Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

k-NETWORKS, AND COVERING PROPERTIES OF CW-COMPLEXES

YOSHIO TANAKA

Dedicated to Professor Akihiro Okuyama on his 60th birthday

1. INTRODUCTION.

Let X be a CW-complex, and let $\{e_{\lambda}; \lambda\}$ be the cells of X. We characterize certain covering properties of the collection $\{e_{\lambda}; \lambda\}$ by means of k-networks, etc.

First of all, we shall give some main definitions used in this paper.

Let X be a space, and let C be a cover of X. Then X is determined by C [5] (or X has the weak topology with respect to C in the usual sense), if $F \subset X$ is closed in X if and only if $F \cap C$ is closed in C for every $C \in C$. Here, we can replace "closed" by "open". Every space is determined by an open cover. X is is dominated by C [6] (or X has the weak topology with respect to C in the sense of [9]), if the union of any subcollection C' of C is closed in X, and the union is determined by C'. Clearly, if X is dominated by C, then X is determined by C. If the cover C is increasing, countable and closed, then the converse holds.

Let X be a space, and let \mathcal{P} be a cover of X. Then \mathcal{P} is a k-network if whenever $K \subset U$ with K compact and U open in X, then $K \subset \cup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$. If we replace "compact" by "single point", then such a cover is called "net(or network)". k-networks have played a role in \aleph_0 -spaces [6] (i.e.,

YOSHIO TANAKA

regular spaces with a countable k-network) and \aleph -spaces [10] (i.e., regular spaces with a σ -locally finite k-network).

We assume that all spaces are T_2 in this paper.

Let $\mathcal{A} = \{A_{\alpha}; \alpha \in A\}$ be a collection of subsets of a space X. Then \mathcal{A} is closure-preserving if $\bigcup \{A_{\alpha}; \alpha \in B\} = \bigcup \{\bar{A}_{\alpha}; \alpha \in B\}$ \overline{B} for any $B \subset A$. \mathcal{A} is hereditarily closure-preserving if $\bigcup \{B_{\alpha}; \alpha \in B\} = \bigcup \{\bar{B}_{\alpha}; \alpha \in B\}$ whenever $B \subset A$ and $B_{\alpha} \subset A_{\alpha}$ for each $\alpha \in B$. Every space is dominated by a hereditarily closure-preserving closed cover. A σ -hereditarily closurepreserving collection is the union of countably many hereditarily closure-preserving collections, etc. We shall use " σ -CP (resp. σ -HCP)" instead of " σ -closure-preserving (resp. σ hereditarily closure-preserving ". \mathcal{A} is point-finite (resp. pointcountable) if every $x \in X$ is in at most finitely (resp. countably) many element of \mathcal{A} .

The concept of CW-complexes due to J.H. Whitehead [18] is well-known. A space X is a CW-complex, if it is a complex with cells $\{e_{\lambda}; \lambda\}$ satisfying (a) and (b) below.

(a) Each cell e_{λ} is contained in a finite subcomplex of X.

(b) X is determined by the closed cover $\{\bar{e}_{\lambda}; \lambda\}$ of X.

We note that every \bar{e}_{λ} is not a subcomplex. A Whitehead complex due to C.H. Dowker [3] is a CW-complex such that each closure of cell is a subcomplex.

As is well-known, every CW-complex X is dominated by the cover of all finite subcomplexes of X, hence X is dominated by a cover of compact metric subsets of X.

Let $\{e_{\lambda}; \lambda\}$ be the cells of a CW-complex X. We shall say that $\{e_{\lambda}; \lambda\}$ is $(\sigma-)$ locally finite; $(\sigma-)$ HCP, etc., if so is respectively the collection $\{e_{\lambda}; \lambda\}$ of subsets of X. We note that the collection $\{e_{\lambda}; \lambda\}$ is $(\sigma-)$ locally finite; $(\sigma-)CP; (\sigma-)HCP$ if and only if so is respectively $\{\bar{e}_{\lambda}; \lambda\}$.

Now let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$. Then the following hold. (a) is well-known, and (b) is due to [2]. (c) is shown in this paper.

(a) X is a paracompact, and σ -space (i.e., X has a σ -locally finite net).

(b) X is an M_1 -space (in the sense of [2]), hence X has a σ -CP k-network.

(c) X has a point-countable k-network.

However, every CW-complex is not a metric space (not even a Fréchet space, nor an \aleph -space). We have the following characterizations of X. Recall that a space if *Fréchet* (= Fréchet-Uryshon), if whenever $x \in \overline{A}$, there exists a sequence in A converging to the point x. (A) is well-known, and (B) is due to [17]. (C) ~ (F) is proved in this paper.

- (A) X is a metric space if and only if $\{e_{\lambda}; \lambda\}$ is locally finite.
- (B) X is a Fréchet space if and only if $\{e_{\lambda}; \lambda\}$ is HCP.
- (C) X is an \aleph -space if and only if $\{e_{\lambda}; \lambda\}$ is σ -locally finite.
- (D) X has a σ -HCP k-network if and only if $\{e_{\lambda}; \lambda\}$ is σ -HCP.
- (E) X is a symmetric space (in the sense of [1]) if and only if $\{\bar{e}_{\lambda}; \lambda\}$ is point-finite.
- (F) X has a point-countable closed k-network if and only if $\{\bar{e}_{\lambda}; \lambda\}$ is point-countable.

Results. Recall that a cover C of X is *star-countable* if each member of C meets only countably many members. The following lemma follows from the proof of Theorem 1 in [15].

Lemma 1. Let X be determined by a star-countable cover C. Then X is the topological sum of $\{X_{\alpha}; \alpha \in A\}$ such that each X_{α} is determined by a countable subcollection \mathcal{A}_{α} of C, and $\mathcal{C} = \bigcup \{\mathcal{A}_{\alpha}; \alpha \in A\}.$

Lemma 2. Let X be dominated by a cover $C = \{X_{\alpha}; \alpha \in A\}$ of compact metric subsets. Suppose that X has a σ -HCP (resp. σ -locally finite) closed k-network $\mathcal{F} = \bigcup \{\mathcal{F}_n; n \in N\}$ with $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Then X has a σ -HCP (resp. σ -locally finite) k-network consisting of a compact metric subsets.

Proof: Let $p \in X$, and let A be a sequence in X converging to the point p with $A \not\ni p$. Let $\mathcal{F}_A = \{F \in \mathcal{F}; F \cap A \text{ is infinite}\}.$ Since each \mathcal{F}_n is HCP, $\mathcal{F}_A \cap \mathcal{F}_n$ is at most finite. Then \mathcal{F}_A is at most countable. Let $\mathcal{A} = \{A_n; n \in N\}$ be the collection of all finite unions of elements of \mathcal{F}_A such that each $A - A_n$ is at most finite (\mathcal{A} is not empty, for \mathcal{F} is a k-network). For each $n \in N$, let $B_n = \cap \{A_i; i \leq n\}$. Then some B_k is contained in a finite union of elements of C, thus B_k is compact metric. Indeed, suppose that any B_n is not contained in any finite union of elements of C. Then there exist a sequence B = $\{x_n; n \in N\}$ in X and a subcollection $\{X_{\alpha(n)}; n \in N\}$ of C such that $x_n \in (B_n \cap X_{\alpha(n)}) - \cup \{X_{\alpha(j)}; j \leq n-1\}$. Since each $B \cap X_{\alpha(n)}$ is finite, B is discrete in X. But each neighborhood of the point p contains some B_{ℓ} , because \mathcal{F} is a k-network for X, and the sequence A converges to p not in A. Then, since $x_n \in B_n$ for each $n \in N$, B has an accumulation point in X. This is a contradiction. Then some B_k is compact metric. Thus each neighborhood of the point p contains some compact metric subset B_m . But $A - B_m$ is at most finite, and B_m can be expressed as a union of finitely many closed sets F_{mn} such that each F_{mn} is an intersection of finitely many elements of \mathcal{F} . Consequently, each neighborhood U of the point p contains some finite intersection F_U of elements of \mathcal{F} such that F_U is compact metric, and F_{II} contains a subsequence of the sequence A, hence the point p.

Now, for each $m, n \in N$, let $\mathcal{F}_{mn} = \{F_1 \cap F_2 \cap \ldots \cap F_m; F_i \in \mathcal{F}_n, i \leq m\}$. Since each \mathcal{F}_n is HCP, it is routinely verified that each \mathcal{F}_{nm} is HCP. Let $\mathcal{K} = \bigcup \{\mathcal{F}_{nm}; m, n \in N\}$, and let $\mathcal{L} = \{\{x\}; \{x\} \in \mathcal{F}\}$. Let $\mathcal{P} = \{K \in \mathcal{K}; K \text{ is compact metric }\} \cup \mathcal{L}$. Then \mathcal{P} is a σ -HCP. Moreover, \mathcal{P} satisfies (a) and (b) below. Indeed, since $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each $n \in N$, the above argument suggests that (a) holds in general. For (b), if the point x is isolated in $X, x \in \{x\} \subset U$ with $\{x\} \in \mathcal{P}$. If x is not isolated in $X, X - \{x\}$ is not closed in X. Since X is determined by metric subsets, there exists a sequence C converging to the point x with $C \not\ni x$. Then (b) holds by (a).

(a) Let $x \in X$, and let C be a sequence converging to the point x with $C \not\ni x$. Then for each neighborhood U of x, there exists $P \in \mathcal{P}$ such that $P \subset U$, and P contains a subsequence of C, hence the point x.

(b) Let $x \in X$. Then for each neighborhood U of x, there exists $P \in \mathcal{P}$ such that $x \in P \subset U$.

We shall show that \mathcal{P} is a k-network for X. Let K be compact, and U be a neighborhood of K. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n; n \in N\},\$ where each \mathcal{P}_n is HCP with $\mathcal{P}_n \subset \mathcal{P}_{n+1}$. For each $n \in N$, let $U_n = \bigcup \{ P \in \mathcal{P}_n ; P \subset U \}$. Then $K \subset U_m$ for some $m \in N$. Indeed, suppose that $K \not\subset U_n$ for any $n \in N$. Then there exists a sequence $L = \{x_n; n \in N\}$ in K with $x_n \notin U_n$. But by (b), $K \subset \bigcup \{U_n; n \in N\}$ with $U_n \subset U_{n+1}$. Then L is infinite. But X has a σ -CP closed net. Then each point of K is a G_{δ} -set in X, hence in K. Thus the compact set K is sequentially compact. Thus there exists a subsequence M of L converging to a point q not in M. Since $q \in K \subset U$, by (a) some U_m contains a subsequence of M. This is a contradiction. Hence $K \subset U_m$ for some $m \in N$. But \mathcal{P}_m is HCP and K is compact. Then K is covered by some finite subcollection of \mathcal{P}_m . This shows that \mathcal{P} is a k-network for X. Hence \mathcal{P} is a σ -HCP k-network of compact metric subsets.

For the parenthetic part, let each \mathcal{F}_n be a locally finite collection which is closed under finite intersections. Let K be a compact subset of X, and let $\mathcal{F}_K = \{F \in \mathcal{F}; F \cap K \neq \emptyset\}$. Then \mathcal{F}_K is at most countable. Thus by a similar way as in the first half of the above proof, we can show that $\{F \in \mathcal{F}; F$ is compact metric $\}$ is a σ -locally finite k-network for X. Thus the parenthetic part holds.

We recall the following basic properties of a CW-complex; see [18], etc.

Lemma 3. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$.

(1) Let each $X_{\lambda}(\lambda \in \Lambda)$ be a subcomplex, and let $C = \bigcup \{X_{\lambda}; \lambda \in \Lambda\}$. Then C is a CW-complex with cells $\{e_{\lambda}; e_{\lambda} \subset C\}$.

(2) Each compact subset K of X meets only finitely many e_{λ} , hence K is contained in a finite union of e_{λ} 's.

The following lemma is easily proved.

Lemma 4. Let $\mathcal{F} = \{X_{\lambda}; \lambda \in \Lambda\}$ be a closed cover of a space X. For each $\lambda \in \Lambda$, let \mathcal{P}_{λ} be a k-network for X_{λ} . If each compact subset of X is contained in a finite union of elements of \mathcal{F} , then $\cup \{\mathcal{P}_{\lambda}; \lambda \in \Lambda\}$ is a k-network for X.

Theorem 5. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$. Then the following are equivalent.

- (a) $\{e_{\lambda}; \lambda\}$ is σ -discrete.
- (b) $\{e_{\lambda}; \lambda\}$ is σ -locally finite.
- (c) $\{e_{\lambda}; \lambda\}$ is σ -locally countable.
- (d) $\{e_{\lambda}; \lambda\}$ is locally countable.
- (e) X is an \aleph -space.

Proof: The implication $(a) \Rightarrow (b) \Rightarrow (c)$ is clear.

(c) \Rightarrow (d). X is determined by a star-countable cover $\{\bar{e}_{\lambda}; \lambda\}$. Then if follows from Lemma 1 that $\{\bar{e}_{\lambda}; \lambda\}$. is locally countable, hence so is $\{e_{\lambda}; \lambda\}$.

(d) \Rightarrow (e). X is determined by a star-countable cover $\{\bar{e}_{\lambda}; \lambda\}$. Then by Lemma 1, X is the topological sum of space $X_{\alpha} (\alpha \in A)$, where each X_{α} is covered by a countable subcollection of $\{\bar{e}_{\lambda}; \lambda\}$. Then each X_{α} is an \aleph_0 -space by Lemmas 3(2) & 4. Thus X is an \aleph -space by Lemma 4.

(e) \Rightarrow (a). X is dominated by compact metric subsets. Then by Lemma 2, X has a σ -locally finite k-network \mathcal{P} consisting of compact metric subsets. Since \mathcal{P} is star-countable, by Lemma 1, X is the topological sum of σ -compact spaces $X_{\alpha} (\alpha \in A)$. Since each e_{λ} is connected, it is contained in some X_{α} . But by Lemma 3(2), each σ -compact space X_{α} is a countable union of cells e_{λ} . Then we see that $\{e_{\lambda}; \lambda\}$ is a σ -discrete.

In the proof of (e) \Rightarrow (a) of the previous theorem, the X_{α} are CW-complexes in X. Indeed, if $e_{\lambda} \subset X_{\alpha}$, then $\bar{e}_{\lambda} \subset X_{\alpha}$. Then the X_{α} are subcomplexes of X, hence CW-complexes. Then we have the following corollary in view of the proof of the previous theorem.

Corollary 6. A CW-complex is an \aleph -space if and only if it is the topological sum of countable CW-complexes.

Theorem 7. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$. Then $\{e_{\lambda}; \lambda\}$ is σ -HCP if and only if X has a σ -HCP k-network.

Proof: "If": We recall that, among regular spaces, if \mathcal{A} is HCP, then so is $\{\bar{A}; A \in \mathcal{A}\}$ (see [8; Lemma 5.5], etc.). Then we can assume that X has a σ -HCP closed k-network. But Xis dominated by a cover of compact metric subsets. Thus, by Lemma 2, X has a σ -HCP k-network $\mathcal{P} = \bigcup \{\mathcal{P}_n; n \in N\}, \mathcal{P}_n \subset \mathcal{P}_{n+1}$, consisting of compact metric subsets. Fore each $n \in N$, let $X_n = \bigcup \mathcal{P}_n$, and let $C_n = \bigcup \{C; C \text{ is a finite subcomplex}$ with $C \subset X_n\}$. Then each C_n is a CW-complex with cells $\{e_{\lambda}; e_{\lambda} \subset C_n\}$ by Lemma 3(1). On the other hand, each X_n has a HCP cover \mathcal{P}_n of closed metric subsets. Hence each X_n is Fréchet, then so is each CW-complex C_n . Thus each $\{e_{\lambda}; e_{\lambda} \subset C_n\}$ is HCP by (B) in Introduction. But, each finite subcomplex is contained in some X_n , because \mathcal{P} is a k-network for X. Then each cell e_{λ} in X is contained in some C_n . Hence $\{e_{\lambda}; \lambda\}$. is σ -HCP.

"Only if": Since $\{\bar{e}_{\lambda}; \lambda\}$. is σ -HCP, put $\{\bar{e}_{\lambda}; \lambda\}$. = $\cup \{\mathcal{F}_n; n \in N\}$, where each \mathcal{F}_n is HCP with $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Each $X_n = \cup \mathcal{F}_n$ has a HCP cover of compact metric subsets. Since \mathcal{F}_n is HCP, each compact subset of X_n is contained in a finite union of elements of \mathcal{F}_n . Hence each X_n has a σ -HCP k-network by Lemma 4. But, by Lemma 3(2), each compact subset of X is contained in some X_n . Hence X has a σ -HCP k-network by Lemma 4.

For $\alpha \geq \omega$, let S_{α} be the quotient space obtained from the topological sum of α convergent sequences by identifying all the limit points. The following lemma is due to [14; Lemma 2.2].

Lemma 8. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$. Then $\{\bar{e}_{\lambda}; \lambda\}$ is point-finite (resp. point-countable) if and only if X contains no closed copy of S_{ω} (resp. S_{ω_1}).

A space X is symmetric [1], if there exists a real valued, nonnegative function d defined on $X \times X$ satisfying the following conditions:

 $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) = d(y,x)$, and $F \subset X$ is closed in $X \Leftrightarrow d(x,F) > 0$ for any $x \notin F$. If X is a σ -space (in particular, CW-complex), "X is symmetric" is equivalent to "X satisfies the weak first axiom of countability in the sense of [1] (or X is g-first countable in the sense of [11])"; see [1].

Theorem 9. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$.

- (1) $\{\bar{e}_{\lambda}; \lambda\}$ is point-finite if and only if X is symmetric.
- (2) $\{\bar{e}_{\lambda}; \lambda\}$ is point-countable if and only if X has a pointcountable closed k-network.

Proof: (1) For the "if" part, we note that a symmetric space X with symmetric d contains no closed copy of S_{ω} . Indeed, suppose X contains a closed copy $\cup \{C_n; n \in N\} \cup \{\infty\}$ of S_{ω} , where each C_n is a sequence converging to ∞ . For each $m \in N, F_m = \cup \{C_n : n \ge m\} \cup \{\infty\}$ is closed in X, but $F_m - \{\infty\}$ is not closed in X. Then there exists a sequence $A = \{x_k; k \in N\}$ in X such that $x_k \in C_{n(k)}$, and $d(x_k, \infty) < 1/k$. Then the sequence A converges to ∞ . This is a contradiction. Then X contains no closed copy of S_{ω} . Thus this part follows from Lemma 8. For the "only" part, note that X is determined by a point-finite cover $\{\bar{e}_{\lambda}; \lambda\}$ of metric subsets. Then X is a symmetric space [12; Theorem 3.3].

(2) For the "if" part, we note that a space with a pointcountable closed k-network contains no closed copy of S_{ω_1} in view of [13; Proposition 1]. Thus this part follows from Lemma 8. For the "only if" part, X is covered by a point-countable closed cover $\{\bar{e}_{\lambda}; \lambda\}$ of metric subsets. Then, by Lemma 3(2) and Lemma 4, X has a point-countable closed k-network. **Remark 10.** (1) In (1) of the previous theorem, unlike (2), we can not replace "X is symmetric" by "X has a point-finite closed k-network". Indeed, an infinite convergent sequence together with the limit point has no point-finite closed k-networks, then neither does a finite CW-complex I, where I is the closed unit interval [0,1].

(2) In (2) of the previous theorem, we can not omit the closedness of the k-network. Indeed, any CW-complex with cells $\{e_{\lambda}; \lambda\}$ has a point-countable k-network $\{V_{n\lambda} \cap e_{\lambda}; n, \lambda\}$, where $\{V_{n\lambda}; n\}$ is a countable base for \bar{e}_{λ} .

A space X is g-metrizable [11] if X is a regular space having a σ -locally finite weak base. For the definition of weak base, see [1; p. 129]. A Fréchet, g-metrizable space is metrizable [11]. Combining [4; Theorem 2.4] with [1; Theorem 2.8], we see that every g-metrizable space is precisely a symmetric, \aleph space. Thus we have the following corollary by Theorems 5 and 9(1).

Corollary 11. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$. Then $\{\bar{e}_{\lambda}; \lambda\}$ is point-finite and locally countable if and only if X if g-metrizable.

We shall give some examples and a question.

Example 12. Let X be a CW-complex with cells $\{e_{\lambda}; \lambda\}$.

(1) The property " $\{\bar{e}_{\lambda}; \lambda\}$ is HCP" need not imply that X has a point-countable closed K-network, and not imply that $\{\bar{e}_{\lambda}; \lambda\}$ is point-countable.

(2) The property " $\{e_{\lambda}; \lambda\}$ is CP" need not imply that X has a CP or σ -HCP k-network, and not imply that $\{e_{\lambda}; \lambda\}$ is σ -HCP.

(3) The property "X is a symmetric space with a σ -CP k-network" need not imply that X has a σ -HCP k-network, not imply that $\{e_{\lambda}; \lambda\}$ is σ -CP.

Proof: (1) Let X be the quotient space obtained from the topological sum of uncountable many closed unit intervals by identifying all zero points. Then X is a CW-complex having the obvious cells $\{e_{\lambda}; \lambda\}$ such that $\{\bar{e}_{\lambda}; \lambda\}$ is HCP, but is not point-countable at the point 0. Then by Theorem 9(2), X has no point-countable closed k-networks.

(2) Let X be CW-complex obtained from the topological sum of uncountably many triangles $T_{\lambda} = \Delta a_{\lambda} b_{\lambda} c_{\lambda}$ by identifying all of segments $a_{\lambda} b_{\lambda}$ with the closed unit interval I. Obviously, the set I has no CP-networks, hence has no CP k-networks. Then X has no CP k-networks. The collection $\{T_{\lambda}; \lambda\}$ is CP, but it is not σ -HCP. Indeed, suppose that $\{T_{\lambda}; \lambda\}$ is σ -HCP. Then some countable $\{T_{\lambda_n}; n \in N\} \subset \{T_{\lambda}; \lambda\}$ is HCP. Let $Y = \bigcup \{T_{\lambda_n}; n \in N\}$. Then Y is Fréchet. For each $n \in N$, let L_n be a segment from a point $1/n \in I$ to the vertex c_{λ} of T_{λ} . Let $A = \bigcup \{L_n; n \in N\} - \{1/n; n \in N\}$. Then $0 \in \overline{A}$ in Y. But there exist no sequences in A converging to the point 0. Hence Y is not Fréchet. This is a contradiction. Then $\{T_{\lambda}; \lambda\}$ is not σ -HCP, hence neither does the obvious cells of X. Thus by Theorem 7, X has no σ -HCP k-networks.

(3) Let I be the closed unit interval. For each $\alpha \in I$, let S_{α} be a 2-sphere. Let X be the quotient space obtained from the topological sum of $\{I, S_{\alpha}; \alpha \in I\}$ by identifying each $\alpha \in I$ with a point p_{α} of S_{α} . Then X is a CW-complex with the cells $\mathcal{A} = \{\{0\}, \{1\}, (0, 1), T_{\alpha}; \alpha \in 1\}$, where $T_{\alpha} = S_{\alpha} - \{p_{\alpha}\}$. Since $\{\overline{T}; T \in \mathcal{A}\}$ is point-finite, X is symmetric by Theorem 9(1). Also, since X is a CW-complex, X has a σ -CP k-network by (b) in Introduction. But \mathcal{A} is not σ -CP. Indeed, suppose that \mathcal{A} is σ -CP. Then $\{\overline{T}_{\alpha}; \alpha \in I\}$ is a countable union of discrete closed subsets of I. Hence the compact set I is at most countable. This is a contradiction. Thus the cells \mathcal{A} is not σ -CP. Then X has no σ -HCP k-networks by Theorem 7.

In view of Theorem 7 and Example 12(2) & (3), we have the following question.

Question 13. Let X be a CW-complex with the cells $\{e_{\lambda}; \lambda\}$. Characterize " $\{e_{\lambda}; \lambda\}$ is CP (or σ -CP)" by means of a nice topological property of X.

Finally, we shall consider spaces dominated by compact metric subsets.

Let X be a space. Suppose that X is dominated by a cover $\{X_{\lambda}; \lambda < \alpha\}$. For each $\lambda < \alpha$, let $E_0 = X_0$, $E_{\lambda} = E_{\lambda} - \bigcup \{X_{\mu}; \mu < \lambda\}$. We will use this notation. The following property (*) is due to [16].

(*) Let $x \in X$. For each $\lambda < \alpha$, let A_{λ} be any subset of E_{λ} such that $\{x\} \cup A_{\lambda}$ is closed in X. Then $S = \{x\} \cup \{A_{\lambda}; \lambda < \alpha\}$ is closed in X. In particular, if each A_{λ} is finite, then S is closed and discrete in X.

Lemma 14. Let X be domintaed by a cover $\{X_{\lambda}; \lambda < \alpha\}$. Then the following hold.

(1) X is determined by $\{\bar{E}_{\lambda}; \lambda\}$.

(2) Each compact subset of X meets only finitely many E_{λ} .

(3) Let each E_{λ} be Fréchet. If X contains no closed copy of S_{ω} (resp. S_{ω_1}). then $\{\bar{E}_{\lambda}; \lambda\}$ is point-finite (reap. point-countable).

(4) Let F be a closed subset of X. If F is first countable (resp. Fréchet), then $\{E_{\lambda}; E_{\lambda} \subset F\}$ is locally finite (resp. HCP) in X.

Proof: (1) is due to [16]. (2) and (3) follow from the property (*). For (4), note that F is dominated by $\{X_{\lambda} \cap F; \lambda\}$. When F is first countable for $x \in F$, let $\{V_n; n \in N\}$ be a decreasing local base at x in F. In view of (*), some V_n meets only finitely many $F_{\lambda} = E_{\lambda} \cap F$. This implies that $\{E_{\lambda}; E_{\lambda} \subset F\}$ is locally finite in X. When F is Frécht, $\{F_{\lambda}; \lambda\}$ is HCP in F in view of Lemma 1.1 in [17]. Hence $\{E_{\lambda}; E_{\lambda} \subset F\}$ is HCP in X.

Concerning spaces dominated by compact metric subsets, similarly to CW-complexes the following analogue can be proved by means of Lemmas 2, 4, and 14. **Theorem 15.** Let X be a space dominated by a cover $\{X_{\lambda}; \lambda\}$ with each \overline{E}_{λ} compact metric. Then it is possible to replace $\{e_{\lambda}; \lambda\}$ (or $\{\overline{e}_{\lambda}; \lambda\}$) by $\{E_{\lambda}; \lambda\}$ (or $\{\overline{E}_{\lambda}; \lambda\}$) in $(A) \sim (F)$ in Introduction.

References

- A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys, 21 (1966), 115-162.
- J.G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 4 (1961), 105-125.
- 3. C. H. Dowker, Topology of metric complexes, Amer. J. Math., 74 (1952), 555-577.
- 4. L. Foged, On g-metrizability, Pacific J. Math., 98 (1982), 327-332.
- 5. G. Gruenhage, E. Michael and Y. Tanaka, Spaces deteermined by point-countable covers, Pacific J. Math., 113 (1984), 303-332.
- 6. E. Michael, Continuous selections I, Ann. Math., 63 (1956), 361-382.
- 7. ——, \aleph_0 -spaces, J. Math. Mech., 15 (1966), 893-1002.
- E. Michael, R. C. Olson and F. Siwiec, A-spaces and countable biquotient maps, Dissertationes Mathematicas (Warszawa), 133 (1976), 4-43.
- 9. K. Morita, On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad., 29 (1953), 537-543.
- 10. P. O'Meara, On paracompactness in function spaces with the compactopen topology, Proc. Amer. Math. Soc., 29 (1971), 183-189.
- 11. F. Siwiec, On defining a space by a weak base, Pacific J. Math., 52 (1974), 233-245.
- 12. Y. Tanaka, On symmetric spaces, Proc. Japan Acad., 49 (1973), 106-111.
- 13. —, Closed maps on metric spaces, Topology and Appl., 11 (1980), 87-92.
- 14. —, Products of spaces of countable tightness, Topology Proceedings, 6 (1981), 115-133.
- Point-countable k-systems and products of k-spaces, Pacific J. Math., 101 (1982), 199-208.
- 16. —, Necessary and sufficient conditions for products of k-spaces, Topology Proceedings, 14 (1989), 281-313.
- 17. Y. Tanaka and Zhou Hao-xuan, Spaces dominated by metric subsets, Topology Proceedings, 9 (1984), 149-163.
- 18. J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc., 55 (1949), 213-245.

Tokyo Gakugei University Koganei-shi, Tokyo (184) Japan