# **Topology Proceedings**



| Web:    | http://topology.auburn.edu/tp/         |
|---------|----------------------------------------|
| Mail:   | Topology Proceedings                   |
|         | Department of Mathematics & Statistics |
|         | Auburn University, Alabama 36849, USA  |
| E-mail: | topolog@auburn.edu                     |
| ISSN:   | 0146-4124                              |

COPYRIGHT © by Topology Proceedings. All rights reserved.

Topology Proceedings Vol 17, 1992

# SPACES DETERMINED BY GENERALIZED METRIC SUBSPACES

# YOSHIO TANAKA

Dedicated to Professor Akihiro Okuyama on his 60th birthday

#### INTRODUCTION

First, we shall give some definitions which will be used in this paper.

Let X be a space. Let  $d: X \times X \to R$  be a non-negative, real valued function such that d(x, y) = 0 if and only if x = y. We shall consider the following conditions:

(a)  $G \subset X$  is open if and only if for each  $x \in G$ , there exists  $S_n(x) \subset G$ , where  $S_n(x) = \{y \in X; d(x,y) < 1/n\}$   $(n \in N)$ .

(b) For  $x \in X$  and  $n \in N$ ,  $S_n(x)$  is open in X.

(c) For  $x \in X$  and  $n \in N$ , int  $S_n(x) \ni x$ .

Then d is called an o-metric [16] if it satisfies (a). An ometric d is called a generalized metric [12] if it satisfies (b); equivalently, for each  $x \in X$ ,  $\{S_n(x); n \in N\}$  is a base at x.

A space X is called *o-metric* [16] if it has an o-metric d. Every o-metric space is a sequential space, hence a k-space.

We note that a space X is weakly first countable (= X satisfies the weak first axiom of countability in the sense of [1]) if and only if X is o-metric; and that a space X is first countable if and only if it has an o-metric staisfying (b) (or (c)); cf. [16].

Let X be a space. Let  $d: X \times X \to R$  be a non-negative, real valued function. Let us consider following conditions as a generalization of metric functions.

(1) d(x,y) = d(y,x).

(2)  $d(x,z) \leq d(x,y) + d(y,z)$ .

(3)  $d(x,z) \leq \max \{d(x,y), d(y,z)\}.$ 

(4) For any compact set K and closed set F with  $K \cap F = \emptyset$ , inf  $\{d(x, y); x \in K, y \in F\} > 0;$ 

A space X is called *symmetric* if it has an o-metric d satisfying (1), and such a function d is called *symmetric* for X.

A space X is called *semi-metric* if it has an o-metric d satisfying (1) and (c).

A space X is called *quasi-metric* (=  $\triangle$ -metric in the sense of ([16]) if it has a generalized metric d satisfying (2). Here we can replace "generalized metric" by "o-metric".

A space X is called *non-archimedian quasi-metric* (simply, n.a.-quasi-metric) if it has a generalized metric d satisfying (3). Here we can replace "generalized metric" by "o-metric".

A space X is called  $\gamma$ -metric (=  $\gamma$ -space) if it has a generalized metric staisfying (4).

In this paper, we shall use "X is symmetric; (n.a-) quasimetric, etc" instead of "X is symmetrizable; (n.a.-) quasimetrizable; etc".

(N.a.-) quasi-metric spaces;  $\gamma$ -metric spaces are characterized by means of g-functions, interior-preserving covers, quasiuniformities, or sequences of neighbornets, etc., and they are investigated or surveyed in [5], [6], [12], [16], etc.

Concerning symmetric, (n.a-) quasi-metric, or  $\gamma$ -metric spaces, etc., the following diagram is known; see [6], for example. A space is *Fréchet* if whenever  $x \in \overline{A}$ , then there exists a sequence in A converging to the point x. For the definition of semi-stratifiable spaces; see [3], and for (a), see [10]; and [4].

**Diagram.** For a space, the following implications hold.

(a) o-metric and semi-stratifiable  $\Rightarrow$  symmetric. But, symmetric  $\Rightarrow$  closed sets are  $G_{\delta}$ -sets.

(b) developable  $\Rightarrow$  semi-metric  $\Leftrightarrow$  Fréchet and symmetric  $\Leftrightarrow$  first countable and semi-stratifiable. But, semi-metric  $\neq \sigma$ -space.

(c) metacompact and developable  $\Rightarrow$  n.a.-quasi-metric  $\Rightarrow$  quasi-metric  $\Rightarrow \gamma$ -metric  $\Rightarrow$  first countable. But, n.a.-quasi-metric  $\Rightarrow$  closed sets are  $G_{\delta}$ -sets.

(d) symmetric and  $\gamma$ -metric  $\Leftrightarrow$  developable and quasi-metric. But, developable  $\Rightarrow \gamma$ -metric.

Let X be a space, and let C be a cover (not necessarily closed or open) of X. Then X is determined by C [7] (= X has the weak topology with respect to C in the usual sense), if  $F \subset X$ is closed in X if and only if  $F \cap C$  is closed in C for every  $C \in C$ . Here, we can replace "closed" by "open". Every space is determined by an open cover. If a space X is determined by a countable and increasing cover  $\{X_n; n \in N\}$ , then X is called the *inductive limit* of  $\{X_n; n \in N\}$ , and denoted by  $X = \lim X_n$ .

We recall that a space X is sequential if X is determined by the cover of all (compact) metric subspaces.

Let X be a space, and let  $\mathcal{F}$  be a closed cover of X. Then X is dominated by  $\mathcal{F}$  [14] (=X has the weak topology with respect to  $\mathcal{F}$  in the sense of [15]), if the union of any subcollection  $\mathcal{F}'$  of  $\mathcal{F}$  is closed in X, and the union is determined by  $\mathcal{F}'$ . Every space is dominated by a hereditarily closure-preserving closed cover. As is well-known, every CW-complex is dominated by a cover of compact metric subspaces.

We recall canonical quotient spaces  $S_{\omega}$  and  $S_2$ , which is called the sequential fan and the Arens' space respectively.

 $S_{\omega}$  is the quotient space obtained from the topological sum of countably many convergent sequences by identifying all the limit points.

 $S_2 = (N \times N) \cup N \cup \{\infty\}$  is the space with each point of  $(N \times N)$  isolated. A basic neighborhood of  $n \in N$  consists of all sets of the form  $\{n\} \cup \{(m,n); m \geq k\}$ . And U is a neighborhood of  $\infty$  if and only if  $\infty \in U$  and U is a neighborhood of all but finitely many  $n \in N$ .

The spaces  $S_{\omega}$  and  $S_2$  are dominated by an increasing countable cover of compact metric subsets. But,  $S_{\omega}$  nor  $S_2$  is first countable. Then  $S_{\omega}$  is not semi-metric, not (n.a.-) quasi-metric, not  $\gamma$ -metric, and neither is  $S_2$ . Then the following question in [12; Question 3] is negative.

Let X be a space dominated by a cover of quasi-metric; n.a.quasi-metric; or  $\gamma$ -metric subsets. Then is X so respectively?

In this paper, we give a characterization for the above space X to be quasi-metric; n.a.-quasi-metric; or  $\gamma$ -metric respectively. We also give some analogous characterizations when spaces are determined by certain covers of these generalized subspaces, or semi-metric subspaces, etc.

We assume that all spaces are regular and  $T_1$ .

### 1. Spaces determined by countable covers.

For each  $n \in N$ , let  $Y_n$  be homeomorphic to the product  $X^n$  of a space X. First, we shall consider the inductive limit of  $\{Y_n; n \in N\}$ .

**Lemma 1.1.** Let X be a sequential space, and let  $x \in X$ . For each  $n \in N$ , let  $Y_n = X^n \times \{x\} \times \{x\} \times \dots$  Let  $Y = \lim_{n \to \infty} Y_n$ . If the point x is not isolated in X, then Y contains a closed copy of  $S_{\omega}$ , and a closed copy of  $S_2$ .

Proof: Since X is sequential, there exists a sequence  $\{x_n; n \in N\}$  in X converging to x with  $x_n \neq x$ . Let p = (x, x, ...), let  $p_{m n} = (x_n, x_n, ..., x_n, x, x, ...) \in Y_m$  for each  $m, n \in N$ . Let  $S = \bigcup \{p_{m n}; m, n \in N\} \cup \{p\}$ . Since each  $S \cap Y_n$  is closed in  $Y_n$ , S is closed in Y. For each  $m \in N$ , let  $k(m) \in N$ , and let  $F = \bigcup \{p_{m n}; m \in N, n \leq k(m)\}$ . Then each  $F \cap Y_n$  is finite, hence closed in  $Y_n$ . Thus F is closed in Y. This implies that S is a copy of  $S_{\omega}$ . Then Y contains a closed copy of  $S_{\omega}$ . Next, for each  $m \in N$ , let  $q_m = (x_m, x, ...)$ , where  $x_n$  is the m-th coordinate. Let  $T = \{q_{m n}; m, n \in N\} \cup \{q_m; m \in N\} \cup \{p\}$ . Similarly T is closed in Y, and T is a copy of  $S_2$ .

**Theorem 1.2.** Let X be a space, and  $x \in X$ . For each  $n \in N$ , let  $Y_n = X^n \times \{x\} \times \{x\} \times \dots$  Let  $Y = \lim_{n \to \infty} Y_n$ . Then (1) and (2) below hold.

(1) Suppose that X is symmetric. Then the following are equivalent.

(a) Y is symmetric.

(b) Y is a sequential space which contains no closed copy of  $S_{\omega}$ .

(c) Y is a sequential space, and the point x is isolated in X.

(2) Suppose that X is metric; semi-metric; quasi-metric; n.a-quasi-metric;  $\gamma$ -metric; or developable. Then the following are equivalent.

- (a) Y is so respectively.
- (b) Y contains no closed copy of  $S_{\omega}$ .
- (c) Y contains no closed copy of  $S_2$ .
- (d) The point x is isolated in X.

**Proof:** (1) For (a)  $\Rightarrow$  (b), suppose that Y contains a closed subset  $\cup \{L_n; n \in N\} \cup \{p\}$ , with  $L_n \rightarrow p$ , which is a copy  $S_{\omega}$ . Then each  $L_n \cup \{p\}$  is closed, but  $L_n$  is not closed in Y. Thus there exists a point  $y_n \in L_n$  with  $y_n \in S_n(p)$  for each  $n \in N$ . Then the sequence  $\{y_n; n \in N\}$  converges to the point  $\infty$ . This is a contradiction. Hence Y contains no closed copy of  $S_{\omega}$ . (b)  $\Rightarrow$  (c) follows form Lemma 1.1. If (c) holds, then each  $Y_n$  is closed and open in Y. Then Y is the topological sum of  $\{Y_n - Y_{n-1}; n \in N\}$ . But each  $Y_n$  is sequential with X symmetric. Then each  $Y_n$  is symmetric by [19; Theorem 4.1], hence so is each  $Y_n - Y_{n-1}$ . Thus Y is symmetric. Hence (a) holds.

(2) (a)  $\Rightarrow$  (b) or (c) is easy, because Y is first countable. (b) or (c)  $\Rightarrow$  (d) follows from Lemma 1.1. For (d)  $\Rightarrow$  (a), Y is the topological sum of  $\{Y_n - Y_{n-1}; n \in N\}$ . But each  $Y_n$  is so respectively, then so is each  $Y_n - Y_{n-1}$ . Thus Y is so respectively. **Theorem 1.3.** Let X be a non-discrete, sequential space. Suppose that X is homogeneous; that is, for each  $p, q \in X$ , there exists a homeomorphism of X onto X taking p to q. For each  $n \in N$ , let us consider  $X^n$  as a subspace of  $X^{n+1}$ ; that is, as a subspace  $X^n \times \{x\} \times \{x\} \times \dots$  of  $X^{\omega}$  for  $x \in X$ . For each  $n \in N$ , let  $Y_n = X^n$ . Let  $Y = \lim_{n \to \infty} Y_n$ . Then Y contains a closed copy of  $S_{\omega}$  and a closed copy of  $S_2$ ; hence, Y is not o-metric nor Fréchet.

**Proof:** Since X is non-discrete and homogeneous, any point of X is not isolated. Then Y contains a closed copy of  $S_{\omega}$  and a closed copy of  $S_2$  by Lemma 1.1. Thus Y is not Fréchet, for Y contains a copy of  $S_2$ . Also, Y is not o-metric, for Y contains a closed copy of  $S_{\omega}$ .

Let I; R be the closed interval; the real line respectively. For all  $n \in N$ , let  $X_n = I^n$  (or  $R^n$ ). The previous theorem shows that  $X = \lim_{n \to \infty} X_n$  is not even o-metric nor Fréchet, hence X is not symmetric, not quasi-metric, nor  $\gamma$ -metric, etc.

The following lemma is due to [5]. Unlike this, every space which is a countable union of open metric subsets is neither semi-metric nor symmetric; see, Example 1.9.

**Lemma 1.4.** Let  $\{G_{\alpha}; \alpha\}$  be a  $\sigma$ -point-finite open cover of X. If the  $G_{\alpha}$  are quasi-metric; n.a.-quasi-metric; or  $\gamma$ -metric, then so is X respectively.

A space X is strongly Fréchet [17], if whenever  $\{A_n, n \in N\}$ is a decreasing sequence in X with  $x \in \overline{A}_n$  for any  $n \in N$ , then there exists a sequence  $\{x_n; n \in N\}$  in X converging to the point x with  $x_n \in A_n$ . The following lemma is due to [20].

**Lemma 1.5.** Let X be a space determined by a countable cover C such that each finite union of elements of C is first countable. If X contains no closed copy of  $S_{\omega}$  and no  $S_2$ , then X is strongly Fréchet.

Every space  $\lim_{\to} X_n$  with each  $X_n$  compact metric need not be quasi-metric, nor  $\gamma$ -metric even if X is symmetric (or Fréchet), as is seen by the space  $S_2$  (or  $S_{\omega}$ ). But we have the following theorem (cf. Theorem 1.2).

**Theorem 1.6.** Let  $X = \lim_{n \to \infty} X_n$ . Suppose that the  $X_n$  are quasimetric; n.a.-quasi-metric; or  $\gamma$ -metric. Then the following are equivalent.

- (a) X is so respectively.
- (b) X is first countable.
- (c) X contains no closed copy of  $S_{\omega}$  and no  $S_2$ .

**Proof:** (a)  $\Rightarrow$  (b) is clear, and (b)  $\Rightarrow$  (c) is obvious. So, we prove (c)  $\Rightarrow$  (a). Since X is strongly Fréchet by Lemma 1.5, for each  $x \in X$ ,  $x \in \text{int } X_m$  for some  $m \in N$ . Indeed, suppose not. Then  $x \in \overline{X - X_n}$  for any  $n \in N$ . Then there exists a sequence  $K = \{p_n; n \in N\}$  in X converging to the point x such that  $p_n \in X - X_n$ , and  $p_n \neq x$  for any  $n \in N$ . But, each  $K \cap X_n$  is finite, hence closed in  $X_n$ . Thus K is closed in X, hence  $K \ni x$ . This is a contradiction. Thus,  $x \in \text{int } X_m$  for some  $m \in N$ . This implies that  $\{\text{int } X_n; n \in N\}$  is a countable open cover of X. But, the int  $X_n$  are quasi-metric; n.a.-quasimetric;  $\gamma$ -metric respectively. Thus, X is so respectively by Lemma 1.4.

A space X is submetacompact (=  $\theta$ -refinable) if for each open cover  $\mathcal{U}$  of X there exists a sequence  $\{\mathcal{U}_n; n \in N\}$  of open refimements of  $\mathcal{U}$  such that for each  $x \in X$  there exists an open cover  $\mathcal{U}_n$  which is finite at x. As is well-known, metacompact spaces, and subparacompact spaces are submetacompact.

Every semi-metric space is semi-stratifiable, hence submetacompact. But, every n.a.-quasi-metric space is not submetacompact; see, Example 1.9.

The following lemma is due to [18]. But, unlike this, every submetacompact and locally metric space is neither quasimetric nor  $\gamma$ -metric; see, Example 2.5(2).

**Lemma 1.7.** Let X be a submetacompact space.

(1) If X is locally developable, then X is developable.

(2) If X is locally semi-metric, then X is semi-metric.

**Corollary 1.8.** Let  $X = \lim_{n \to \infty} X_n$ . Suppose that the  $X_n$  are semi-metric; or developable. Then the following are equivalent.

(a) X is so respectively.

(b) X is first countable, and every closed subset of X is a  $G_{\sigma}$ -set.

(c) X is first countable, and submetacompact.

**Proof:** Every semi-metric space is a submetacompact space in which every closed subset is a  $G_{\delta}$ -set. Thus (a)  $\Rightarrow$  (b) and (c) holds. Suppose that (b) holds. Since X is first countable. X is a countable union of open semi-metric subsets by the proof of Theorem 1.6. But each open subset of X is an  $F_{\sigma}$ -set, then X is a countable union of closed semi-stratifiable subsets. Thus X is a semi-stratifiable space. Then X is semi-metric by (b) in Diagram. Thus (b)  $\Rightarrow$  (a) holds. Suppose that (c) holds. Since X is first countable, X is locally semi-metric by the proof of Theorem 1.6. But X is submetacompact, then X is semi-metric by (2) of Lemma 1.7. Thus (c)  $\Rightarrow$  (a) holds. For the developable case, (b) implies that X is a semi-stratifiable space which is locally developable. Since X is submetacompact, X is developable by (1) of Lemma 1.7. Thus (b) (or (c))  $\Rightarrow$  (a) also holds in this case.

Concerning symmetric spaces and semi-metric spaces, Theorem 1.6 does not hold by the following example. Hence, the additional condition of X in (b) or (c) of Corollary 1.8 is essential.

**Example 1.9.** A n.a.-quasi-metric (hence first countable) space  $X = \lim_{n \to \infty} X_n$  such that the  $X_n$  are semi-metric open subsets. But X is not symmetric (nor submetacompact).

268

**Proof:** Let X be the space Z in Example 3.3 in [4], where Z is not submetacompact and has a closed subset which is not a  $G_{\delta}$ -set. As is seen there, Z has the  $\sigma$ -locally countable base  $\mathcal{B} = \bigcup \{ \mathcal{B}_n; n \in N \}$ , which is also  $\sigma$ -disjoint. But, it follows that each member of  $\mathcal{B}$ , which is the basic nbd  $B(x_1, x_2, \dots, x_k)$ or  $V_k(\alpha) = \{\alpha\} \cup \{\cup B_\alpha(n); n \ge k\}$  defined there, is clopen in Z, and metrizable (the  $V_k(\alpha)$  has a  $\sigma$ -locally finite base, hence is metrizable). Let  $G_n = \bigcup \mathcal{B}_n$  for each  $n \in N$ . Then each  $G_n$  has a locally finite closed cover  $\mathcal{B}_n$  in  $G_n$ , hence  $G_n$  is metrizable. Thus X has a countable open cover  $\{G_n; n \in N\}$ of metric subsets. Hence X is n.a.-quasi-metric by Lemma 1.4. For each  $n \in N$ , let  $X_n = \bigcup \{G_m; m \le n\}$ . Then each  $X_n$  is an open subset of X which is developable, hence semi-metric. Then X is determined by a countable, increasing open cover  $\{X_n; n \in N\}$  of semi-metric subsets. But X is a first countable space which is not semi-stratifiable. Then X is not symmetric by (b) in Diagram.

## 2. Spaces determined by point-finite covers.

The space  $S_2$  is a symmetric space determined by a pointfinite, countable cover of compact metric subspaces. But  $S_2$  is neither semi-metric nor quasi-metric. Concerning spaces determined by point-finite covers of certain generalized metric subspaces, we have the following theorem.

**Theorem 2.1.** Let X be a space determined by a point-finite cover  $C = \{X_{\alpha}\}$ .

(1) If the  $X_{\alpha}$  are o-metric; or symmetric, then so is X respectively.

(2) Suppose that the  $X_{\alpha}$  are semi-metric. Then X is semimetric if and only if X is first countable (or Fréchet).

(3) Suppose that the  $X_{\alpha}$  are metacompact developable. Then the following are equivalent.

- (a) X is (metacompact) developable.
- (b) X is (n.a.-) quasi-metric.
- (c) X is  $\gamma$ -metric.

(d) X is semi-metric.

(e) X is first countable.

(f) X is Fréchet.

Proof: (1) Let the  $X_{\alpha}$  be o-metric. Then, for  $x \in X_{\alpha}$ , one can associate a sequence  $\{S_{\alpha n}(x); n \in N\}$  of subsets of  $X_{\alpha}$  such that  $x \in S_{\alpha n+1}(x) \subset S_{\alpha n}(x)$ ; and  $U \subset X_{\alpha}$  is open in  $X_{\alpha}$  if and only if for each  $x \in U$  there exists  $n \in N$  with  $S_{\alpha n}(x) \subset U$ . For  $x \in X$ , let  $Q_n(x) = \bigcup \{S_{\alpha n}(x); x \in X_{\alpha}\}$ . Since X is determined by C, for  $x \in X$ , the sequence  $\{Q_n(x); n \in N\}$ of subsets of X satisfies the above conditions with respect to X. For x,  $y \in X$ , let d(x, y) = 1/n, when  $n = Max \{m; y \in Q_m(x)\}$ . Then d is o-metric for X. Hence X is o-metric. When  $X_{\alpha}$  are symmetric, similarly we show that X is symmetric. (2) follows form (1) and (a) in Diagram. For (3), we shall prove only (f)  $\Rightarrow$  (a). First, we prove that for each  $x \in X$ ,  $x \in int$ St(x,C).

To show this, suppose not. Then  $x \in \overline{X - St(x, \mathcal{C})}$ . Thus there exists a sequence  $K = \{x_n; n \in N\}$  in X - St(x, C)converging to the point x. Let  $C \in C$ . If  $C \not\ni x$ ,  $K \cap C$  is closed in C. If  $C \ni x$ ,  $K \cap C = \emptyset$ . Thus  $K \cap C$  is closed in C. Then K is closed in X. Hence  $K \ni x$ . This is a contradiction. Then  $x \in \text{int } St(x, \mathcal{C})$  for each  $x \in X$ . Now, to show that X is metacompact, let  $\mathcal{U}$  be an open cover of X. Since each  $X_{\alpha}$  is metacompact, there exists a point-finite open refinement  $\mathcal{U}_{\alpha}$  of  $\{U \cap X_{\alpha}; U \in \mathcal{U}\}$  in  $X_{\alpha}$ . Let  $\mathcal{V} = \bigcup \{\mathcal{U}_{\alpha}; \alpha\}$ . But X is determined by a cover  $\{X_{\alpha}\}$ , and each  $X_{\alpha}$  is determined by the open cover  $\mathcal{U}_{\alpha}$ . Then X is determined by  $\mathcal{V}$ . Thus, as is seen in the above, for each  $x \in X$ ,  $x \in \text{int } St(x, \mathcal{V})$ . Then X has a point-finite refinement V of U such that  $x \in$ int  $St(x, \mathcal{V})$  for each  $x \in X$ . Then X is metacompact by [9; Theorem 2.2]. Finally, we show that X is developable. Since Xis semi-metric by (2), by [8; Theorem 1] it suffices to show that X has a point-countable base. Since each  $X_{\alpha}$  is metacompact developable, it has a development  $\{\mathcal{G}_{\alpha n}; n \in N\}$  such that each  $\mathcal{G}_{\alpha n}$  is point-finite, and  $\mathcal{G}_{\alpha n+1}$  is a refinement of  $\mathcal{G}_{\alpha n}$ . For

270

each  $n \in N$ , let  $\mathcal{G}_n = \bigcup \{\mathcal{G}_{\alpha n}; \alpha\}$ , and let  $\mathcal{G} = \bigcup \{\mathcal{G}_n; n \in N\}$ . Then, X is determined by a point-finite cover  $\mathcal{G}_n (n \in N)$ . Let  $x \in U$  with U open in X. Then there exists  $n \in N$  such that  $x \in \operatorname{St}(x, \mathcal{G}_n) \subset U$ . But, as is seen in the above,  $x \in \operatorname{int} \operatorname{St}(x, \mathcal{G}_n)$ . This shows that X has a point-countable cover  $\mathcal{G}$  such that for any  $x \in X$  and any nbd U of x, there exists a finite subcollection  $\mathcal{G}'$  of  $\mathcal{G}$  with  $x \in \operatorname{int} \cup \mathcal{G}', \cup \mathcal{G}' \subset U$ . But X is Fréchet. Then X has a point-countable base by [2; Theorem 6.2].

**Corollary 2.2.** Let X be determined by a point-finite closed cover of developable subspaces. Then X is developable if and only if X is first countable (or Fréchet.)

**Proof:** For the "if" part, by (2) in Theorem 2.1, X is semimetric, hence submetacompact. On the other hand, in view of the proof of (f)  $\Rightarrow$  (a) in Theorem 2.1(3), X is locally developable. Hence X is developable by (1) of Lemma 1.7.

In view of Theorem 2.1 and Corollary 2.2, we have the following question.

Question 2.3. Let X be a first countable space determined by a point-finite cover  $\{x_{\alpha}\}$ . If the  $X_{\alpha}$  are quasi-metric; n.a.-quasimetric;  $\gamma$ -metric; or developable, then so is X respectively?

**Remark 2.4.** In the previous question, if the  $X_{\alpha}$  are metacompact and closed in X, then the question is affirmative. Indeed, the proof of (3) in Theorem 2.1 suggests that X is a metacompact space, and each point has a nbd which is quasimetric; n.a.-quasi-metric; or  $\gamma$ -metric respectively. Hence, X has a point-finite open cover of quasi-metric; n.a.-quasi-metric; or  $\gamma$ -metric subspaces respectively. Then so is X respectively by Lemma 1.4.

Concerning the metrizability; or quasi-metrizability of a space determined by a point-finite; or point-countable cover of

#### YOSHIO TANAKA

metric subspaces, Theorem 2.1 is not valid by (1); or (2) of Example 2.5 below respectively. Also, see Example 1.9.

**Example 2.5.** (1) There exists a n.a.-quasi-metric (hence first countable) space X determined by a point-finite clopen cover of metric subspaces, but X is not metric.

(2) There exzists a semi-metric (hence, first countable) space X determined by a point-countable clopen cover of metric subspaces, but X is neither quasi-metric nor  $\gamma$ -metric.

**Proof:** (1) Let X be an upper half plane. Let a basic nbd of (x,y) with y > 0 be  $\{(x,y)\}$ , and let a basic nbd of (r,0) be  $\{(x,y); y = | x - r | < 1/n\}$ ,  $n \in N$ . Then X is metacompact and developable, hence n.a.-quasi-metric. For  $(r,0) \in X$ , let  $X_r = \{(x,y); y = | x - r |\}$ . Then X is determined by a point-finite clopen cover  $\{X_r; (r,0) \in X\}$  of metric subspaces. But, by the R. Baire's Category theorem, X is not normal, hence not metric.

(2) Let X be the developable space Y constructed in [13; Example 2], where Y is not quasi-metric. That is; let A = $R \times \{0\}$ , and  $B = \{(x, y); x, y \text{ are rationals with } y > 0\}$ . For each  $p \in A$  and  $n \in N$ , let T(p, 1/n) denote the set of all points in B that belong to the interior of the isosceles right triangle above A having vertex p and hypothenuse of length 2/n parallel to A. For each  $q \in B$  and  $n \in N$ , let C(q, 1/n)denote the intersection with B of the circle of radius 1/n and center q. Let  $\mathcal{U}$  be the collection of all countable infinite subsets of A. Let  $Y = A \cup (B \times \mathcal{U})$ . Let a basic nbd of  $p \in A$  be  $V_n(p) =$  $\{p\} \cup T(p, 1/n) \times \mathcal{U}(p)$ , where  $\mathcal{U}(p) = \{\alpha \in \mathcal{U}; p \in \alpha\}$ , and let a basic nbd of  $(q, \alpha) \in B \times U$  be  $V_n(q, \alpha) = C(q, 1/n) \times \{\alpha\}$ . Then the basic nbds  $V_n(p)$  and  $V_n(q, \alpha)$  are metric (indeed, the  $V_n(p)$  has a  $\sigma$ -locally finite base, hence it is metric). Obviously  $\mathcal{B} = \{V_n(p), V_n(q, \alpha); p \in A, (q, \alpha) \in B \times \mathcal{U}, n \in N\}$  is a point-countable base for Y. But, we can assume that each element of  $\mathcal{B}$  is clopen in Y (Y is zero-dimensional). Therefore, Y has a point-countable base consisting of clopen and metric subspaces. But Y is developable, hence symmetric. Thus Y is not  $\gamma$ -metric by (d) in Diagram.

### **3.** Spaces dominated by covers.

The following lemma is due to [5] (for the symmetric case, see [19]; and for the smi-metric or developable case, see [18]).

**Lemma 3.1.** Let  $\{F_{\alpha}; \alpha\}$  be a locally finite closed cover of a space X. If the  $F_{\alpha}$  are symmetric; semi-metric; quasi-metric; n.a.-quasi-metric;  $\gamma$ -metric; or developable, then so is X respectively.

Let X be a space dominated by a cover  $\{X_{\alpha}; \alpha < \lambda\}$ . For each  $\alpha < \lambda$ , let  $L_0 = X_0$ ,  $L_{\alpha} = X_{\alpha} - \bigcup \{X_{\beta}; \beta < \alpha\}$ , and let  $F_{\alpha} = \overline{L}_{\alpha}$ . Then we have

**Lemma 3.2.** Let X be a space dominated by a cover  $\{X_{\alpha}; \alpha < \lambda\}$ . Then (1) and (2) hold. If the  $X_{\alpha}$  are Fréchet, then (3) ~ (5) hold.

(1) X is determined by  $\{F_{\alpha}; \alpha < \lambda\}$ .

(2) Let  $x \in X$ . For each  $\alpha < \lambda$ , let  $A_{\alpha}$  be any subset of  $L_{\alpha}$  such that  $A_{\alpha} \cup \{x\}$  is closed in X. Then  $S = \cup \{A_{\alpha}; \alpha < \lambda\} \cup \{x\}$  is closed in X.

(3) If X contains no closed copy of  $S_{\omega}$ , then  $\{F_{\alpha}; \alpha < \lambda\}$  is point-finite in X.

(4) If X contains no closed copy of  $S_2$ , then  $\{F_{\alpha}; \alpha < \lambda\}$  is hereditarily closure-preserving in X.

(5) If X contains no closed copy of  $S_{\omega}$  and no  $S_2$ , then  $\{F_{\alpha}; \alpha < \lambda\}$  is locally finite in X.

**Proof:** (1) and (2) are due to [21; Lemma 2.5]. For (3), suppose that  $\{F_{\alpha}; \alpha < \lambda\}$  is not point-finite. Since each  $F_{\alpha}$  is Fréchet, it follows from (2) that X contains a closed copy of  $S_{\omega}$ . This is a contradiction. Then  $\{F_{\alpha}; \alpha < \lambda\}$  is point-finite. For (4), suppose that  $\{F_{\alpha}; \alpha < \lambda\}$  is not hereditarily closurepreserving. Then for each  $\alpha < \lambda$ , there exists a closed subset  $C_{\alpha}$  of  $F_{\alpha}$  such that  $A = \bigcup \{C_{\alpha}; \alpha < \lambda\}$  is not closed in X. By (1),  $A \cap F_{\alpha}$  is not closed in some Fréchet space  $F_{\alpha}$ . Thus there exist a point  $x \notin A$ , a sequence  $\{x_m; m \in N\}$  in A, and an infinite subset  $\{\alpha(m); m \in N\}$  of  $\{\alpha; \alpha < \lambda\}$  such that  $x_m \to x, x_m \in C_{\alpha(m)}$ . But each  $F_{\alpha(m)}$  is Fréchet. Then for each  $m \in N$ , there exists a sequence  $\{x_m \ n; n \in N\}$  in  $L_{\alpha(m)}$  such that  $x_m \ n \to x_m$ . Let  $T = \{x\} \cup \{x_m; m \in N\} \cup \{x_m \ n; m, n \in N\}$ . Then, it follows from (2) that T is a closed copy of  $S_2$ . Thus X contains a closed copy of  $S_2$ . This is a contradiction. Then  $\{F_{\alpha}; \alpha < \lambda\}$  is hereditarily closure-preserving. (5) follows form (1) and (2).

**Theorem 3.3** Let X be a space dominated by  $\{X_{\alpha}\}$ . Then (1) and (2) below hold.

(1) Let each  $X_{\alpha}$  be first countable. Then X is an o-metric if and only if X contains no closed copy of  $S_{\omega}$ .

(2) Let each  $X_{\alpha}$  be Fréchet. Then X is Fréchet if and only if X contains no closed copy of  $S_2$ .

**Proof:** (1) We prove only the "if" part. By (1) and (2) in Lemma 3.2, X is determined by a point-finite cover  $\{F_{\alpha}; \alpha < \lambda\}$ . But each  $F_{\alpha}$  is an o-metric. Then X is an o-metric by Theorem 2.1.

(2) For the "if" part by Lemma 3.2(4), X has a hereditarily closure-preserving cover  $\{F_{\alpha}; \alpha < \lambda\}$ . Since each  $F_{\alpha}$  is Fréchet, so is X. The "only if" part follows from the easy fact that any Fréchet space contains no copy of  $S_2$ .

**Theorem 3.4.** Let X be a space dominated by  $\{X_{\alpha}\}$ .

(1) Suppose that the  $X_{\alpha}$  are semi-metric. Then the following are equivalent.

(a) X is symmetric.

(b) X is o-metric.

(c) X contains no closed copy of  $S_{\omega}$ .

(2) Suppose that the  $X_{\alpha}$  are metric; semi-metric; quasimetric; n.a.-quasi-metric;  $\gamma$ -metric; or developable. Then the following are equivalent.

- (a) X is so respectively.
- (b) X is first countable.

(c) X contains no closed copy of  $S_{\omega}$  and no  $S_2$ .

**Proof:** (1) holds in view of (1) in Theorem 2.1 & 3.3 and Lemma 3.2. (2) follows from Lemma 3.1 and Lemma 3.2(5). (For the metric case, (a)  $\Leftrightarrow$  (c) is due to [22; Theorem 1.5].)

In view of (1) in Theorem 3.3 and 3.4, we have a question below. If (2) is affirmative, then so is (1). When the  $X_{\alpha}$  are semi-stratifiable, (1) is affirmative. Indeed, by [18; Theorem 4.5], X is semi-stratifiable. While, X is o-metric. Then X is symmetric by (a) in Diagram.

**Question 3.5.** Let X be a space dominated by  $\{X_{\alpha}\}$ . Suppose that the  $X_{\alpha}$  are symmetric.

- (1) If X is o-metric, then X is symmetric?
- (2) If X contains no closed copy of  $S_{\omega}$ , then X is symmetric?

#### References

- 1. A. V. Arhangel'skii, *Mappings and space*, Russian Math. Surveys, 21 (1966), 115-162.
- D. Burke and E. Michael, On certain point-countable covers, Pacific J. Math., 64 (1976), 79-92.
- 3. G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. of Math., 32 (1970), 47-54.
- 4. S. W. Davis, G. Gruenhage and P. J. Nyikos,  $G_{\sigma}$ -sets in symmetrizable and related spaces, General Topology and Appl., 9 (1978), 235-261.
- 5. P. Fletcher and W. F. Lindgren, *Quasi-uniform spaces*, Marcel Dekker Inc. (New York and Basel) 1982.
- 6. G. Gruenhage, Generalized metric spaces, in: K. Kunen and J. E. Vaughan, eds., Handbook of Set-Theoretic Topology (North-Holland, Amsterdam) 1984, 432-501.
- 7. G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by pointcountable covers, Pacific J. Math., 113 (1984), 303-332.
- 8. R. W. Heath, On spaces with point-countable bases, Bulletin de L'Academie Polonaise des Sciences, 13 (1965), 393-395.
- 9. H. J. K. Junnila, Paracompactness, metacompactness, and semi-open covers, Proc. Amer. Math. Soc., 73 (1979), 244-248.
- 10. J. A. Kofner, On a new class of spaces and some problems of symmetrizability theory, Soviet Math. Dokl., 10 (1969), 845-848.
- 11. J. Kofner, Quasi-metrizable spaces, Pacific J. Math., 88 (1980), 81-89.
- 12. —, On quasi-metrizability, Topology Proceedings, 5 (1980), 111-138.

YOSHIO TANAKA

- 13. ——–, Open compact mappings, Moore spaces and orthocompactness, Rocky Mountain J. of Math., 12 (1982), 107-112.
- 14. E. Michael, Continous selections I, Ann. Math., 63 (1956), 361-382.
- 15. K. Morita, On spaces having the weak topology with respect to closed coverings, Proc. Japan Acad., 29 (1953), 537-543.
- 16. S. I. Nedev, o-metrizable spaces, Transactions of the Moscow Mathematical Society, 24 (1971), 213-247.
- 17. F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and Appl., 1 (1971), 143-154.
- 18. Y. Tanaka, On local properties of topological spaces, Sc. Rep. of Tokyo Kyoiku Daigaku, Sect. A., 11 (1972), 34-44.
- 19. —, On symmetric spaces, Proc. Japan Acad., 49 (1973), 106-111.
- 20. —, Metrizability of certain quotient spaces, Fund. Math., 119 (1983), 158-168.
- Mecessary and sufficient conditions for products of k-spaces, Topology Proceedings, 14 (1989), 281-313.
- 22. Y. Tanaka and Zhou Hao-xuan, Spaces dominated by metric subsets, Topology Proceedings, 9 (1984), 149-163.

Tokyo Gakugei University Koganei-shi, Tokyo, 184 Japan