Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

Topology Proceedings Vol 16, 1991

A NEW CHARACTERIZATION OF χ -SPACES

YUN ZIQIU

All spaces are assumed to be regular and T_1 in this paper.

A family \mathcal{F} of subsets of a space X is called a k-network if for any compact set K and and open set U which contains K, there exists a finite subfamily \mathcal{F}' such that $K \subset \cup \mathcal{F}' \subseteq U$. A space X with a σ -locally finite k-network is called an \aleph space ([7]). A family \mathcal{F} of subsets of X is called a cs-network if for any sequence $\{x_n : n \in N\}$ which converges to a point $x \in U$, where U is open in X, there exists an $F \in \mathcal{F}$, such that, $F \subseteq U$ and $\{x_n : n \in N\}$ is eventually in F ([2]). In [1] it was proved that a space X is an \aleph -space if and only if X has a σ -locally finite cs-network, and it is well known that the condition of having a σ -hereditarily closure-preserving knetwork is strictly weaker than that of being an \aleph -space. But, what about the condition of having a σ -hereditarily closurepreserving cs-network? Is it equivalent to the former condition or to the latter one? In this paper, we prove that having a σ hereditarily closure-preserving cs-network is a characterization of \aleph -spaces. As an application of this result, we show that \aleph spaces are preserved under open and closed mappings, which answers a question raised in [5] (See [5] Question 4.4).

Let S be the subspace $\{1/n : n \in N\} \cup \{0\}$ of the real line in the usual topology. For each $\alpha < \omega_1$, let $S^{(\alpha)}$ be a copy of S. We denote by S_{ω_1} the quotient space obtained from the topological union $\bigoplus_{\alpha < \omega_1} S^{(\alpha)}$ by mapping all the nonisolated points into one point. Then S_{ω_1} is a Lašnev space and by [9] S_{ω_1} is not an \aleph -space. **Theorem 1.** A space X is an \aleph -space if and only if X has a σ -hereditarily closure-preserving cs-network.

The proof of Theorem 1 is based on Lemma 1 and the following Theorem 2 proved in [3].

Theorem 2. Let X be a space which has a σ -hereditarily closure preserving k-network. Then X is an \aleph -space if and only if X contains no closed copy of S_{ω_1} ([3] Theorem 1).

Lemma 1. S_{ω_1} has no σ -hereditarily closure-preserving cs-network.

Proof. By [4] Lemma 1, if a space has a σ -hereditarily closure-preserving cs-network, then the space also has a σ -hereditarily closure-preserving closed cs-network. Denote $S_{\omega_1} = \{(1/n, \alpha) : n \in N \text{ and } \alpha < \omega_1\} \cup \{(0,0)\}, \text{ where } (0,0) \text{ is the limit point of } S_{\omega_1}, \text{ and denote } S^{(\alpha)} = \{(1/n, \alpha) : n \in N\}.$ By [6] Theorem 2.1, if \mathcal{F} is a σ -hereditarily closure-preserving family of closed subsets of S_{ω_1} , then $\{F \in \mathcal{F} : | F \cap S^{(0)} | = \omega\}$ is countable. Hence to prove Lemma 1 it is suffice to show that for every closed cs-network \mathcal{F} of S_{ω_1} the family $\{F \in \mathcal{F} : | S^{(0)} \cap F | = \omega\}$ is uncountable.

Let \mathcal{F} be a closed cs-network of S_{ω_1} . By transfinite induction we can choose $F_{\alpha} \in \mathcal{F}$ and $z_{\alpha} \in S^{(\alpha)} \cap F_{\alpha}$ for each $\alpha, 0 < \alpha < \omega_1$, such that $F_{\alpha} \neq F_{\beta}$ whenever $\alpha \neq \beta$, as follows:

For each α , such that $0 < \alpha < \omega_1$, we regard $S^{(0)} \cup S^{(\alpha)}$ as a sequence such that the subsequences consisting of the odd terms and the even terms of which are $S^{(0)}$ and $S^{(\alpha)}$ respectively. Then $S^{(0)} \cup S^{(\alpha)}$ is a sequence which converges to (0,0) in S_{ω_1} . We choose $F_1 \in \mathcal{F}$ such that $S^{(0)} \cup S^{(1)}$ is eventually in F_1 and a $z_1 \in S^{(1)} \cap F_1$. It is obvious that $|S^{(0)} \cap F_1| = \omega$. Let $\alpha < \omega_1$ and assume that for every $\beta < \alpha \ (\beta > 0)$, we have chosen $F_\beta \in \mathcal{F}$ and $z_\beta \in S^{(\beta)} \cap F_\beta$ such that $|S^{(0)} \cap F_\beta| = \omega$. Note that the set $S_{\omega_1} - \{z_\beta : \beta < \alpha\}$ is open and $(0,0) \in S_{\omega_1} - \{z_\beta : \beta < \alpha\}$; hence there exists $F_\alpha \in \mathcal{F}$ such that $S^{(0)} \cup S^{(\alpha)}$ is eventually in F_α and $F_\alpha \subseteq S_{\omega_1} - \{z_\beta : \beta < \alpha\}$. It is obvious that $|S^{(0)} \cap F_\alpha| = \omega$ and we can choose $z_{\alpha} \in S^{(\alpha)} \cap F_{\alpha}$. Since $F_{\alpha} \subseteq S_{\omega_1} - \{z_{\beta} : \beta < \alpha\}$, we have that $F_{\alpha} \neq F_{\beta}$ for each $\beta < \alpha$. This completes the induction construction.

The Proof of Theorem 1. The "only if" part is obvious.

The "if" part: Assume that X has a σ -hereditarily closurepreserving cs-network \mathcal{F} . Since the condition of being a csnetwork is stronger than that of being a cover which satisfies (C_2) of [8], by [8] Proposition 1.2, \mathcal{F} is also a σ -hereditarily closure-preserving k-network of X. On the other hand, X cannot contain any closed copy of S_{ω_1} ; otherwise, $\mathcal{F} \cap S_{\omega_1}$ would be a σ -hereditarily closure-preserving cs-network of S_{ω_1} , which contracts Lemma 1. Hence, by Theorem 2, X is an \aleph -space.

Theorem 3. Let X be an \aleph -space and let $f : X \to Y$ be an open and closed onto mapping, then Y is an \aleph -space.

Proof. Assume that \mathcal{F} is a σ -hereditarily closure-preserving cs-network of X. Since f is a closed mapping, the family $f(\mathcal{F}) = \{f(F) : F \in \mathcal{F}\}$ is σ -hereditarily closure-preserving. We only need to show that $f(\mathcal{F})$ is a cs-network of Y. Let $\{y_n : n \in N\}$ be a sequence which converges to a point $y \in U$ where U is open in Y. Take an $x \in f^{-1}(y)$. Since X is an \aleph -space, $\{x\}$ is a G_{δ} subset of X. Let $\{W_n : n \in N\}$ be a sequence of neighborhoods of x such that $\bigcap_{n \in N} W_n = \{x\}$ and, for each $n \in N$, $\overline{W}_{n+1} \subseteq W_n$. Since f is an open mapping, we can assume, without loss of any generality, that for each $n \in N$, $W_n \cap f^{-1}(y_k) \neq \emptyset$ whenever $k \geq n$. Take $x_n \in$ $W_n \cap f^{-1}(y_n)$ for each $n \in N$. Since f is closed, $\{x_n\}$ is a sequence which converges to x. Hence there exists an $F \in \mathcal{F}$ such that $\{x_n : n \in N\}$ is eventually in F and $F \subseteq f^{-1}(U)$. Consequently $\{y_n : n \in N\}$ is eventually in f(F) and $f(F) \subseteq U$.

References

 L. Foged, Characterizations of ℵ-spaces, Pacific J. Math. 110 (1984) 59-64.

- J. Guthrie, A characterization of N-spaces, General Topology and its Appl. 1 (1971) 105-110.
- [3] H. Junnila and Z. Yun, N-spaces and spaces with a σ-hereditarily closure-preserving k-network, Proceedings of the Symposium on General Topology and Applications (Oxford 1989), to appear.
- [4] S. Lin, On a problem of K. Tamano, Q. and A. in General Topology, 6 (1988) 99-102.
- [5] S. Lin, A survey of the theory of ℵ-spaces, Q. and A. in General Topology, 8 (1990) 405-419.
- [6] A. Okuyama, On a generalization of Σ -spaces, Pacific J. Math. 42 (1972) 485-495.
- [7] P. O'Meara, On paracompactness in function spaces with the compactopen topology, Proc. Amer. Math. Soc. 29 (1971) 183-189.
- [8] Y. Tanaka, Point-countable covers and k-networks, Topology Proc. 12 (1987) 327-349.
- [9] Y. Tanaka, Closed mappings of metric spaces, Top. Appl. 11 (1980) 80-92.

Suzhou University Suzhou, Jiangsu, 215006 China