous homomorphism 1r : G --. H, a countable 
base B for ·H and a continuous function- h : H --. [0, 1] such 
that f = h 0 1r and 1r-

1(V) is connected for each V E B. 
Put B = {Vn : n E N} and Un = 1r- I (Vn ), n E N. Obvi
ously h(1r(xOl )) = /(xOl ) = 1, so for each Q < WI there ex
ists n E N such that h(VnyOl) ~ (0,1], where YOl = 1r(xOl ). 
Hence 1r(UnxOl ) ~ (0, 1], Q < WI. The set UnxOl is connected, 
XOl E UnxOl n OOl ~ 0, and Unx Ol is contained in the union of 
mutually disjoint sets O/3's. Consequently, Unxo ~ 0 0 Since• 

the set of integers is countable, one can find kEN and an 
uncountable set A ~ WI such that UkxOl ~ 0 0 for each Q E A. 
Then UkX Ol nUkX/3 =0whenever Q,{3 E A,Q ~ {3. Let W be an 
open symmetric neighborhood of the identity of G such that 
W2 ~ Uk. Being lR.-factorizable, the group G is No-bounded 
[29, §1]. Therefore there exists a countable subset K ~ G 
such that G = W 1<. Since A is uncountable, one can find 

.x E K and distinct Q, {3 E A such that {xOl , x /3} ~ W x. Then 
XOlXpI E W2 ~ Uk, i.e., X Oi E Ukx/3. It contradicts the fact that 
UkxOl n Uk x/3 = 0. 

Let g be either the class of all Lindelof groups or the class of 
all subgroups of Lindelof E-groups. If G E g and 1r : G --. H 
is a continuous homomorphism of G onto a group H, then 
H E g. It is not known if the class of lR-factorizable groups 
has the same property. 

Problem 3.9. Does a continuous homomorphic image of an 
R-factorizable group inherit the property of lR-factorization? 
Conversely: is every No-bounded group a continuous homo
morphic image of an R-factorizable group? 

A special case of open homomorphisms is considered below. 

Theorem 3.10. An open homomorphic image oj an IR-Jactor
izable group is lR-Jactorizable. 

Proof. Let 1r be an open continuous homomorphism of an IR
factorizable group G onto a group Hand f be a continuous 
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real-valued function on H. Since G is lR-factorizable, there ex
ist a continuous homomorphism t.p of G onto a second-countable 
group P and a continuous real-valued function 9 on P such that 
f 0 1r = 9 0 t.p. Choose a countable base {Un: n E N} at the 
identity of P and put Vn = 1rt.p-l(Un ), n E N. Then every set 
Vn is open in H, and an easy verification shows that for every 
point x E H and every real f > 0 one can find n E N such 
that f(xVn ) ~ (j(x) - f,j(X) + f). Being a quotient group 
of G, the group H is No-bounded; hence there exist a second
countable group Q with a base {Wn : n E N} at the identity 
eQ and a continuous homomorphism ,.\ of H onto Q such that 
,.\-l(Wn ) ~ Vn for each n E N (apply Corollary 1 of [15] char
acterizing No-bounded groups as subgroups of products with 
second-countable factors). It is easy to see that there exists 
a function q : Q --+ lIt such that j = q 0 "\. The continuity of 
q follows from the choice of the families {Wn : n E N} and 
-{Vn : n EN}. 

4.	 THE PRODUCT OPERATION AND lR-FACTORIZABLE 

GROUPS 

A final dose of results and problems concentrates on the 
behaviour of the nt-factorization property under the product 
operation. A general problem is the following. 

Problem 4.1. Is a product G x H lR-factorizable for every 
R-factorizable group G and H? 

A concrete version of the previous problem seems to be more 
natural. 

Problem 4.2 Is a product G x !{ lR-factorizable for every 
R-factorizable group G and a compact group ](? 

Here Problem 4.2 is solved under some additional assump
tions. Recall that a space X is said to be No-stable [5]; if 
nw(Y) :5 No for every contiriuous image Y of X, which admits 
a continuous one-to-one mapping onto a separable metrizable 
space. 
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Theorem 4.3. Let !< be a compact group and G be an R.
factorizable group satisfying one of the following conditions: 

(1) G has a dense u-precompact (or Lindelof) subset,. 
(2) G has countable cellularity; 
(3) G is locally connected; 
(4) G is No-stable. 

Then the group G X 1< is R.-factorizable. 

Proof. I. We consider the cases 1)-3) simultaneously. Note that 
if G has a dense u-precompact subset, then G is c.c.c. Indeed, 
let B = U~=oBn be a dense subset of G, where each Bn is 
totally bounded in G. Then the subgroup Gn of G generated 
by Bn has c.c.c. by Assertion 9 of [28]. Hence G* = U::oGn is 
a dense c.c.c. subset of G, and so is G. 

Let f : G x !< -+ R. be a continuous function. .Denote by 
C(1<) the space of all continuous real-valued functions on 1( 
with the sup-norm topology and consider a continuous map
ping \11 : G -+ C(1<) defined by \I1(x) = fl{~}xK, X E G. In 
each of the cases 1)-3) the image \11 (G) has countable weight. 
Indeed, if G is locally connected, then every locally finite fami
ly of open subsets of G is at most countable (Theorem 3.8), i.e., 
G is pseudo- WI-compact. However, G has the same property 
in cases 1) and 2). Thus \I1(G) is a pseudo- WI-compact subset 
of the metric space C(1(), whence it follows that w\l1(G)) < No. 

Since G is lR-factorizable, one can find a continuous homo
morphism 1r of G onto a second-countable group H and a 
continuous mapping 1/J : H --+ C(K) such that \II = 1/J 0 'Ir. 

Let idK be the identity mapping of !( onto itself. We claim 
that the equality (1r x idK)(x,y) = (1r x idK)(XI,YI) implies 
f(x, y) = f(xt, YI) for any x, Xl E G and Y, YI E ](. Indeed, 
assume that 1r(x) = 1r(XI) and Y = YI, but f(x,y) :F f(Xl,Yt). 
Then \II(XI)(Y) :F \I1(x)(y), i.e., \II(Xl) :F \I1(x). Hence from the 
equality \11 = 1/J 0 1r it follows 1r(XI) :F 1I"(x), which is a contra
diction. Thus, there exists a mapping h : H x]( -+ R such that 
h 0 (1r X idK) = f. Now we need to verify that h is continuous. 

Pick a point (t*, y*) E H x !( and a positive real number 
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f. Since "p is continuous, there exists an open neighborhood 0 
of t* in H such that II "p(t) - "p(t*) 11< f/2 for each tEO, 
i.e., 1f(x,y) - f(x*,y) 1< f/2 whenever 1r(x) E O,1r(x*) = 
t* and y E K. There exists a neighborhood V of y* in K 
such that 1!(x*,y) - f(x*,y*) 1< f/2 for each y E V. Let 
(t,y) E °x V and x E G, 1r(x) = t. Then we have: I 
h(t,y) - h(t*,y*) 1=1 !(x,y) - f(x*,y*) 1:51 f(x,y) - !(x*,y) 1 
+ 1 f( x* ,y) - f(x* ,y*) 1< f/2 + f/2 = f. Consequently, h is 
continuous. 

The group H x ]( is Lindelof, being a product of the second
countable group H with the compact group 1<. Hence the 
group H x ]( is lR-factorizable by Assertion 1.1 of [29] (see also 
[28]) and one can find a continuous homomorphism Aof H x!{ 
onto a second-countable group P and a continuous function 
j : P -+ lR such that h = j 0 A. Then 1r* = A0 (1r X idK ), 

a continuous homomorphism of G x ]{ onto P, satisfies the 
equality ! = j 0 1r*. So the group G x ]{ is lR-factorizable. 

II. Now consider the case of an No-stable group G. Again, let 
f : G x !{ -+ lR be a continuous function. Define a continuous 
mapping ~ : ]( -+ C1' ( G) by the rule cIl(y) = f IGx{y}, where 
Cp ( G) is the space of all continuous real-valued functions on G 
with the pointwise convergence topology. Since G is No-stable, 
the space 01'(G) is No-monolithic, i.e., every separable subspace 
of Cp(G) has countable network ( [5, Theorem 11] or [7, The
orem 11.6.8]). Every compact topological group is dyadic by 
the result of Ivanovskii and Kuz'minov (see [17,18] and also 
[8], where a short modern proof of the dyadicity theorem is 
given). Hence, ~(]{) is a dyadic No-monolithic compact space. 
Now from [1] it follows that ~(!{) has countable weight. Since 
every compact group is lR-factorizable, th~re exist a continuous 
homomorphism p, of ]{ onto a group L of countable weight and 
a continuous mapping ep : !( -+ C(G) such that ~ = ep 0 p,. An 
argument analogous to the one applied in the part I shows that 
there exists a function h : GxL -+ R such that! = ho(idGxp,). 
Note that the homomorphism p, is open because K is a com
pact group. Hence the homomorphism idG x JL is open, and 
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h is continuous. To complete the proof, consider the mapping 
\II : G, -+ C(L) defined in the part I, note that C(L) has a 
countable base, and deduce the existence of a continuous ho
momorphism 1r of G onto a second-countable group H and a 
continuous function j : H x L -+ R. such that h = j 0 (1r X idL). 
Then 1r x J.L is a continuous homomorphism of G x ]( onto the 
group H x L of countable weight, and f = j 0 (1r X J.L). 

Remark 4.4. a) The first part of the previous proof makes 
clear that a product of an arbitrary lR-factorizable group with a 
compact metrizable group is lR-factorizable. This follows from 
the fact that the weight of C(!(), the space of continuous real
valued functions on a compact space !(, is equal to the weight 
of K. 
b) Denote by LH the hypothesis that 2No < 2N1 • With the help 
of LH and easy cardinal estimates one can show that every 
-lR-factorizable group of weight < 2N1 is pseudO-WI-compact. 
Therefore, an argument of the previous proof can be applied 
to get the assertion that, under LH, a product oflR-factorizable 
group of weight < 2N1 with a compact group is R-factorizable.. 
c) It seems to be likely that Theorem 4.3 remains valid if 
the second factor is assumed to be pseudocompact. Howev
er, our argument does not work in this case (Theorem 4.13 
below presents some positive results in this direction). 

Let us consider a case of non-compact factors. The notion 
of o-tightness will be useful in what follows. A space X is 
said to be of countable o-tightness, briefly, ot(X) ~ No, if for 
every family, of open subsets of X and each point x E cl(U,) 
there exists a countable subfamily J.L ~ , such that x E cl(UJl). 
Some properties of o-tightness are established in [25] where this 
notion appeared. We begin with three lemmas. 

Lemma 4.5. A product X x Y of a space X with ot(X) ~ No 
and a first-countable space Y has countable o-tightness. 

Proof. Let I be a family of open subsets of the product space 
and (x,y) E cl(U,). One can assume that every element of, 
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has rectangular form U x V. Choose a countable base {Vn : 

n E N} at y in Y and put In = {U x V E ,: V ~ Vn}, n E N. 
Then (x,y) E cl(U,n), and the condition ot(X) ~ No implies 
the existence of a countable subfamily P,n ~ In such that x E 
CI1l'"(Up,n), where 11'" is the projection of X x Y onto X. It is 
easy to see that the point (x, y) belongs to the closure of the 
union of a countable family p, = U~=oP,n ~ I· 

Lemma 4.6. Let G and H be topological groups, and ot(G) ~ 

No. If H is totally bounded, then ot(G x H) ~ No. 

Proof. Denote ~ H the group completion of H. Sinc!...G x H 
is dense in G x H, it is sufficient to show that ot(G x H) ~ No. 
Let, be a family of open subsets of G x H and (x, y) E cl(U,). 
We may assume that every element 0 of , has the form U x V, 
where V is an open cozero-set in H. Since the compact group 
H is R-factorizable, a cozero-set V is representable in the form 
V = 1I'"0111'"0(V), where 11'"0 is a continuous homomorphism of H 
onto some second-countable group. 

An easy inductive construction is required now. Assume that 
a continuous homomorphism An : H~ Hn is defined for some 
n E N,w(Hn ) ~ No. Lemma 4.5 implies that ot(G x Hn ) :5 No. 
hence there exists a countable subfamily ,n ~ , such that 
(x, An(Y)) E cl(U{U x An(V) : U x V E In}). (Use the fact that 
An is an open homomorphism). Denote by An+l the diagonal 
product of homomor~hisms1r0, 0 E ,n, and An. Obviously, the 
group Hn+1 = An+l(H) is second-countable. 

Let ,\ be the diagonal product of homomorphisms An, n E 
N, Hoo = A(H), and 100 = U::oln . Then for every n E N there 
exists a continuous homomorphism A~ of Hoo onto Hn such 
that An =A~ 0 A. Since His a compact group, the topology of 
Hoo is initial with respect to the family of mappings A~, n E N. 
Therefore, (X,A(Y)) is a cluster point of the family {cp(O) : 
o E loo}, where cp = idG X A. Obviously, cp is open because it 
is the product of two open mappings. From the construction 
it follows that 0 = cp-lcp(O) for each 0 E '00, so (x,y) E 
cl(U /oo ). Since 100 ~ I ancJ I100 I~ No, we are done. 
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It is easy to see that the conclusion of Lemma 4.6 remains 
valid for spaces G and H such that ot(G) :5. No and H has a 
u-Iattice of d-open mappings onto first-countable spaces (the 
necessary definitions are given in [29]). The following result 
admits an analogous generalization. 

Lemma 4.1: Let G be a topological group of countable o-tight
ness, and H be a completion of a pseudocompact group H. 
Then G x H is C -embedded into G x H. 

Proof Apply an argument of [25, Theorem 1]. Let f : GxH --+ 

lR be a continuous function. By II and IT denote G x Hand G x 
H, resp. It is sufficient to show that clfif-l(F1 } nclfif-l (F2 ) = 
ofor every pair of disjoint closed subsets F1 , F2 of the reals 
(note that H meets every non-empty Gs-subset of H, and hence 
the same is true for II and IT). Suppose that the closures of 
the sets f-l(F1 ) and f-l(F2) in IT are not disjoint. Choose 
open sets Ui 2 Fi, i = 1,2, such that clU1 n clU2 = 0. Then 
clrrf-l(Ul)nclrrf-l(U2) = 0. There exist open subsets Vi, V2 of 
IT such that \.'inn = f-1(Ui }, i = 1,2. Then clfiv1 nclfiV2 :F 0, 
and we can choose a point p = (x, y) E IT from this intersection. 
Let 11 and 12 be families of open rectangular sets in IT (as in the 
proof of Lemma 4.6) such that \.'i = U,i, i = 1,2. Then every 
set 0 E ,lU,2 is oftheforrn 0 = UxW, where W = 1ro11ro(W) 
for some continuous homomorphism 1ro of H onto a second
countable group. Since ot(IT) ~ No (Lemma 4.6), there exist 
countable subfamilies Jli ~ I'i( i = 1,2) such that p E c1fi(UJll)n 
c1fi(UIl2). Denote by 1r the diagonal product of homomorphisms 

1ro,O E III U1l2, and put ]( = 1r(H). The definition of 1r implies 
that 0 = .ep-Icp(O) for each 0 E III U 1l2' where ep = idG X 1r. 
Since H meets every Gs-set in H, there exists a point z E H 
such that 1r(z) = 1r(Y). It is clear that ep is open., and hence 
the fact that cp(p) = (x,1r(z)) E clficp(Ulll) n clficp(UIl2) implies 
(x,z) E c1fi(Ulll) n c1fi(UIl2). However, Uili ~ Vi (i = 1,2), 
which implies (x, z) E clfi Vi n clfiV2• Since f- 1(Ui ) is dense 
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in Vi, we have: (x, z) E c1nf-1(U1) n c1nf-1(U2) ¥: 0. This 
contradicts the choice of U1 and U2 • 

Suppose that the topology of a group G is generated by the 
family of all compact subsets of G, i.e., G is a k-group. Is there 
any estimate of o-tightness of G? We answer this question in 
the affirmative. 

Theorem 4.8. ot(G) :5 No for every k-group G. Moreover, for 
every family F of G6-sets in G and a cluster point x ofF there 
exists a countable subfamily F' ~ F such that x E cl(UF'). 

Proof. We need some notions. A subgroup H of G is said 
to be admissible provided that there exists a sequence {Vn : 

n E N} of open neighborhoods of the identity fa such that 
V,;-l = Vn , V;+l ~ Vn for each n E N, and H = n~=oVn 

(see Definition 2.19 of [27]). A G6-set F in G is said to be 
standard if one can find an admissible subgroup H of G and 
a G6-set ~ in the coset space G/H such that F = 1r-l(~), 

where 1r : G -+ G/ H is the quotient mapping. It is easily 
seen that every G6-subset of G is a union of standard G6
sets in G. We claim that cl(UJ.L) is a G6,E-set in G, i.e., a 
union of G6-sets in G, for every countable family J.L consisting 
of standard G6-subsets of G. Indeed, for every F E J.L choose 
HF, an admissible subgroup of G, and ~F, a G6-set in GIHF, 
such that F = 1rFl(~F), where 1rF : G -+ G/HF is the coset 
mapping. Then H = n{HF : F E p,} is an admissible subgroup 
of G, and the equality F = 1r-l 1r(F) holds for each F E p, 
where 1r : G -+ G/ H. Note that the coset space G/ H is of 
countable pseudocharacter, and hence every subspace of G/ H 
is of type G6,Y; in G/H. Put F* = UJ.L and ~* = 1r(F*). Then 
F* = 1r-1(CJl*). Since 1r is open, we have cl F* = 1r-l(cl~*), 

which implies that cl F* is a G6,E-set. 
Let F be a family of Go-sets in G. We need to prove that the 

set X = u{cl{UJl) : p, ~ F, IJlI :5 No} is closed in G. Without 
the loss of generality, one can assume that every element F 
of F is standard. Choose an arbitrary compact subset B of 



222 MICHAEL TKACENKO 

G and denote by < B > the subgroup of G generated by B. 
Obviously, the group < B > is u-compact and xn < B > is a 
GS,E-set in < B > by the assertion above. From the definition 
of X it follows that there exists a family l' of Gs-sets in < B > 
such that U1' = xn < B >, and each element P of l' is 
contained in a closure of a union of some countable subfamily 
p,p ~ F. By the result of Uspenskil [31, Theorem 2], the family 
'Pin u-compact group has a countable subfamily Awhose union 
is dense in the union of 1'. Put p,* = U{p,p : PEA}. Then 
cl(U1') = cl(U,x) ~ cl(Up,*) ~ X, because J.l* is countable. 
On the other hand, xn < B >= UP, whence it follows that 
xn < B >= cl(Up,*)n < B > . Thus, Xn < B > is closed in 
< B >, and X n B is closed in B. Since G is a k-group and B 
is an arbitrary compact subset of G,X is closed in G. 

Corollary 4.9. A closure of every Gs;r;-set in a k-group is a 
.GS,E-set. 

Proof. Let F be a family consisting of Gs-sets in a k-group G 
and P = UF. Every Gs-set in G is a union of standard Gs
sets, hence one can assume that each element of F is standard. 
Since cl(Up,) is a GS,E-subset of G for each countable subfamily 
p, of F (see the first part of the previous proof), it remains to 

ply Theorem 4.8. 

Corollary 4.10. Let IIG be the Hewitt realcompactijication of 
a k-group G. Then group operations admit a continuous ex
tension from G to IIG, i.e., IIG has the natural structure of a 
topological group. 

Proof. Apply Theorem 4.8 above and Proposition 7 of [32]. 

Problem 4.11. Is it possible to improve Corollary 4.9 by 
showing that a closure of a GS,E-set in a k-group H is a G6-set? 
What if a group H is sequential or Frechet? 

Problem 4.12. Suppose G is an R-factorizable group of 
countable o-tightness and !{ is a compact group. Is the product 
G x ]{ lR-factorizable ? What if G is a k-group? 
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The following result is closely related with Theorem 4.3. 

Theorem 4.13. Let G be an lR-factorizable group and H a 
pseudocompact group. Then the group G x H is JR-factorizable 
in each of the following cases : 

(1) G is a k-group with a dense Lindelof subset,. 
(2) G has countable cellularity; 
(3) G is an No-stable group of countable o-tightness; 
(4) G is Lindelof. 

Proof. In each of the cases 1)-3) the  G has countable 
o-tightness (use Theorem 4.8), and Lemma 4.7 implies that 
G X H is C-embedded into G x ii, where ii is the completion 
of H. The conclusion follows now from Theorem 4.3. 

The case 4) is more complicated. Let f be a continuous 
real-valued function on G x H, where G is Lindelof. Since 
-f is continuous, for every point y E H there exists a closed 
Gs-set ~(y) in H such that y E ~(y) and f(x,y) = /(x,y') 
whenever x E G and y' E ~(y). One can assume that iP(y) = 
F(y) n H for every y E H, where F(y) is closed GcS-set in H( 
in fact, F(y) = c1iiiP(y)). Every family of Gs-sets in a Lindelof 

E-group (in particular, in the compact group H) contains a 
countable dense subfamily by Theorem 2 of [31]. Hence there 
exists a countable set M ~ H such that U{F(y) : y E M} 
is dense in U{F(y) : y E H}. The family {F(y) : y E M} 
consists of zero-sets in the compact group ii, and since H 
is R-factorizable, one can find a continuous homomorphism 
AO of fi onto a second-countable group Ho such that F(y) = 
Ao1 Ao(F(y)) for each y E M. Put A = AoIH. We claim that the 
continuous homomorphism idG x Aof G x H onto the group 
G x Ho factorizes the function /. 

First, we need to verify that for any points (x, Yl) and (x, Y2) 
of the group GxH the equality A(Yl) = A(Y2) implies f(x, Yl) = 
f(x, Y2). Assume the contrary. Then there exist open sets 
U 3 x and Vi 3 Yi (i ~ 1,2) such that f(UxVi)n!(Uxl!2) = 0. 
The set W = ;\(Vi) n ;\(V2 ) is an open neighborhood of ;\(Yl) in 
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Ho, because Ao and AolH are open homomorphism (note that 
H is compact, H intersects every non-empty Gs-subset of H, 
and Ho = Ao(H) is first-countable). Since u{~(y) : y E M} 
is dense in H, the set W n A(~(Y)) is not empty for some 
y E M. Note that ~(y) = A-IA(4)(y)), and pick two points 
ZI E Vi n 4>(y) and Z2 E V2 n ~(y). Then (X,Zi) E U x Vi (i = 
1,2), whence it follows that f(x, ZI) =F f(x, Z2). This contra
dicts the choice of the set ~(y). Thus, we proved the existence 
of a function 9 : G x Ho -+ lR. such that f = 9 0 (ida x A). 
Second, the continuity of 9 should be verified. However, this 
follows from the fact that idG x A is an open homomorphism. 

Since Ho is a compact second-countable group, an applica
tion of Remark 4.4, a) completes the proof. 

Recall that a continuous mapping ep : X -+ Y is said to 
be z-closed [20,10] if ep(F) is closed in Y for each zero-set F 
in X. The following result gives additional information on 
products of lR.-factorizable groups in case one of the factors is 
pseudocompact. 

Lemma 4.14. Let G be a group, H be a pseudocompact group 
and H the completion of H. Then the implications (1) => 
(2) {:} (9) hold, where 

(1) G x H is an lR.-factorizable group; 
(2) Gx H is C-embedded into G x H; 
(3) the projection p : G x H -+ G is z-closed. 

Proof. (1) => (2). Let f : G x H -+ lR. be continuous. By 
(1), one can find a second-countable group P, a continuous 
homomorphism ep of G x H onto P and a continuous function 
9 : P -+ lR. such that f = 9 0 ep. Extend ep to a continuous 
homomorphism rp of G x H into P, where the symbol- denotes 
the group completion. It is clear that G x H is a subgroup of ------- ....-..-.G x H, and G x H meets every non-empty G6-set in G x H. 
Since P and P are first-countable, it follows that ep(G x H) = 
rp(G x H) = P. Then 1= 9 0 rplGXH is the required continuous 
extension of f. 
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(2) <=} (3). Apply the arguments of [20]. 

Theorem 4.13 and Lemma 4.14 together imply the following. 

Corollary 4.15. Let G and H be a Lindelof and a pseudocom
pact topological groups, resp. Then the projection p : G x H -+ 

G is z-closed. 

A slight modification of our methods can be done to obtain 
another version of Theorem 4.13. 

Theorem 4.16. Let G be an No-stable Lindelof group and H 
a subgroup of a Lindelof E-group. Then the group G x H is 
:R-Jactorizable. 

Proof. Consider a Lindelof E-~oup N containing H as sub
group. The closed subgroup H = clNH of N is a Lindelof 
_E-group. Apply an argument of the proof of Theorem 4.13 to 
a continuous real-valued function f on G x H in order to define 
an open homomorphism AO of H onto a group ](0 of countable 
pseudocharacter and a continuous function 9 on G x Ao(H) 
such that J = 9 0 (idG X A), where A = AoIH. Since the group 
Ko is Lindelof and 'l/J(](o) ~ No, Corollary 1.10 of [3] implies 
that there exists a continuous one-to-one m~ping of Ko on
to a separable metrizable space. The group H is No-stable [6, 
Coro. 16], and hence nw(Ko) < No. This implies that the group 
K = Ao(H) S; ]{o has countable netweight and is separable. 
Let S be a countable dense subset of ]( and iy be the embed
ding of G into G x ]( defined by iy(x) = (x,y),x E G. Since 
G is lR-factorizable and 1st ~ No, one can find a continuous 
homomorphism 1r of G onto a second-countable group Go and 
a family {cry : yES} of continuous real-valued functions on 
Go such that 9 0 i y = 'Py 0 1r for each yES. We claim that for 
each Xl' X2 E G and y E ]( the equality 1r(XI) = 1r(X2) implies 
g(XI' Y) = g(X2' y). 

Indeed, if g(Xl,Y) -I g(X2'Y)' then there exist open sets Ui 3 
Xi (i = 1,2) and V 3 Y such that g(U1 x V) n J(U2 x V) = 0. 
Choose a point z E V n S. Obviously, g(XI' z) -I g(X2' z), that 
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contradicts the equalities g(Xl'Z) = <Pz(1r(Xl)) = <pz(1r(X2)) = 
g(X2' z). 

Thus, there exists a function h : Go x ]( ~ lR such that 
9 = h 0 (1r X idK ). However, h is not necessarily continuous. 
Consider the quotient group G~ = Gfker .1r and the quotient 
homomorphism 1r* : G ~ Go. Also let j be a continuous one
to-one homomorphism of Go onto Go such that 1r = j 01r*. Note 
that the function h* = h 0 (j X idK ) satisfies the equality 9 = 
h*o(1r* X idK). since 1r* and 1r* x idK are open homomorphism, 
h* is continuous. By the assumption, G is No-stable, whence it 
follows that nw(Go) ~ No. Therefore, the group Go x ](, the 
domain of h*, has countable netweight. Being Lindelof, the 
group G~ x ]( is lR-factorizable; hence one can find a continuous 
homomorphism (J of Go x ]( onto separable metrizable group 
P and a continuous function p : P ~ lR such that h* = p 0 (J. 

Obviously, the homomorphism e = ~ 0 (1r * x A) satisfies 
. the equality f = p 0 8. This completes the proof, which is 
illustrated by figure 3. 

G x H idG X ~ G x ](

!1\'"* X A 1\'" X idK ! 
Go x K j x id!Go x K 

f o! 9 

P h 

p! 
lR 

Figure 3. 

Corollary 4.17. The product of a Lindelof No-stable group 
with a subgroup of a u-compact group is JR-factorizable. 

Recall that X is said to be a P-space if every GcS-set in X is 
open. 
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Corollary 4.18. The product of a Lindelof P-group with a 
totally bounded group is JR-factorizable. 

Proof. By Theorem 17 of [6], every Lindelof P-group is No
stable. Apply Theorem 4.16 to complete the proof. 

Problem 4.19 M.ust the product of a Lindelof group with 
a totally bounded group be R-factorizable? 

An examination of the proof of Theorem 4.16 shows that a 
totally bounded factor in the previous problem can be assumed 
second-countable. 

The final comment to Theorem 4.3 seems to be useful. Call a 
topological group G weakly No-stable if the following condition 
is fulfilled: given continuous homomorphism G ~ H ~ K 
with 1r(G) = H, ker A = {eH} and w(I() ~ No, every discrete 
family of open sets in H is countable, i.e., H is pseudo-wt
compact. The theorem below generalizes Theorem 4.3. We 
omit some parts of its proof duplicating earlier proofs. 

Theorem 4.20. If G is a weakly No-stable, R-factorizable 
group and H is a compact group, then the group G X H is 
R-Jactorizable. 

Proof. For a given continuous function / : G x H --+ R con
sider a continuous mapping \II : G --+ C(H) defined by \I1(g) = 
fl{g}xH,g E G, where C(H), the space of real-valued contin
uous functions on H, is endowed with the sup-norm topology. 
Being R-factorizable, the group G is No-bounded, and hence 

2Noc(G) ~ by Theorem 2.8 of [26]. Since C(H) is metrizable, 
2Nothe inequalities w(\I1(G)) ~ c(\I1(G)) ~ hold. Now use the 

R-factorizable property of G to define a continuous homomor
2Nophism 1/J of G onto a group Gt with w(Gt ) ~ , and a con

tinuous function /1 : Gt x H --+ R. such that f = /1 0(1/J X idH ). 

Let Cp(Gl ) be the space of continuous real-valued functions 
on G l endowed with the topology of pointwise convergence. 

2NoThen nw(Cp(Gl )) :5 w(G1 ) :5 , by the theorem of E. 
Michael [19]. Define the mapping ~ : H --+ Gp(Gl ) by the 
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rule 4>(h) - flIGl X {h}, h E H. Obviously, 4>' is continuous. 
Since the -compact group H is R.-factorizable, one can find 
a continuous homomorphism cp of H onto a group HI with 
w(HI ) :5 2No and a continuous mapping j : HI -+ Cp(GI ) 
such that 4> = j 0 cp ( use the equality of the weight and the 
netweight of a compact subset 4>(H) of Cp(GI )). The mapping 
j can easily be transformed to the function /2 : GI X HI -+ :R 
such that /1 = /2 0 (idG1 X cp). The homomorphisms cp and 
idG1 x c.p are open, and hence 12 is continuous. Compact 
groups H and HI are dyadic by the theorem of Kuz'minov. 
Since w(HI ) :5 2No , the group HI is separable (see [2]). Clear
ly, the continuous function 9 = 12 0 (tP X idHl) on G x HI 
satisfies the equality 1 = 9 0 (idG X cp). Use the method of 
the proof of Theorem 4.16 along with the separability of HI 
to define an open continuous homomorphism tPI of G onto a 
group P of countable pseudocharacter and a continuous func
 tion P : P x HI -+ lR such that 9 = PO(tPI X idH1 .) Since P is an 
No-bounded group of countable pseudocharacter, there exists 
a one-to-one continuous homomorphism of P onto a separa
ble metrizable group. This fact and the weak No-stability of 
G together imply that P is pseudo-wI-compact. To complete 
the proof, consider the continuous mapping \11 1 : P -+ C(HI ) 

defined by W1(x) = pl{x}XHl'X E P, and note that w(W1(P)) ~ 
No, because WI(P) is a pseudO-WI-compact subspace of the 
metrizable space C(HI ). Use the lR-factorizable property of 
P (Theorem 3.10) to define a continuous homomorphism A of 
P onto a second-countable group Q and a continuous function 
q: QxHt -+ R.such thatp = qo(AxidH1 ). The product QxH1 

of the separable metrizable group Q with the compact group 
HI is Lindelof; hence this product is lR-factorizable. There
fore, one can find a continuous homomorphism J.l of Q x HI 
onto a second-countable group T and a continuous function 
t : T -+ :R such that q = t 0 J.l. Obviously, the homomorphism 
1(' = J.l 0 (A O"pl X 'P) of G x H onto T and the function t satisfy 
the equality / = t 0 1r. Figure 4 clarifies the proof. 

Added in Proof. Recently V. V. Uspenskii solved Problem 



229 SUBGROUPS, QUOTIENT GROUPS 

f 

9GxHI - ....- ... 

q tptPl X idH1 

.,\ X idH1 JJ 
P X HI • Q X HI • T 

Figure 4. 

3.4 by constructing a subgroup H of ZWl with c(H) = NI 
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