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MEAGER-NOWHERE DENSE GAMES (III):
REMAINDER STRATEGIES.

MARION SCHEEPERS

ABSTRACT. Player ONE chooses a meager set and T-
WO, a nowhere dense set per inning. They play w in-
nings. ONE’s consecutive choices must form a (weakly)
increasing sequence. TWO wins if the union of the chosen
nowhere dense sets covers the union of the chosen meager
sets. A strategy of TWO which depends on knowing only
the uncovered part of the most recently chosen meager
set is said to be a remainder strategy. TWO has a win-
ning remainder strategy for this game played on the real
line with its usual topology.

1. INTRODUCTION

A variety of topological games from the class of meager-
nowhere dense games were introduced in the papers [B-J-§),
[S1] and [S2]. The existence of winning strategies which use
only the most recent move of either player (so-called coding
strategies) and the existence of winning strategies which use
only a bounded number of moves of the opponent as informa-
tion (so-called k-tactics) are studied there and in [K] and [S3].
These studies are continued here for yet another fairly natural
type of strategy, the so-called remainder strategy.

The symbol Jg denotes the ideal of nowhere dense subsets of
the real line (with its usual topology), while the symbol “C”
is used exclusively to denote “ is a proper subset of 7. Let
(S,7) be a T1-space without isolated points, and let J be its
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216 MARION SCHEEPERS

ideal of nowhere dense subsets. The symbol (J) denotes the
collection of meager subsets of the space. For Y a subset of S,
the symbol J[y denotes theset {T € J: T CY}.

The game WM EG(J) (defined in [S2]) proceeds as follows:
In the first inning ONE chooses a meager set M;, and TWO re-
sponds with a nowhere dense set N;. In the second inning ONE
chooses a meager set M,, subject to the rule that M; C My;
TWO responds with a nowhere dense set N;, and so on. The
players play an inning for each positive integer, thus construct-
ing a play (M, Nq,..., Mk, Ni,...) of WMEG(J). TWO wins
such a play if Uyz; Mx = Urz; Ni. A strategy of TWO of the
form N, = F(M;) and Niyy = F(Mii1\( f=1 N;)) for all k is
said to be a remainder strategy.

It is clear that TWO has a winning remainder strategy in
WMEG(J) if J = (J). The situation when J C (J) C P(S),
studied in Section 2, is not so easy. We prove among other
things Theorem 1, which implies that TWO has a winning
remainder strategy in WM EG(Jg).

The game WMG(J) proceeds just like WM EG(J); only
now the winning condition for TWO is relaxed so that TWO
wins if Up2; M, € U2, Nn. In Section 3 we study remainder
strategies for this game. In Section 4 we discuss the game
SMG(J). In Section 5 we attend to the version VSG(J).

For convenience we also consider the “random equal game on
J”, denoted REG(J). It is played as follows: (M, Ny, ..., My,
Ny,...) is a play of REG(J) if M, € (J) and N, € J for
each k. TWO is declared the winner of this play if U, M, =
Ug2, Ni. We shall use the fact that TWO has a winning perfect
information strategy in REG(J).

Theorem 8 is due to Winfried Just, while Theorem 14 is due
to Fred Galvin. I thank Professors Galvin and Just for kind-
ly permitting me to present their results here and for fruitful
conversations and correspondence.
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2. THE WEAKLY MONOTONIC EQUAL GAME, WMEG(J).

When defining a remainder strategy F for TWO in WM EG(J),
we shall take care that F(A) C A and F(A) # 0 if (and only if)
A # 0, for each A € (J). Otherwise, the strategy F is sure not
to be a winning remainder strategy for TWO in WM EG(J).
We shall also use the fact that if (My, Ny,..., Mg, Ni,...)is a
play of WM EG(J), then My\M;,, = N; for each k, without
further mention.

Theorem 1. If (VX € (J)\J)(cof({J},C) < |I[x]|), then T-
WO has a winning remainder strategy in WM EG(J).

Theorem 1 follows from the next two lemmas.

Lemma 2. If cof({J),C) is infinite and (VX € (J)\J)
(cof ({(J),C) < |J[x]|), then TWO has a winning remainder
strategy in WM EG(J).

Proof: Let A C (J)\J be a cofinal family of minimal cardinal-
ity. Then |A| < |P(X)| for each X € (J)\J.

For each Y € J such that | 4] < |P(Y)| the set Y is infinite:
Write Y = U3, Y, where {Y; : n € N} is a pairwise disjoint
collection such that |Y;,| = |Y| for each n. Choose for each n a
surjection ¥Y : P(Y,)\{0,Y,} — <“A.

If for X € (J)\ J there is no Y € J[x such that |4] <
|P(Y)|, then Y| < |X| for each Y € J[x: we fix a decomposi-
tion X = U2, X, where {X, : n € N} is a disjoint collection
of sets from (J)\J. For each such X, we further fix a repre-
sentation X, = UZx-; Xam where X,; C X, 2 C ... are from
J, and a surjection ©F : J[x,— <“A.

Let U and V be sets in (J) such that we have chosen a
decomposition U = U2, U, as above. The notation U C* V
denotes that there is an m such that U, C V for each n > m;
we say that m witnesses that U C* V.

Fix a well-ordering < of (J). For X € (J) we define:

(1) ©(X): the <-first element A of A such that X C A,
(2) ©(X): the <-first element Z of (J)\J such that Z C* X
whenever this is defined, and the empty set otherwise,
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(3) k(X): the smallest natural number which witnesses that
®(X) C* X whenever ®(X) # 0, and 0 otherwise,

(4) T(X): the <-first Y € J such that |J[x| < |P(Y)| and
Y C* X whenever this is defined, and the empty set
otherwise, and

(5) m(X): the smallest natural number which witnesses

that I'(X) C* X whenever I'(X) # 0, and 0 otherwise.

Let G be a winning perfect information strategy for TWO in
REG(J). We are now ready to define TWO’s remainder strat-
egy F : (J) — J. Let B € (J) be given.

B € J: Then we define F(B) =

B ¢ J: Then k(B) > 1. We distinguish between two cases:
Case 1: I'(B) # 0. Then m(B) > 1.

Write Y for I'(B) and n for m(B). For 1 < j < n define o, so

that
o; = { vY(Y;\B) if Y;\B ¢ {0,Y;}

0 otherwise

Let r be 0y ~ -+- —~ 0, —~ (O(B)), the concatenation of these
finite sequences, and choose V € P(Yn41)\{0,Yn+1} so that
¥Y. (V) = 7. Then define F(B)=BN[;U---UY, UV U
(U{G(o) : 0 S TV
Case 2: T'(B) = 0.
Write X for ®(B) and n for k(B). For 1 < j < n define o; so
that
{ OX(X;\B) if X;\Be J
o; = 0

otherwise

Let r be 0y ~ -+ ~ 0, ~ (O(B)), and choose V € J[x,,,
such that ©X (V) = 7. Then define F(B) = BN [X1n41 U
“UXpns1 UV U ((U{G(0) : 0 C T}H\X)].

This defines F(B). From its definition it is clear that F(B) C
B for each B € (J). To see that F is a winning remainder strat-
egy for TWO in WM EG(J), consider a play (My, Ny,. .., Mg,
N, ...) during which TWO followed the strategy F'. To facil-
itate the exposition we write:

(1) B, for M, and Bj4 for Mj;1\ Uf;l N;,
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(2) Y for T(By),
(3) X’ for ®(B;),
(4) A’ for ©(B;),
(5) k; for k(B; ) and
(6) m; for m(B;).

We must show that U2, B; C Uj2,N;. We may assume that
B; ¢ J for each j.

Suppose that Y7*! # @ for some j. Then Nj,;, defined
by Case 1, is of the form Bj,, N [¥{*!' U Y,}f:l UV U
((U{G(0) : 0 C 1j41})\Y?*!)] where V]-.H and 7;4; have the
obvious meanings. Thus Y?*! C* B.,, is a candidate for Y72,
and Y’*2 # (), so that N,,, is also defined by Case 1.

We conclude that if Y7 # @ for some j, then Y* # 0 and
Y**! < Y? for each i > j. Since < is a well-order, there is a
fixed k such that Y* = Y* for all i > k. Let Y be this com-
mon value of Y*,7 > k. An inductive computation shows that
(A*,..., A7) C 1; for each j > k. But then B;N[(G(A*¥)U---U
G(AF, .. Aj))\Y] C N; for each j > k, so that UR,B;\Y C

U2, N;. It is also clear that Y N (U;"_’IB-) U2 N;. The
monotonicity of the sequence of M;-s 1mphes that TWO has
won this play.

The other case to consider is that Y7*! = { for all 5. In this
case, X'*! # () for each j. Then N,,,, defined by Case 2, is of
the form: .

B N[X{E, U UXPH L UViaU
(V{G( 0) o C 1 })\X7H),

where V,;; and 7,4, have the obvious meaning. Now X7+! C*
Bj;42, and X7*! is a candidate for X7*2. It follows that X7+2 <
X3*1 for each j < w. Since < is a well-order we once again
fix k such that X7 = X* for all j > k. Let X denote X*. As
before, (A¥,...,A?) C 7, for each such j, and it follows that
TWO also won these plays. O

Lemma 3. If (J) = P(S), then TWO has a winning remain-
der strategy in WM EG(J).
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Proof: Let < be a well-order of P(S), and write S = U32,S,
such that S, € J\{0} for each n, and the S,-s are pairwise dis-
joint. For each countably infinite Y € J write Y = U, Y, so
that {Y, : n € N} is a pairwise disjoint collection of nonempty
finite sets. For X and Y in (J) write Y C* X if Y\ X is finite.

For each X € (J)\J, either there is an infinite Y € J[x, or
else X is countably infinite.

In the first of these cases, let ®(X) be the <-first countably
infinite element Y of J such that Y C* X, and let m(X) be
the smallest n such that Y, C X for all m > n.

In the second case, let ®(X) be the <-least element Y of
(J)\J such that Y C* X, and let m(X) be the minimal n such
that ®(X) N S, C X for all m > n. Also write ®(X); for
®(X) N S; for each j, in this case.

Then define F(X) so that

(1) F(X)= X if X € J, and
(2) F(X) = XN[(S1U---USmux))\@(X))U(®(X); U+~ U
d)()()m()()]

Then F is a winning remainder strategy for TWO. O

Corollary 4. Player TWO has a winning remainder strategy
in WMEG(Jy).

We shall later see that the sufficient condition for the exis-
tence of a winning coding strategy given in Theorem 1 is to
some extent necessary (Theorems 8 and 14). However, this
condition is not absolutely necessary. First, note that for any
decomposition S = Uf=lSk, the following statements are equiv-
alent:

(1) TWO has a winning remainder strategy in WM EG(J),

(2) For each j, TWO has a winning remainder strategy in
WMEG(J([s,).

Now let S be the disjoint union of the real line and a count-

able set S*. Define X € J if X N S* is finite and X N R € Ji.

Then S* € (J), and J[s- is a countable set, while cof((J), C)
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is uncountable. According to Corollary 4 and Lemma 3, TWO
has a winning remainder strategy in WM EG(J).

Let A be an infinite cardinal of countable cofinality. For
k > A, declare a subset of k to be open if it is either empty,
or else has a complement of cardinality less than A\. With this
topology, J = []<*.

Corollary 5. Let A be a cardinal of countable cofinality, and
let £ > X be a cardinal number. If cof([x]*,C) < A<?, then
TWO has a winning remainder strategy in WM EG([£]<*).

Recall (from [S2]) that G is a coding strategy for TWO if:
N, = G(0, M,) and N4y = G(Ng, Myy,) for each k.

If F is a winning remainder strategy for TWO in WM EG(J),
then the function G which is defined so that G(W, B) = W U
F(B\W) is a winning coding strategy for TWO in WM EG(J).
Thus, Corollary 4 solves Problem 2 of [S2] positively. Also,
Theorem 6 of [S2] implies that TWO does not have a winning
coding strategy in WM EG([w;]<™).

Let A be a subset of (J). The game WM EG(A, J) is played
like WM EG(J), except that ONE is confined to choosing mea-
ger sets which are in A only. Thus, WM EG(J) is the special
case of WM EG(A, J) for which A = (J).

For cofinal families A C (J) which have the special property
that A # B & AAB ¢ J, there is an equivalence between the
existence of winning coding strategies and winning remainder

strategies in WM EG(A,J).

Proposition 6. Let A C (J) be a cofinal family such that for

A and B elements of A, A # B & AAB ¢ J. Then the
following statements are equivalent:

(1) TWO has a winning coding strategy in WM EG(A, J).
(2) TWO has a winning remainder strategy in WM EG(A, J).

Proof: We must verify that 1 implies 2. Thus, let F be a
winning coding strategy for TWO in WM EG(A, J). We de-

fine a remainder strategy G. Let X be given. If X € A we
define G(X) = F(0,X). If X ¢ A but thereis an A € A
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such that X € A and A\X € J, then by the property of
A there is a unique such A and we set T = A\X(€ J). In
this case define G(X) = F(T,A). In all other cases we put
G(X) = 0. Then G is a winning remainder strategy for TWO
in WMEG(A,J). O

It is not always the case that there is a cofinal A C (J)
which satisfies the hypothesis of Proposition 6. For example,
let J C P(w,) be defined so that X € J if, and only if, X Nw
is finite and X N (w;\w) has cardinality at most R;. Let {S, :
a < wy} be a cofinal family. Choose a # 8 € w, such that:

(1) wC (Sa N Sp) and
(2) Sa # Sp.
Then S,ASp € J.

Proposition 6 together with the proof of Theorem 6 of [S2]
show that if A is any stationary subset of w;, then TWO does
not have a winning remainder strategy in WM EG(A, [w,]<™).
This result is strengthened in Theorem 8 below.

Though there may be cofinal families A such that TWO
does not have a winning remainder strategy in WM EG(A, J),
there may for this very same J also be cofinal families B C (J)
such that TWO does have a winning remainder strategy in

WMEG(B,J).

Theorem 7. Let A be an infinite cardinal number of countable
cofinality. If K > X is a cardinal for which cof([x]*,C) = &,
then there is a cofinal family A C [«]* such that TWO has a
winning remainder strategy in WM EG(A, [£]<*).

Proof: Let (B, : a < k) bijectively enumerate a cofinal sub-
family of []*. Write & = UacxSa Where {S, : @ < £} C [£]* is
a pairwise disjoint family.

Define: A, = {a} U (Uzep,Sz) for each a < &, and put
A= {A,: a < k}. Then A is a cofinal subset of [«]*. Also let
¥ : A — «k be such that ¥(A,) = « for each a € k.

Choose a sequence \; < A2 < --- < A, < ... of cardinal
numbers converging to A. For each A € A we write A =
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U, A" where A! C A% C ... are such that |[A"| = A, for each
n. v
Now define TWQ’s remainder strategy F as follows:
(1) F(A) = {¥(A)}JUA! for A€ A,
(2) F(A) = {¥(B)} U (U({C™*! : ¥(C) e T(4)}) N B) U
B™t1if Ad Abut A C B and |B\A| < ) for some B €
A. Observe that this B is unique. In this definition,
I'(A) = B\A, and m is minimal such that [T'(A)| < A,.
(3) F(A) = 0 in all other cases.

Observe that |[F(A)| < X for each A, so that F is a legiti-
mate strategy for TWO. To see that F' is a winning remainder
strategy for TWO, consider a play (M;, Ny,..., Mg, N,...) of
WMEG(A,[]<*) during which TWO used F.

Write M; = A,, for each :. By the rules of the game we have:
As, C Ag, € ... Also, Ny = {ay} U A} and n; is minimal
such that |N;| < A;,. An inductive computation shows that
Nip1 = F(Mk+1\(Uf=1Nj)) is the set

([{ak+1} U (U{A:k+1 1Y € Nk}) n Aa+k+1) U Ank+l

LTS
from which it follows that:
(1) NCEN,C---C N C...,
(2)ny<ny<---<np<...,
(3) a; € Ni whenever j < k, and thus
(4) A’;J C Ny for j < k and p < ny_;.

The result follows from these remarks. [

3. THE WEAKLY MONOTONIC GAME WMG(J).

It is clear that if TWO has a winning remainder strategy in
WMEG(J), then TWO has a winning remainder strategy in
WMG(J).

Problem 1. Is it true that if TWO has a winning remainder
strategy in WMG(J), then TWO has a winning remainder
strategy in WM EG(J)?



224 MARION SCHEEPERS

As with WM EG(J), a winning remainder strategy for TWO
in WMG(J) gives rise to the existence of a winning coding
strategy for TWO. In general, the statement that TWO has
a winning remainder strategy in WMG(J) is stronger than
the statement that TWO has a winning coding strategy. To
see this, recall that TWO has a winning coding strategy in
WMG([w,]<®) (see Theorem 2 of [S2]) while, according to
the next theorem, TWO does not have a winning remainder
strategy in WM G([w;]<?).

Theorem 8 (Just) If k > R,, then TWO does not have a
winning remainder strategy in WM G([s]<™).

Proof: Let F be a remainder strategy for TWO. For each a <
w; we put

®(a) = sup(U{F(a\T) : T € [a]*} U a).

Then ®(a) > a for each such a. Choose a closed, unbounded
set C C w; such that:

(1) ®(y) < a whenever vy < a are elements of C, and
(2) each element of C is a limit ordinal.

Then, by repeated use of Fodor’s pressing down lemma, we
inductively define a sequence ((¢1,51,T1),-- -, (Pn, SnyIn),---)
such that:

(1) C D8 D:--D8,D... are stationary subsets of w,,
(2) F(a)Na =T, for each a € S, and
(3) F(a\(Th1U---UT,)) = Ty4 for each n and each a € S,.

Put { = sup(UX,T,) + w. Choose a, € S, so that { <
o < ag < -+ < ap < .... By the construction we have:
F(ay)Né =T, and F(ap  \(ThU---UT,))NE = T,4, for each
n.

Then (U, T,)NE C € = (UL, a,) NE, and TWO lost this
play of WMG([wy]<™). O

For a cofinal family 4 C (J), WMG(A,J) proceeds just
like WMG(J), except that ONE must now choose meager sets
from A only. The proof of Theorem 8 shows that for every
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stationary set A C w; TWO does not have a winning remainder
strategy in WMG(A, [w,]<*). This should be contrasted with
Theorem 7, which implies that there are many uncountable
cardinals x such that for some cofinal family A C [«]*, TWO
has a winning remainder strategy in WM G(A, [c]<%).

4. THE STRONGLY MONOTONIC GAME SMG(J).

A sequence (My, Ny,..., Mk, Ni,...)is a play of the strongly
monotonic game if: My U Ny C My, € (J), and Ni € J for
each k. Player TWO wins such a play if U2, M; = U2 N;.
These rules give TWO more control over how ONE’s meager
sets increase as the game progresses. This game was studied
in [B-J-S] and [S1]. It is clear that if TWO has a winning
remainder strategy in WMG(J), then TWO has a winning
remainder strategy in SMG(J). The converse is also true:

Lemma 9. If TWO has a winning remainder strategy in SMG(J),
then TWO has a winning remainder strateqgy in WMG(J).

Proof: Let F be a winning remainder strategy for TWO in
SMG(J). We show that it is also a winning remainder strategy
for TWO in WMG(J).

Let (My,Ny,...,M},Ny,...) be a play of WMG(J) dur-
ing which TWO used F as a remainder strategy. Put M} =
M, and Mi,, = My U (N U---U Ny) for each k. Then
(M5, Ny,y..., Mg, Ng,...) is a play of SMG(J) during which
TWO used the winning remainder strategy F. It follows that
U M, € UZ, Ny, sothat TWO won the F-play of WMG(J). O

The additional strategic value to TWO of the rules of the
strongly monotonic game is revealed by considering the games

SMG(A,J) for cofinal A C (J).

Lemma 10. If TWO has a winning coding strategy in WMG(J)
and if A C (J) is a cofinal family such that AAB ¢ J when-
ever A # B are in A, then TWO has a winning remainder

strategy in SMG(A,J).
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Proof: One can show that if TWO has a winning coding s-
trategy in WMG(J), then TWO has a winning coding strat-
egy F which has the property that N C F(N,M) for all
(N,M) € J x (J) - see [S4]. Let F be such a winning coding
strategy for TWO in WM G(J). Also let A be a cofinal family
as in the hypotheses. If B is not in A, but there is an A € A
such that B C A and A\B € J, then there is a unique such A.
Let ¥(B) € A denote such an A when this happens.

Define a remainder strategy G for TWO as follows. Let
B € (J) be given:

F(0,B) fBe A
G(B) ={ F(¥(B)\B,¥(B)) if B¢ A, but ¥V(B) is defined
0 otherwise

Then G is a winning remainder strategy for TWO. O

Corollary 11. Let A be a cardinal number of countable cofi-
nality. For each k > ), there is a cofinal family A C [x]* such
that TWO has a winning remainder strategy in SMG(A,J).

Proof: Write £ = U,¢xS, where {S, : @ < «} is a disjoint
collection of sets, each of cardinality A. For each A € [«]*, put
A* = UaeaSs. Then A = {A*: A € [k]*} is a cofinal subset
of []<* which has the properties required in Theorem 10. The
result now follows from that theorem and the fact that TWO
has a winning coding strategy in WM G([£]<*) - see [S4].

Corollary 12. There is a cofinal A C [w]* such that TWO
has a winning remainder strategy in SMG(A, [w1]<*°), but no
winning remainder strategy in WMG(A, [w;]<M°).

Proof: Put A = {a <w; :cof(a) =w}. O

5. THE VERY STRONG GAME, VSG(J).
Moves by player TWO in the game VSG(J) (introduced

in [B-J-S]) consist of pairs of the form (S,T) € (J) x J, while
those of ONE are elements of (J). A sequence (Os, (S51,T1), 03,
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(S2,T3),...) is a play of VSG(J) if: Opyy 2 S, UT,, and
0., S, € (J) and T, € J for each n.
TWO wins such a play if U32,0, C U2, T,. A strategy F

is a remainder strategy for TWO in VSG(J) if
(S'n.+l) Tn+1) = F(Oﬂ‘i’l\(U;:lTﬂ))

for each n.

For X € (J) we write F(X) = (F1(X), F2(X)) when F is a
remainder strategy for TWO in VSG(J). When F is a winning
remainder strategy for TWO, we may assume that it has the
following properties:

(1) FR(X)NFy(X) = 0; for G is a winning remainder strat-
egy if G1(X) = F1(X)\F2(X) and G3(X) = F5(X) for
each X.

(2) X\F2(X) C Fi(X); for G is a winning remainder strate-
gy if Gi(X) = (XUF(X))\F2(X) and Go(X) = F5(X)
for each X.

Lemma 13. If J C (J) C P(S) and if F is a winning re-
mainder strategy for TWO in the game VSG(J), then: For
each z € S there ezist a C; € (J) and a D, € J such that:

(1) C:N D, =0 and
(2) £ € F3(B) for each B € (J) such that C, C B and
D.NB=04.

Proof: Let F be a remainder strategy of TWO, but assume the
negation of the conclusion of the lemma. We also assume that
for each X € (J), X\F2(X) C Fi(X) and Fi(X)N F2(X) = 0.

Choose an = € S witnessing this negation. Then there is for
each C € (J) and foreach D € J withze Cand CND =0
a B € (J) such that BN D =0,C C B and z ¢ F5(B). We
now construct a sequence ((By, Ci, Dy, My, Sk, Ni) : k € N) as
follows:

Put C, = {z} and D, = 0. Choose B; € (J) such that
Cl Q Bl and z ¢ Fg(Bl) Put M] = B] and (S],Nl) = F(Ml)
This defines (Bl, Cl, D], M], Sl, Nl)
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Put C; = S, and D; = N;. Choose B, € (J) such that
Cg g »Bz, DgnBz = 0, and z g Fg(Bg) Put Mg = B2UD2 and
(S2,N2) = F(Mg\Nl). This defines (BQ,CQ, Dg, Mg,Sg,Ng).
Put D3 = (N; UN,) and C3 = S;\D;. Choose B3 €
(J) such that C3 C B3, D3N B; = 0, and = ¢ Fy(Bs).
Put M3 = B3 U D3 and (S3,N3) = F(Ma\D3) This de-
fines (B3, C3, D3, M3, S3, N3). Continuing like this we construc-
t (Bl, Cl, Dl,Ml, S], Nl), ceey (Bk, Ck, Dk, Mk, Sk,Nk), «..y SO
that:
(2) Cj41 = S;\Dj41 € (J) and z € Cj4; for all j,
(3) C; C B;, while z ¢ F5(B;) and B; N D; = 0, and

(4) M; =B;UD; and

(5) (S;,N;) = F(M;\D;) for all j, and

(6) (Bl’ Cl? Dl, Ml’ Sla Nl) and (B2a C2a D?a M27 52, N2) are
as above.

Then (M, (S1, M), ..., Mk, (Sk, Ni),...) is aplay of VSG(J)
during which player TWO used the remainder strategy F' and
lost. O

Theorem 14 (Galvin) For £ > R;, TWO does not have a
winning remainder strategy in VSG([k]<?).

Proof: Let F be a remainder strategy for TWO. If it were
winning, choose for each z € k a D, € [k]<® and a C; € []S™e
such that:

(1) C.NnD, =0,

(2) € C; and

(3) = € Fy(B) for each B € []s* such that BN D, = 0

and C; C B.

Now (D, : =z € k) is a family of finite sets. By the A-
system lemma we find an S € [£]" and a finite set R such that
(D : z € S) is a A-system with root R. For z € S define:

flz)={y€ S:D,NC, #0}.

Then f(z) is a countable set and = ¢ f(z) for each z € S.
By Hajnal’s set-mapping theorem (see §44 of [E-H-M-R]) we
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find T € [S]* such that C, N D, = @ for all z,y € T. Let
K € [T]* be given, and put B = U,¢xC,. Then K C Fy(B),
a contradiction. [J

Using similar ideas but with the appropriate cardinality as-
sumption to ensure that the corresponding versions of the A-
system lemma and the set-mapping theorems are true, one
obtains also:

Theorem 15. Let A be a cardinal of countable cofinality. If
k > 2%, then TWO does not have a winning remainder strategy

in VSG([K]<*).

Since for every cardinal A of countable cofinality, and for
each cardinal x player TWO has a winning coding strategy in
W MG([k]<*) (see for example [S4]), Theorems 14 and 15 also
show that the existence of a winning remainder strategy for
TWO in VSG([£]<?) is a stronger statement than the existence
of a winning coding strategy for TWO in WM G([&]<?).

Problem 2. Let A be an uncountable cardinal of countable co-
finality. Let  be a cardinal number such that \<* < cof([s]*, C
) < 2*. Does TWO have a winning remainder strategy in any

of WMEG([]<*), WMG([k]<*) or VSG([&]<*)?

Theorem 16. If cof((J),C) = R,, then TWO has a winning
remainder strategy in VSG(J).

Proof: We may assume that there is for each X € (J)\J, a
Y € (J)\J such that X NY = @ (else, TWO has an easy
winning remainder strategy even in WM EG(J)). Let < be a
well-ordering of S, the underlying set of our topological space.
Choose two w;-sequences (C, : a < w;) and (z, : @ < w;) such
that:

4) zo < T3 and
5) Cs\Cq & J for all a < B < wy, and
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(6) {Cq : a < w,} is cofinal in (J).

For each X € (J) we write 3(X) for min{a < w; : X C C,}.
Put X = {z, : @ < w;}. Write Q for w;\w. Let F be a
winning perfect information strategy for TWO in REG(J),
and let G be a winning perfect information strategy for TWO
in REG([{zs : § € Q}]<®). We may assume that if o is a
sequence of length r of subsets of €2, at least one of which is
infinite, then |G(c)| > r. We also define: K = {z., : v < 8}
for each 3 € ().

We define a remainder strategy H for TWO in VSG(J). Let
B € (J) be given.

(1) If Be J: Then put H(B) = (Cﬂ(B)+wa {:vo,:l:g(B)})

(2) I B¢ J:

(a) f{n<w:z,¢ B} ={0,1,...,k}:

Let T be {zgp)} together with the first < k +
1 elements of {z, : @ € Q}\B. Put S = T U
(U{G(0) : 0 € S¥*2{K; : 25 € T}}), a set in [{z5 :
§ € Q}]<®. Let p be the cardinality of S. Then
define

S = {z0,...,2,} USU((U{F(0):
o € 2P{C, : z, € S}})\X).

Put H(B) = (Cp(B)+ws S)-
(b) If {n < w: =z, & B} is not a finite initial segment
of w: Then we put H(B) = (Cp(B)+w» {Z0, Ta(B)})-
To see that H is a winning remainder strategy for TWO,
consider a play

(01,(51, 1), - -, On, (Su, Tw), - -..)
where (Sl,Tl) = H(Ol) and (Sn+1,Tn+1) = H(On+1\(U?=ISj)

for each n.

For convenience we put Wy = To = @ and W, ., = W,UT 041,
B, = 0,\W,, B, = B(B,) and a, = 3, + w for each n.

Note that if B;issuch that {n € w: z, € B;}(= {0,1,...,k;}
say) is a finite initial segment of w, then the same is true for
Bjt+1. Thus (S;,T;) is defined by Case 2(a) for each j > 1, and
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(k; : j € N)is an increasing sequence. Further, {zg,,...,25,} C
T; for these j. This in turn implies that U2, F(Cp,,...,Cp,)\X C

U;“;IT,,, and U;;IG(I(ﬂl, ey Kpj) g U:;l ne
But then U2 ,0, CUX,T,. O

n=1

Corollary 17. TWO has a winning remainder strategy in
VSG([w;]<M)

Using the methods of this paper we can also show that if
J C P(S) is a free ideal such that there is an A € (J) such
that cof((J),C) < |J[al, then TWO has a winning remainder
strategy in VSG(J).

Corollary 18. For every T)-topology on w,, without isolated
points, TWO has a winning remainder strategy in VSG(J).
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