Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



Topology Proceedings
Vol 17, 1992

METRIZABLE GENERALIZED ORDER SPACES

E.C. MILNER! AND SHANGZHI WANG?

ABSTRACT. In 1971 D.J. Lutzer [10] proved a metriza-
tion theorem for generalized order topological spaces (GO-
spaces) which says that, if X is a p-embedded subspace of
a linear ordered topological space, then X is metrizable
if and only if it has a Gs-diagonal. After stating this the-
orem, he raised the question whether there is any larger
class of GO-spaces than the p-embedded subspaces of lin-
ear ordered topological spaces for which the G;s-diagonal
metrization theorem is true. In this paper we answer
this question negatively by proving the following result.
If (X, <, 7) is a metrizable GO-space and d is a metric on
X which is compatible with the topology 7, then there is
a metrizable linear ordered topological space (Y, <y,A)
and a metric d* compatible with A such that (i) (X, <) is
a subordered set of (Y, <y), (ii) d* is equivalent to d on X
(equal if d is bounded), and (iii) (X, ) is a p-embedded
closed subspace of (Y, ).

1. INTRODUCTION
Let (X, <) be a linearly ordered set. We denote by
X(<a)={r€X:z<a}land X(>a)={z€ X :2>a}

the open intervals determined by the element a € X, and as
usual (a,b) denotes the open interval X(> a) N X(< b). We
also write X (< a) = X(< a) U {a}, and X (> a) is similarly
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182 E. C. MILNER AND SHANGZHI WANG

defined. The linear order topology, A, on X has for a subbasis
the family of intervals

B={X}U{X(<a):a€ X}U{X(>a):a€ X}

A subspace of a linear ordered topological space (LOTS) is
not, in general, a LOTS. For example, R, the real line with the
natural ordering is a LOTS, but the subspace X = {0} U {z :
|z| > 1} is not since {0} is an open set in the induced topology
on X, but not in the linear order topology on X. A topology 7
on the linearly ordered set (X, <) is called a generalized order
topology on X, briefly we say (X,<,7) is a GO-space, if 7
extends the order topology and has a base of order-convex
sets. An equivalent formulation, and the one we shall use, is
that there are two subsets L, R of X such that, if a € L then
a is not the maximum element of X and X(< a) is open, and
if @ € R then a is not the minimal element of X and X (> a)
is open, and

BU{X(<a):a€L}U{X(>a):a€ R}
is a subbasis for 7. A subspace of a LOTS is a GO-space.
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Diagram 1.

A topology 7 on a set X is metrizable if there is a metric
on X giving the same open sets. As an example, consider the
metric space (R,d) on the real line illustrated in Diagram 1.
In the diagram the segments A, B, C, D represent respectively
the subintervals of the real line (—o0,0], (0,1], (1,2], (2, 00).
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The metric is not the usual one for the real line, but the one
induced by the distance in the plane. So, for example, the
distance between the points ¢ and 2+ € is 2¢ (if 0 < e < 1). Of
course, this generalized order space (in which L = {0,1,2} and
R = 0) is equivalent to that induced by the usual metric on ®
by the subspace (—00,0] U (1,2] U (3,4] U (5,00). In general,
the structure of a GO-space is rather more complex.

During the last twenty years or so several papers have been
written on the theory of LOTS and GO-spaces, and in particu-
lar about the metrization problem for such spaces. The first re-
sult in this direction was by V.V. Fedoréuk [7] who proved that
a LOTS with a o-locally countable base is metrizable. Then
G. Creede [4] proved that a semi-stratifiable LOTS is metriz-
able. Shortly afterwards, D.J. Lutzer [9] generalized Creede’s
result by showing that a LOTS is metrizable if and only if it
has a Gj-diagonal, in other words if A = {(z,z) : z € X} is
a Gs-set in the product space X X X; of course, any metric
space has a Gs-diagonal. Also, M.J. Faber [5] used some clas-
sical theorems of R.H. Bing to obtain metrization theorems for
LOTS. '

D.J.Lutzer [10] was the first to consider subspaces of LOTS,
i.e.GO-spaces, and he established the following sufficient con-
dition for a subspace of a LOTS to be metrizable.

Theorem 1.1. Let (Y,<,)) be a LOTS and let T be the rel-
ative topology on a p-embedded subspace X. If (X,7) has a
Gs-diagonal, then (X, 7) is metrizable.

Recall that the space X is a p-embedded subspace of Y if
there is a sequence (U(n) : n < w) of covers of X by open
subsets of Y such that, for each z € X,

ﬂ St(z,U(n)) C X,
n<w
where St(z,U(n)) = U{U € U(n) : z € U}.
M.J. Faber [5], [6], J.M. van Wouwe [12], [13], and H. Ben-
nett & D.J. Lutzer [1] obtained various necessary and sufficient
conditions for a GO-space to be metrizable, and H. Bennett in
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[2] used some of these results to give another proof of an obser-
vation of S. Purisch ([11] Propositions 2.4 and 2.5) that there
is a metric p on the GO-space (X, <,7) which is compatible
with the topology 7 and respects the order in the sense that

(1) z <y <z p(e,y) < plz,2).

(Note that the metric on ® described in diagram 1 does not
respect the order.) More recently, H. Bennett (3] improved
Lutzer’s theorem by proving that a LOTS with an Ss-diagonal
is metrizable.

In this paper we settle a question raised by D.J. Lutzer in
[10]. After the statement of Theorem 1.1 in [10], Lutzer re-
marked that he did not know of any class of GO-spaces larger
than the p-embedded subspaces of LOTS for which the Gs-
metrization theorem is true. We show that there is no larger
class. In other words, if (X,<,7) is a metrizable GO-space,
there is some LOTS Y such that X is a p-embedded induced
subspace. In fact, there is a metrizable LOTS Y. We prove
the following theorem.

Theorem 1.2. If (X,<x,T) is a metrizable generalized order
space with metric d, then there is a metrizable LOTS (Y, <y, )
with metric d* such that (1) <x=<y |X x X, (ii) d* is equiv-
alent to d on X (equal to d on X if d is bounded), and (iii) X
s a p-embedded closed subspace of Y .

As a corollary of Theorems 1.1 and 1.2 we have a necessary
and sufficient condition for a GO-space to be metrizable.

Theorem 1.3. A GO-space is metrizable if and only if it is a
p-embedded closed subspace of a metrizable LOTS.

2. ARC-CONNECTED EXTENSION OF A METRIC SPACE

In order to prove Theorem 1.2 we need a result about arc-
connected metric spaces. A topological space (X, 7) is arc-
connected if for any two distinct points a,b € X there is
a homeomorphic map f : [0,1] — X such that f(0) = a



METRIZABLE GENERALIZED ORDER SPACES 185

and f(1) = b. The following theorem shows that a metric
space can be isometrically embedded in an arc-connected met-
ric space. In fact, for our application we shall require the result
for pseudo-metric spaces, i.e. when the metricd: X x X = R
is non-negative, symmetric and satisfies the triangle inequality,
but we do not insist that d(z,y) = 0 = z = y. Of course, if
(X,d) is a pseudo-metric space and we define an equivalence
relation ~ on X by ¢ ~ y <= d(z,y) =0, then X/ ~ is a
metric space with the induced metric. Theorem 2.1 is proven in
([8, page 81) for bounded metric spaces (which is the essential
content). We give the details of the proof since we require the
result for pseudo-metrics and we continue to use the notation
introduced in the proof.

Theorem 2.1. If(X,d) is a (pseudo-) metric space, then there
is an arc-connected (pseudo-) metric space (X*,d*) such that
(X,d) can be isometrically embedded into (X*,d*).

Proof: Let < be a linear ordering of X. For distinct elements
a,a’ € X with a < d’ we introduce a copy of the open unit
interval I(a,a’) = {zi(a,a’) : 0 < X < 1}; we also define
zo(a,a’) = a and z;(a,d') = a’. We assume that I(a,a’) N
I(b,¥') = 0 if (a,a’) # (b,¥), and define X* = X U U{I(a,b) :
a,a’ € X,a < a'}. We define a (pseudo-)metric d* on X* by
setting, for z = z,(a,d’) and y = z,(b, V'),

|A — uld(a,a’) if (b,%) = (a,ad’)
d*(z,y) =4 Nu'd(a,b) + Nud(a,V) + Au'd(d’,d)
+Apd(a’, V') if(b,¥') # (a,a’)

where we have written M’ =1- ), y' =1 —p.

It is easy to check that d* is unambiguously defined. For
example, using the second line of the definition to compute the
distance d*(zy(a,a’),a) = d*(z,(a,a’),z:(c,a)), where ¢ # a,
we get (since p = 1,4’ = 0)

XNd(a,a) + Ad(d’,a) = Ad(a,d’),
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and this is the same as the value that we obtain using the first
line. ‘
Note that, if b € X, then

d*(zx(a,d’),b) = Nd(a,b) + Ad(d',b).
Also, if (a,d’) # (b,¥') then
d*(zx(a,a’),z,(b, V) = Nd*(a,z,(b, ) + Ad*(a',z,.(b, )
(2) = ud‘(x,\(a,a’),b') + l‘,d.(xA(ava’),b)'

To show that d* is a (pseudo-) metric is a little tedious. It
is obvious that d* is symmetric. Also, if d is a metric, then
d*(z,y) = 0 < z = y. We have to check that the triangle
inequality holds.

Case 1: If z = z)(a,d'), y = z,(a,a'), z = z,(a,d'), it is
obvious that d*(z, 2) < d*(z,y) + d*(y, 2).

Case 2: Let z = z)(a,d'), y = z,(b, V), 2 = z,(c, ¢'), where
(a,a’),(b,¥') and (c,c') are all different. We have

d'(z,y) = (Np'd(a,b)+ Npd(a,b')+ Ap'd(d',b)
+Apd(d, b)) (v + V')
< MNg'V'(d(a,c) +d(b,c)) + Np'v(d(a,c') + d(b,c))
+XNpv'(d(a,c) + d(¥',c)) + Mpv(d(a,c') + d(¥', )
+Au'v'(d(d’,¢) + d(b, ¢)) + Ap'v(d(a’, ') + d(b, ')
+Apv'(d(a’, ¢) + d(b', c)) + Apv(d(a’, ) + d(¥, ¢'))
= (NVd(a,c) + Wd(d,c) + Nvd(a,c') + Avd(a', )
+(p'v'd(b,c) + pv'd(b,c) + p'vd(b, ') + prd(b,c'))
= d*(z,z) +d"(y,2).
Case 3: Let z = z)(a,d'), y = z,(a,a'), z = z,(c,¢),
where (a,a’) and (¢,c’) are different. We need to verify that
the following two inequalities hold:

3) d*(z,y) < d*(z,2) + d*(y,2)

(4) d*(y,z) < d*(z,y) + d*(z, 2).
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First we show that (3) and (4) hold in the special case when
A=0,p4=1,1ie when z = a,y = a’. For these special values
we have

d(a,d') < v(d(a,c) +d(d,)) +'(d(a,c) + d(d', ¢))
= d'(ae,z)+d*(d,2),
and
d*(d,z) v'd(d',c) + vd(d,c')
V'(d(a,a’) + d(a,c)) + v(d(a,d’) + d(a,c))
d(a,d’) + d*(a, 2).

(3) and (4) follow from these special cases. For (3) we may
assume that A\ < p. Then, since p — A < min{u + A, ' + \'},
it follows that
d*(z,y) (k= Nd(a,d') < (p = A)(d"(a, 2) + d"(d, 2))

(¢ + X)d*(a,2) + (p + A)d*(d', 2)

(W' + X)(v'd(a,c) + vd(a,c)) + (1 + A)(v'd(d, )

+vd(d,c))

(MV'd(a,c) + A'd(d,c) + Nvd(a,c') + Avd(a’, ')

+(p'v'd(a,c) + pv'd(d,c) + p'vd(a,c') + prd(d’, )
= d'(z,z) +d"(y, 2).

This proves (3). We prove (4) under the same assumption that

A < p (the case when p < A is similar). By (2), we have

VAR |

IA

N

Ty2) = Wd(a2)+ud(@,?)
= (up—N)d(d,2)+ A\d*(d',2) + p'd*(a,z2)
< (b= A)d(a,d') +d"(a,2)) + Ad"(d', 2) + p'd"(a, 2)

A)
)
(p = MNd*(a,a’) + N'd*(a,z) + \d"(d', 2)
d*(z,y) + d*(z, 2).

Clearly the space (X*,d*) is an arc-connected isometric ex-

tension of (X,d). For example, if z = z,(a,d’), y = z,(b, V),
where (a,a’) # (b,') and a < b, then there is a homeomorphic
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map f : [0,1] = {z.(a, a) :v < A}UI(a,b)U{z,(b,V): v < pu}
with f(0) =z, f(1) = 0O
We call the (pseudo-)metnc space (X~ d“) constructed in
the theorem the arc-connected extension of (X,d). It should
be noted that the linear ordering imposed upon X in the proof
was no more than a notational convenience, the construction of
(X*,d*) does not depend upon this ordering. In the case when
(X, d) is a pseudo-metric space, then so also is (X*,d*). But in
this case it is clear from our definitions that, if a,d’,b,¥’ € X,
a#d,b#£0, then:
(1) If d(a,a’) = 0 and z,y € I(a,a’), then d*(z,y) = 0.
(2) If d(a,a’) = d(a,b) = d(a',V') =0, z € I(a,a'), y €
I(b,V), then d*(z,y) = 0.
(3) If d(a,a') =0, z € I(a,a’),y € I(b,¥') and d*(a,y) > 0,
then d*(z,y) > 0.

Corollary 2.2. If (X*,d*) is the arc-connected eztension of
the pseudo-metric space (X,d), and if d(a,a’) # 0 and z €
I(a,d’), then there is r > 0 such that B*(z,r) = {y € X* :
d*(z,y) <r}C I(a,d’).

Proof: Let z = z)(a,a’), where 0 < A < 1. Choose r so that
0 < r < ' < min{\d(a,a’),Nd(a,a’)}. Then d*(a,z) > r,
d*(d',z) > r. Also, if y = z,(b, '), where (b,b') # (a,a’), then
d*(z,y) = Npg'd(a,b) + Npd(a,b') + Ap'd(d’,b) + Aud(d', V)
2 (u'(d(a,b) +d(a',b)) + u(d(a,b)
+d(a’,b'))r'[d(a,d') > 1" > 7,

and the result follows. O

From Corollary 2.2 we immediately obtain the following fact.

Corollary 2.3. Let (X,d) be a pseudo-metric space with arc-
connected extension (X*,d*). Let X' C X be a set such that
{a,a'} N X' # O whenever a # a' and d(a,a’) = 0, and let
X =UW{I(a,d') : a # @ € X,d(a,a’) = 0}. Then d*(z,y) >0
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forz #yand z,y € X** = X*\(X'UX), i.e the subspace X**

is a metric space.

We conclude this section with the observation that the arc-
connected extension of a metric space reflects completeness.

Theorem 2.4. A metric space is complete if and only if its
arc-connected eztension is complete.

Proof: Let (X*,d") be the arc-connected extension of the met-
ric space (X,d). Suppose X* is complete. Then, if (a,) is a
Cauchy sequence in X, there is z € X* such that a, converges
to z. By Corollary 2.2 it follows that z € X, and so X is
complete.

Now suppose that X is complete. Let (y,) be a Cauchy
sequence in X*, y, = Z,(an, bn). We need to show that some
subsequence of (y,) converges. Suppose liminf A, = 0; we can
assume that A, — 0. Since d*(an,yn) — 0 it follows from the
triangle inequality that (a,) is also Cauchy and so converges
to some a € X. Since d*(a,,a) and d*(a,,y,) both converge
to 0, it follows that y, — a. A similar argument applies if
limsup A, = 1. Thus we may assume that (some subsequence)
An — p where 0 < p < 1. By Corollary 2.2 it follows that the
pairs (a,, b,) are eventually constant, say equal to (a,b). Then
Yn — Zp(a,b). 0O

3. PROOF OF THEOREM 1.2

Let (X,<,7) be a metrizable GO-space. We may assume
that the metric d on X which is compatible with 7 is bounded.
Let L={z € X: X(<z)isopen}\{max X}, R={z € X :
X (2 z) is open}\{min X }.

If the element z € X has an immediate successor in the
ordering on X, we denote its successor by zt; similarly if there
is an immediate predecessor we denote it by z~. If z € L has
no immediate successor in (X, <), then we extend the order by
introducing a new element z+ which is the immediate successor
of z in the extended order. Similarly, for each element of R
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which has no immediate predecessor in the order on X, we
_introduce one which we denote by z~.. Let (X’,<) be the
extended ordered set which includes these additional elements
zt or z~ for appropriate elements z € L U R. Thus each
element of L has an immediate successor and each element of
R has an immediate predecessor in this extended order.
- We define a symmetric non-negative real function d' : X' x
X' — R as follows: for z,y € X',

(d(z,y) if r,y € X;
inf sup d(z,u) ifze€ X,a€L,
vEX(>a) a<u<w y=at ¢ X;
. _ inf sup d(z,u) ifz€ X,a€ R,
d(z,y) = | vE X(<a) v<u<a y=a ¢ X;
inf sup  d(u,t) ifa,b€eL,
vEX(>a) a<u<v z=at ¢ X,
[ weX(>b) b<ti<w y=>bt¢ X.

There are similar definitions for d'(a*,b”) and d'(a~,b~) ob-
tained by modifying the last line of the above in an obvious
manner.

We first observe that

(5) d(z,y)>0ifz € X,y € X'\X.

We only prove this for the case when y = a* for some a € L
which has no immediate successor in X; the case when y = a~
for some a € R is similar. Suppose z < a. Since X (< a) is
open and the metric d is compatible with 7, there is r > 0
such that Bx(z,r) = {y € X : d(z,y) < r} C X(< a). Thus
d(z,u) > r for all u € X(> a) and since X (> a) # 0 it follows
that d'(z,y) > r. Now suppose that £ > a. Since X (> a) has
no first element in the ordering of X, there is some v € X such
that a < v < z. Then X(> v) is an open neighbourhood of z
and so there is some r > 0 such that Bx(z,r) C X(> v). This
implies that d'(z,y) > r and (5) follows.
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We now verify that d’ is a pseudo-metric on X’. Since d' is
symmetric by definition, we need only check that the triangle
inequality

(6) d(z,z) < d'(z,y) + d'(y,2),

holds for distinct z,y,z € X’. There are several different cases
that need to be considered, but these are all rather similar,
and to avoid trivial repetition when we consider a point, say
z,in X'\X we assume z = a* for some a € L.

Case 1. 7,z € X,y € X'\ X.

Assume y = a* for some a € L. Then, for ¢ < u < v,
u,v € X, we have

d'(z,2) = d(z,z) <d(z,u)+d(u,z)
< sup{d(z,u):a <u <v}+sup{d(u,z):a <u<v}

and hence (6) holds.

Case 2. z,y € X, z € X'\ X.

Assume z = a* forsomea € L. Fora< u < v, u,v € X we
have

d(z,u) < d(z,y) + d(y,u)
and so, taking the supremum of both sides for u < v, we have

sup{d(z,u) : a < u < v} < d(z,y) + sup{d(y,u) : a < u < v}.

Finally taking the infimum of both sides of this for v > a we
get (6).
Case 3. z € X; y,z € X'\X.
Assume y = a*, z = b* for some a,b € L. Fora < u < v,
b<u < v and u,v,u’,v' € X we have
dz,w) < dz,u)+d(u,v)
< sup{d(z,u):a < u<v}
+sup{d(u,u’) : a < u < v},
and hence
sup{d(z,u’) : b < v < v'} < sup{d(z,u) : a < u < v}
+sup{d(u,v'):a<u<v,b<u <v'}.
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Taking the infimum over v > a and v’ > b, (6) follows.
Case 4. z,z € X'\X, y € X. This is similar to Case 3.
Case 5. z,y,z € X'\ X.
Assume z = a*, y = b*, z = ¢* for some a,b,c € L. Let
a<u<v,b<u <, c<u’ <v”. We have

d(u,v") < d(u,u’)+d(u',u")
< sup{d(y,u’):a<u<v,b<u <o’}
+sup{d(v/,u") : b < v’ <v,e<u” <"},
and therefore,

sup{d(u,u") :a <u <v,e< U’ <"}
<sup{d(u,v):a<u<v,b<u <v'}
+sup{d(v/,u") : b< v <V ,c < u" <v"}.

Taking the infimums of the terms on the left and right sides
of this inequality gives (6).

This proves that d’ is a pseudo-metric on X’. Unfortunately,
it need not be a metric. To see this consider again the example
illustrated in Diagram 1. In that example, L = {0,1,2}, R =
@, and we have to adjoin the additional points 0%, 1* and
2*. The distance between the distinct points 0% and 2% is
d'(0%,2%) = infocecr1sup{d(£,2+7):0< € <e,0<n<e€} =
0. However, by (5), the set Z = {z € X' : (Jy # z)d'(z,y) =
0} C X'\ X.

By Theorem 2.1 there is an arc-connected extension (X*, d*)
of the pseudo-metric space (X’,d’). Also, by Corollary 2.3
the subspace X** is a metric space, where X** = X ‘\X and
X =U{I(a,d) U {a,a'} : a # a’ € X', d'(a,a’) = 0}. Here we
use the same notation as in the proof of Theorem 2.1 so that
I(a,a’) = {z(a,a’) : 0 < A < 1} for points a,a’ € X’ with
a<a

We now show that (5) extends to the following:

) d*(z,y) >0if z = z)(a,a’),a € X,0< A< 1
and y € X*\{z}.
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For, let y = z,(b,b'), where b, € X' and 0 < p < 1.
(5,8') = (a,a’), then u # X and d*(z,y) = |\ — /zld’( a

by (5). Also, if (b,0') # (a,a’), then d*(z,y) > N(u'd(a,b)
pd(a, b)) > 0 again by (5).

It follows from (7) that Y = X U L* U R" is disjoint from X,
where L* = UY{I(z,z*) : z € L}, R* = U{I(z~,z) : € R}.
Hence the restriction of X** to Y is also a metric space.

We define a linear ordering <y of Y as follows:

4

z<y whenz,ye X
z<a whenz € X,a € L and y € I(a,at)
z<a whenz€ X,a€ Rand y € I(a",a)
a<y wheny€ X,a€ L and z € I(a,a*
a<ly wheny€ X,a€ Rand z € I(a™,a)
a<b when a,bELUR,xEI(a,a*’)or
I(a~,a),and y € I(b,b*) or 1(b™,b)
A<p whena€ L,z =uz,(a,at),
y=z,(a,a*) or a € R,z = z,(a",a),
\ y=zu(a”,a)

z<lyy < <

It is easy to check that <y is a linear order which extends the
order on X, and also that, for a € L and b € R, I(a,a*) and
I(b~,b) are intervals in (Y, <y). (As observed by the referee,
the order on Y is more easily visualized if we identify Y with
[X x {0}JU[L x (0,1)]U[R x (—1,0)], and then <y is just the
order inherited from the lexicographic order on X x (-1,1).)

To complete the proof of the theorem we need to show two
things: (A) the metric d* is compatible with the linear order
topology on Y; (B) X is a p-embedded, closed subspace of Y.

Proof of (A): We first show that the linear order topology on
Y is contained in the metric topology defined by the metric d*.
Let z € Y and let J be an open interval in the order topology
on Y which contains 2. We have to show that there is r > 0
such that the open ball By(z,7) = {y € Y : d}(y,2) < r} is
contained in J.

If z € L*, then there is a € X such that z € I(a,at). By
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Corollary 2.2 there is r' > 0 such that By(z,7’) C I(a,a%)
and hence there is r > 0 such that By(z,r) C J. Similarly if
z € R*. Thus we may assume that z € X. We need to consider
several different cases. .

Suppose that z € L\ R. Since J is an open interval of Y, we
may assume that JNY (> 2) C I(z,2z%) so that JNX C X(< 2)
is an open neighbourhood of z in X. Since z ¢ R, {z} is not
open in X and so there is some element b € X(< z) such
that (b,2) N X C J. Thus we may assume that J = (b,¢),
where b € X and b < z < ¢ € I(z,z%). Since the metric
d is compatible with the topology 7 on X, there is r; > 0
such that Bx(z,r;) C J N X. Also, there is r, > 0 such that
By(z,m2)NY (= z) C J. We claim that By(z,7) C J, where
r = min{ry,r2}. Since By(z,7)N X = Bx(z,r) we need only
show that By (z,r)\(X U I(z,2%)) C J.

Let y € By(z,7)\(X U I(z,2%)). We consider only the case
when y = z)(a,a*) for some a € L and 0 < A < 1; the other
case when y = z)(a”,a) for some @ € R is similar. Clearly
a < z since By(z,7r)NY (> z) C I(z,2z%). Suppose that a < b.
It follows from the definition of d* (see Proof of Theorem 2.1)
that d*(y, z) = N'd'(a, z)+ Ad'(at, 2) > min{d'(a, 2),d'(a*, 2)}.
Now d'(a,z) = d(a,z) > r since Bx(z,7r) C{z € X :b<z <
z). Also,

My qt) = .
d'(z,a7) = tIE}P(fM)sup{d(z,u) ta<u<v}>r
This is true since if b < v, then sup{d(z,u) : a < u < v} >
d(z,b) > r,and if a < v < b, d(z,u) > r for all u € X such
that a < u < v. Thus d*(y,z) > r. This is a contradiction and
hence b < a. It follows that y € J since b < a <y y <y z and
b, z are elements in the interval J of Y.

The case z € R\L is similar. The case z € L N R is simpler
since, in this case, {z} is open in X, and we may assume that
J C (27, z%) and so there is r > 0 such that By(z,r) C J.

Finally, suppose that z € X\(L U R). Since neither X (> z)
nor X (< z) is open, it follows that there are b,¢ € J N X such
that b < z < ¢. Thus we may assume that J = (b,c). Since
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(b,c) N X is an open neighbourhood of z in X, there is r > 0
such that Bx(z,r) € J. Then by a similar argument to the
one above it follows that By(z,r) C J.

We now prove the converse, that the metric topology on Y is
contained in the linear order topology on Y. We have to show
that, for any z € Y and r > 0, there are b,c € By(z,r) such
that b <y z <y c and = € By(z,r) whenever b <y z <y c.

If z € Y\X, say z € I(a,a") for some a € L, the result
is obvious since, by Corollary 2.2 there is r; such that 0 <
ry < r and By(z,m;) C I(a,a*) and By(z,r;) is an interval in
(Y, SY)

Suppose z € X. We only consider the case when z € X\(LU
R); the other cases are similar. Since z ¢ L U R, and since
the metric d on X is compatible with the generalized order
topology on X, it follows that there are r > 0 and b,c € X
suchthatb<z2<cand{y€ X :b<y < ¢} C XNBy(z,r/2)
We will show that d*(y,z) < r holds for all y € Y such that
b<y y<yc If y€e X thisis clear. Suppose y € Y\ X, say
y = z)(a,a%) for somea € L and 0 < A < 1. If a < b then we
get the contradiction that y <y b. Therefore, b < a. Similarly,
a < c. Hence d(a,z) < r/2. fa* € X, then b < at < ¢
and so d(a*,z) < r/2; on the other hand, if a* ¢ X then
d'(at,2) < sup{d(z,u) : v € X,a < u < 2z} < r/2. In any
case, d*(y,z) = Nd(a,z) + Ad'(a*,z) < r. This completes the
proof of (A).

Proof of (B): Clearly (X, 7) is a subspace of Y and it is closed
since the sets I(a,a*) (a € L) and I(a™,a) (a € R) are open
intervals of Y.

For any positive integer n let U(n) = {By(z,5;) : z € X}.
Then U(n) is a cover of X by open subsets of Y. Also, for z €
X, we have St(z,U(n)) C By(z, ), and so N5, St(z,U(n)) C
NBy(z, %) = {z} C X. Thus X is a p-embedded closed subset
of Y. This completes the proof of the theorem. O
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