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INTRODUCTION 

First, we shall give some definitions which will be used in 
this paper. 

Let X be a space. Let d : X x X --+ R be a non-negative, 
real valued function such that d(x, y) = 0 if and only if x = y. 
We shall consider the following conditions: 

(a) G c X is open if and only if for each x E G, there exists 
Sn(x) c G, where Sn(x) = {y E X; d(x,y) < lin} (n EN). 

(b) For x E X and n E N, Sn(x) is open in X. 
(c) For x E X and n E N, int Sn(x) 3 x. 
Then d is called an o-metric [16] if it satisfies (a). An 0

metric d is called a generalized metric [12] if it satisfies (b); 
equivalently, for each x E X, {Sn(x); n E N} is a base at x. 

A space X is called o-metric [16] if it has an o-metric d. 
Every o-metric space is a sequential space, hence a k-space. 

We note that a space X is weakly first countable (= X sat
isfies the weak first axiom of countability in the sense of [1]) if 
and only if X is o-metric; and that a space X is first countable 
if and only if it has an o-metric staisfying (b) (or (c)); cf. [16]. 

Let X be a space. Let d : X x X --+ R be a non-negative, 
real valued function. Let us consider following conditions as a 
generalization of metric functions. 

(1) d(x,y)=d(y,x). 

261 
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(2) d(x,z) ~ d(x,y) + d(y,z). 
(3) d(x,z) ~ max {d(x,y),d(y,z)}. 
(4) For any compact set K and closed set F with ]<nF = 0, 

inf {d(x,y); x E K, y E F} > 0; 
A space X is called symmetric if it has an o-metric d satis

fying (1), and such a funtion d is called symmetric for X. 
A space X is called semi-metric if it has an o-metric d sat

isfying (1) and (c). 
A space X is called quasi-metric (= .6-metric in the sense 

of ([16]) if it has a generalized metric d satisfying (2). Here we 
can replace "generalized metric" by "o-metric". 

A space X is called non-archimedian quasi-metric (simply, 
n.a.-quasi-metric) if it has a generalized metric d satisfying (3). 
Here we can replace "generalized metric" by "o-metric". 

A space X is called ,-metric (= ,-space) if it has a general
ized metric staisfying (4). 

In this paper, we shall use "X is symmetric; (n.a-) quasi
metric, etc" instead of "X is symmetrizable; (n.a.-) quasi
metrizable; etc". 

(N.a.-) quasi-metric spaces; ,-metric spaces are character
ized by means of g-functions, interior-preserving covers, quasi
uniformities, or sequences of neighbornets, etc., and they are 
investigated or surveyed in [5], [6], [12], [16], etc. 

Concerning symmetric, (n.a-) quasi-metric, or ,-metric 
spaces, etc., the following diagram is known; see [6], for ex
ample. A space is Frechet if whenever x E A, then there 
exists a sequence in A converging to the point x. For the defi
nition of semi-stratifiable spaces; see [3], and for (a), see [10]; 
and [4]. 

Diagram. For a space, the following implications hold. 
(a) o-metric and semi-stratifiable => symmetric. But, sym

metric =fr closed sets are Gs-sets. 
(b) developable => semi-metric <=> Frechet and symmetric 

<=> first countable and semi-stratifiable. But, semi-metric =fr (1'

space. 
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(c) metacompact and developable => n.a.-quasi-metric => 
quasi-metric => 1-metric => first countable. But, n.a.-quasi
metric =fr closed sets are G6-sets. 

(d) symmetric and 1-metric <=> developable and quasi-metric. 
But, developable =fr 1-metric. 

Let X be a space, and let C be a cover (not necessarily closed 
or open) of X. Then X is determined by C [7] (= X has the 
weak topology with respect to C in the usual sense), if F C X 
is closed in X if and only if F n C is closed in C for every 
C E C. Here, we can replace "closed" by "open". Every space 
is detemined by an open cover. If a space X is determined 
by a countable and increasing cover {Xn ; n EN}, then X is 
called the inductive limit of {Xn ; n EN}, and denoted by 
X = limXn • 

-+ 

We recall that a space X is sequential if X is determined 
by the cover of all (compact) metric subspaces. 

Let X be a space, and let F be a closed cover of X. Then 
X is dominated by F [14] (=X has the weak topology with 
respect to F in the sense of [15]), if the union of any subcol
lection )=" of F is closed in X, and the union is determined 
by F'. Every space is dominated by a hereditarily closure
preserving closed cover. As is well-known, every CW-complex 
is dominated by a cover of compact metric subspaces. 

We recall canonical quotient spaces Sw and S2' which is 
called the sequential fan and the Arens' space respectively. 

Sw is the quotient space obtained from the topological sum 
of countably many convergent sequences by identifying all the 
limit points. 

S2 = (N x N)UNU{oo} is the space with each point of (N x 
N) isolated. A basic neighborhood of n E N consists of all sets 
of the form {n} U {(m,n); m ~ k}. And U is a neighborhood 
of 00 if and only if 00 E U and U is a neighborhood of all but 
finitely many n E N. 

The spaces Sw and S2 are dominated by an increasing count
able cover of compact metric subsets. But, Sw nor S2 is first 
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countable. Then Sw is not semi-metric, not (n.a.-) quasi-metric, 
not 1'-metric, and neither is 32 • Then the following question 
in [12; Question 3] is negative. 

Let X be a space dominated by a cover of quasi-metric; n.a.
quasi-metric; or 1-metric subsets. Then is X so respectively? 

In this paper, we give a characterization for the above space 
X to be quasi-metric; n.a.-quasi-metric; or 1-metric respec
tively. We also give some analogous characterizations when 
spaces are determined by certain covers of these generalized 
subspaces, or semi-metric subspaces, etc. 

We assume that all spaces are regular and T1• 

1. SPACES DETERMINED BY COUNTABLE COVERS. 

For each n E N, let Yn be homeomorphic to the product x n 

of a space X. First, we shall consider the inductive limit of 
{Yn ; n EN}. 

Lemma 1.1. Let X be a sequential space, and let x E X. For 
each n E N, let Yn = X n X {x} X {x} x .... Let Y = l~ Yn . 

If the point x is not isolated in X, then Y contains a closed 
copy of Sw, and a closed copy of 32• 

Proof: Since X is sequential, there exists a sequence {x n ; n E 
N} in X converging to x with Xn =f x. Let p = (x, x, . .. ), let 
Pm n = (xn,xn, ... Xn,x,x, ... ) E Ym for each m, n E N. Let 
S = U{Pm n; m, n E N} U {p}. Since each S n Yn is closed 
in Yn , 3 is closed in Y. For each mEN, let k(m) E N, and 
let F = U{Pm n; mEN, n :5 k(m)}. Then each F n Yn is 
finite, hence closed in Yn • Thus F is closed in Y. This implies 
that S is a copy of Sw. Then Y contains a closed copy of Sw. 
Next, for each mEN, let qm = (xm, X, • •• ). And, for each 
m, n E N, let qm n = (xm, X, ••• X, X n , x, ... ), where X n is the 
m-th coordinate. Let T = {qm n; m, n E N} U {qm; m E 
N} U {pl. Similarly T is closed in Y, and T is a copy of 32• 
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Theorem 1.2. Let X be a space, and x EX. For each n E N, 
let Yn = x n X {x} X {x} x .... Let Y = limYn • Then (1) and 

--+ 

(2) below hold. 
(1) Suppose that X is symmetric. Then the following are 

equivalent. 

(a) Y is symmetric. 
(b) Y is a sequential space which contains no closed copy of 

SW. 
(c) Y is a sequential space, and the point x is isolated in 

x. 
(2) Suppose that X is metric; semi-metric; quasi-metric; 

n.a-quasi-metric; i-metric; or developable. Then the following 
are equivalent. 

(a) Y is so respectively. 
(b) Y contains no closed copy of 5w • 

(c) Y contains no closed copy of 52. 
(d) The point x is isolated in X. 

Proof: (1) For (a) => (b), suppose that Y contains a closed 
subset U{Ln ; n E N} U {p}, with Ln -+ p, which is a copy 
Sw. Then each Ln U {p} is closed, but Ln is not closed in Y. 
Thus there exists a point Yn E Ln with Yn E 5n(p) for each 
n E N. Then the sequence {Yn; n E N} converges to the point 
00. This is a contradiction. Hence Y contains no closed copy 
of Sw. (b) ::::} (c) follows form Lemma 1.1. If (c) holds, then 
each Yn is closed and open in Y. Then Y is the topological 
sum of {Yn - Yn - 1 ; n EN}. But each Yn is sequential with X 
symmetric. Then each Yn is symmetric by [19; Theorem 4.1], 
hence so is each Yn - Yn - 1 • Thus Y is symmetric. Hence (a) 
holds. 

(2) (a) => (b) or (c) is easy, because Y is first countable. 
(b) or (c) => (d) follows from Lemma 1.1. For (d) => (a), 
Y is the topological sum of {Yn - Yn - l ; n EN}. But each 
Yn is so respectively, then so is each Yn - Yn - l . Thus Y is so 
respectively. 
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Theorem 1.3. Let X be a non-discrete, sequential space. Sup
- -pose that X is homogeneous; that is, for. each p, qE X, there 

exists a homeomorphism of X onto X taking p to q. For each 
n E N, let us consider xn as a subspace of xn+l; that is, as 
a subspace xn x {x} X {x} x ... of XW for x E X. For each 
n E N, let Yn = xn. Let Y = lim Yn • Then Y contains a closed .... 
copy of Sw and a closed copy of S2; hence, Y is not o-metric 
nor Frechet. 

Proof: Since X is non-discrete and homogeneous, any point of 
X is not isolated. Then Y contains a closed copy of Sw and a 
closed copy of S2 by Lemma 1.1. Thus Y is not Frechet, for Y 
contains a copy of S2. Also, Y is not o-metric, for Y contains 
a closed copy of Sw. 

Let [; R be the closed interval; the real line respcetively. For 
all n E N, let X n = In (or Rn). The previous theorem shows 
that X = lim Xn is not even o-metric nor Frechet, hence X is.... 
not symmetric, not quasi-metric, nor ,-metric, etc. 

The following lemma is due to [5]. Unlike this, every space 
which is a countable union of open metric subsets is neither 
semi-metric nor symmetric; see, Example 1.9. 

Lemma 1.4. Let {Go; a} be a u-point-finite open cover of X. 
[fthe Go are quasi-metric; n.a.-quasi-metric; or,-metric, then 
so is X respectively. 

A space X is strongly Frechet [17], if whenever {An' n E N} 
is a decreasing sequence in X with x E An for any n E N, then 
there exists a sequence {xn ; n E N} in X converging to the 
point x with X n E An. The following lemma is due to [20]. 

Lemma 1.5. Let X be a space determined by a countable cover 
C such that each finite union of elements of C is first count
able. If X contains no closed copy of Sw and no S2, then X is 
strongly Frechet. 
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Every space lim X n with each X n compact metric need not 

be quasi-metric, 
-+ 

nor ,-metric even if X is symmetric (or Frechet), 
as is seen by the space 52 (or 5w ). But we have the following 
theorem (cf. Theorem 1.2). 

Theorem 1.6. Let X = limXn • Suppose that the X n are quasi
-+ 

metric; n.a.-quasi-metric; or ,-metric. Then the following are 
equivalent. 

(a) X is so respectively. 
(b) X is first countable. 
(c) X contains no closed copy of Sw and no S2. 

Proof: (a) => (b) is clear, and (b) => (c) is obvious. So, we 
prove (c) => (a). Since X is strongly Frechet by Lemma 1.5, 
for each x E X, x E int X m for some mEN. Indeed, suppose 
not. Then x E X - X n for any n E N. Then there exists a 
sequence ]( = {Pn; n E N} in X converging to the point x 
such that Pn E X - Xn, and Pn # x for any n E N. But, each 
K n X n is finite, hence closed in X n • Thus 1< is closed in X, 
hence K 3 x. This is a contradiction. Thus, x E int X m for 
some mEN. This implies that {int X n ; n E N} is a countable 
open cover of X. But, the int X n are quasi-metric; n.a.-quasi
metric; ,-metric respectively. Thus, X is so respectively by 
Lemma 1.4. 

A space X is submetacompact (= 6-refinable) if for each 
open cover U of X there exists a sequence {Un; n E N} of open 
refimements of U such that for each x E X there exists an open 
cover Un which is finite at x. As is well-known, metacompact 
spaces, and subparacompact spaces are submetacompact. 

Every semi-metric space is semi-stratifiable, hence submeta
compact. But, every n.a.-quasi-metric space is not submeta
compact; see, Example 1.9. 

The following lemma is due to [18]. But, unlike this, ev
ery submetacompact and locally metric space is neither quasi
metric nor ,-metric; see, Example 2.5(2). 
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Lemma 1.7. Let X be a submetacompact space. 
(1) If X is locally developable, then,X is developable. 
(2) If X is locally semi-metric, then X is semi-metric. 

Corollary 1.8. Let X = limXn • Suppose that the X n are 
-+ 

semi-metric; or developable. Then the following are equiva
lent. 

(a) X is so respectively. 
(b) X is first countable, and every closed subset of X is a 

Gu-set. 
(c) X is first countable, and submetacompact. 

Proof: Every semi-metric space is a submetacompact space in 
which every closed subset is a Gs-set. Thus (a) => (b) and (c) 
holds. Suppose that (b) holds. Since X is first countable. X is 
a countable union of open semi-metric subsets by the proof of 
Theorem 1.6. But each open subset of X is an Fu-set, then X 
is a countable union of closed semi-stratifiable subsets. Thus 
X is a semi-stratifiable space. Then X is semi-metric by (b) 
in Diagram. Thus (b) => (a) holds. Suppose that (c) holds. 
Since X is first countable, X is locally semi-metric by the proof 
of Theorem 1.6. But X is submetacompact, then X is semi
metric by (2) of Lemma 1.7. Thus (c) => (a) holds. For the 
developable case, (b) implies that X is a semi-stratifiable space 
which is locally developable. Since X is submetacompact, X 
is developable by (1) of Lemma 1.7. Thus (b) (or (c)) => (a) 
also holds in this case. 

Concerning symmetric spaces and semi-metric spaces, The
orem 1.6 does not hold by the following example. Hence, the 
additional condition of X in (b) or (c) of Corollary 1.8 is es
sential. 

Example 1.9. A n.a.-quasi-metric (hence first countable) 
space X = lim X n such that the X n are semi-metric open sub

-+ 

sets. But X is not symmetric (nor submetacompact). 
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Proof: Let X be the space Z in Example 3.3 in [4], where Z 
is not submetacompact and has a closed subset which is not 
a G6-set. As is seen there, Z has the u-locally countable base 
B = U{Bn; n EN}, which is also u-disjoint. But, it follows 
that each member of B, which is the basic nbd B(Xl' X2, . .. Xk) 
or Vk(o) = {o} U {UBa(n); n ~ k} defined there, is clopen 
in Z, and metrizable (the Vk(o) has a u-Iocally finite base, 
hence is metrizable). Let Gn = UBn for each n E N. Then 
each Gn has a locally finite closed cover Bn in Gn , hence Gn is 
metrizable. Thus X has a countable open cover {Gn ; n E N} 
of metric subsets. Hence X is n.a.-quasi-metric by Lemma 1.4. 
For each n E N, let Xn = U{Gm ; m ~ n}. Then each Xn is 
an open subset of X which is developable, hence semi-metric. 
Then X is determined by a countable, increasing open cover 
{Xn ; n E N} of semi-metric subsets. But X is a first countable 
space which is not semi-stratifiable. Then X is not symmetric 
by (b) in Diagram. 

2. SPACES DETERMINED BY POINT-FINITE COVERS. 

The space 82 is a symmetric space determined by a point
finite, countable cover of compact metric subspaces. But 52 is 
neither semi-metric nor quasi-metric. Concerning spaces de
termined by point-finite covers of certain gereralized metric 
subspaces, we have the following theorem. 

Theorem 2.1. Let X be a space determined by a point-finite 
cover C = {Xo }. 

(1) If the X o are o-metric; or symmetric, then so is X 
respectively. 

(2) Suppose that the X Q are semi-metric. Then X is semi
metric if and only if X is first countable (or Frechet). 

(3) Suppose that the X o are metacompact developable. Then 
the following are equivalent. 

(a) X is (metacompact) developable. 
(b) X is (n.a.-) quasi-metric. 
(c) X is ,-metric. 
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(d) X is semi-metric. 
(e) X is first countable. 
(f) X is Frechet. 

Proof: (1) Let the X o be o-metric. Then, for x E X o , one can 
associate a sequence {So n(x); n E N} of subsets of X o such 
that x E So n+l(X) C So n(x); and U C X o is open in X o if and 
only if for each x E U there exists n E N with So n(x) C U. 
For x E X, let Qn(x) = U{So n(x); X E X o}. Since X is 
determined by C, for x E X, the sequence {Qn(x); n E N} 
of subsets of X satisfies the above conditions with respect to 
X. For x, y E X, let d(x,y) = lin, when n =Max {m; y E 
Qm(x)}. Then dis o-metric for X. Hence X is o-metric. When 
X o are symmetric, similarly we show that X is symmetric. (2) 
follows form (1) and (a) in Diagram. For (3), we shall prove 
only (f) => (a). First, we prove that for each x E X, x E int 
St(x,C). 

To show this, suppose not. Then x E X - St(x,C). Thus 
there exists a sequence 1< = {xn ; n E N} in X - St(x,C) 
converging to the point x. Let C E C. If C ~ x, Ii n C is 
closed in C. If C :3 x, !( n C = 0. Thus Ii n C is closed in C. 
Then K is closed in X. Hence !( 3 x. This is a contradiction. 
Then x E int St(x,C) for each x E X. Now, to show that 
X is metacompact, let U be an open cover of X. Since each 
X o is metacompact, there exists a point-finite open refinement 
Uo of {U n X o; U E U} in Xo. Let V = U{Uo;a}. But X 
is determined by a cover {Xo }, and each X o is determined 
by the open cover UOie Then X is determined by V. Thus, 
as is seen in the above, for each x E X, x E int St(x, V ). 
Then X has a point-finite refinement V of U such that x E 
int St(x,V ) for each x E X. Then X is metacompact by [9; 
Theorem 2.2]. Finally, we show that X is developable. Since X 
is semi-metric by (2), by [8; Theorem 1] it suffices to show that 
X has a point-countable base. Since each X o is metacompact 
developable, it has a development {go n; n E N} such that 
each go n is point-finite, and go n+l is a refinement of gOt n. For 



GENERALIZED METRIC SUBSPACES 271 

each n E N, let Qn = U{QQ n; o}, and let Q = U{Qn; n EN}. 
,Then, X is determined by a point-finite cover Qn(n EN). Let 
x E U with U open in X. Then there exists n E N such 
that x E St(x, Qn) C U. But, as is seen in the above, x E int 
5t(x, Qn). This shows that X has a point-countable cover Q 
such that for any x E X and any nhd U of x, there exists a 
finite subcollection Q' of 9 with x E int U Q', U Q' c U. But X 
is Frechet. Then X has a point-countable base by [2; Theorem 
6.2]. 

Corollary 2.2. Let X be determined by a point-finite closed 
cover of developable subspaces. Then X is developable if and 
only if X is first countable (or Frechet.) 

Proof: For the "if' part, by (2) in Theorem 2.1, X is semi
metric, hence submetacompact. On the other hand, in view of 
the proof of (f) =} (a) in Theorem 2.1(3), X is locally devel
opable. Hence X is developable by (1) of Lemma 1.7. 

In view of Theorem 2.1 and Corollary 2.2, we have the fol
lowing question. 

Question 2.3. Let X be a first countable space determined by 
a point-finite cover {x Q }. If the X Q are quasi-metric; n.a.-quasi
metric; ,-metric; or developable, then so is X respectively? 

Remark 2.4. In the previous question, if the X Q are meta
compact and closed in X, then the question is affirmative. In
deed, the proof of (3) in Theorem 2.1 suggests that X is a 
metacompact space, and each point has a nbd which is quasi
metric; n.a.-quasi-metric; or ,-metric respectively. Hence, X 
has a point-finite open cover of quasi-metric; n.a.-quasi-metric; 
or ,-metric subspaces respectively. Then so is X respectively 
by Lemma 1.4. 

Concerning the metrizability; or quasi-metrizability of a s
pace determined by a point-finite; or point-countable cover of 
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metric subspaces, Theorem 2.1 is not valid by (1); or (2) of 
Example 2.5 below respectively. Also, see Example 1.9. 

Example 2.5. (1) There exists a n.a.-quasi-metric (hence 
first countable) space X determined by a point-finite clopen 
cover of metric subspaces, but X is not metric. 

(2) There exzists a semi-metric (hence, first countable) 
space X determined by a point-countable clopen cover of met
ric subspaces, but X is neither quasi-metric nor I-metric. 

Proof: (1) Let X be an upper half plane. Let a basic nbd of 
(x,y) with y > 0 be {{x,y)}, and let a basic nbd of (r,O) be 
{(x, y); y =1 x - r 1< lin}, n E N. Then X is metacompact 
and developable, hence n.a.-quasi-rnetric. For (r,O) E X, let 
X r = {(x,y); y =1 x - r I}. Then X is determined by a point
finite clopen cover {Xr ; (r,O) E X} of metric subspaces. But, 
by the R. Baire's Category theorem, X is not normal, hence 
not metric. 

(2) Let X be the developable space Y constructed in [13; 
Example 2], where Y is not quasi-metric. That is; let A = 
R x {OJ, and B = {{x,y);x,y are rationals with y > OJ. For 
each pEA and n E N, let T(p, lin) denote the set of all 
points in B that belong to the interior of the isosceles right 
triangle above A having vertex p and hypothenuse of length 
2/n parallel to A. For each q E Band n E N, let C(q,l/n) 
denote the intersection with B of the circle of radius l/n and 
center q. Let U be the collection of all countable infinite subsets 
of A. Let Y = AU{B xU). Let a basic nbd of pEA be Vn{p) = 
{p} U T(p, lin) x U(p), where U(p) = {a E U; P EO}, and let 
a basic nbd of (q,a) E B x U be Vn(q,a) = C(q, lin) x {a}. 
Then the basic nbds Vn(p) and Vn(q,a) are metric (indeed, the 
Vn{p) has a u-Iocally finite base, hence it is metric). Obviously 
B = {Vn{p), Vn{q, a); pEA, (q, a) E B x U, n E N} is 
a point-countable base for Y. But, we can assume that each 
element of B is clopen in Y (Y is zero-dimensional). Therefore, 
Y has a point-countable base consisting of clopen and metric 
subspaces. But Y is developable, hence symmetric. Thus Y is 
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not 1'-metric by (d) in Diagram. 

3. SPACES DOMINATED BY COVERS. 

The following lemma is due to [5] (for the symmetric case, 
see [19]; and for the smi-metric or developable case, see [18]). 

Lemma 3.1. Let {Fo;o} be a locally finite closed cover ofa 
space X. If the Fo are symmetric; semi-metric; quasi-metric; 
n.a.-quasi-metric; ,-metric; or developable, then so is X re
spectively. 

Let X be a space dominated by a cover {Xo ; 0 < A}. For 
each 0 < A, let Lo = X o, Lo = X o - U{Xp; {j < o}, and let 
Fo = Lo • Then we have 

Lemma 3.2. Let X be a space dominated by a cover {Xo ; 0 < 
A}. Then (1) and (2) hold. If the X o are Frechet, then (3) ~ 

(5) hold. 
(1) X is determined by {Fo ; (} < A}. 
(2) Let x E X. For each (} < A, let A o be any subset of 

Lo such that Ao U {x} is closed in X. Then S = U{Ao ;(} < 
A} U {x} is closed in X. 

(3) If X contains no closed copy of Sw, then {Fo ; 0 < A} 
is point-finite in X. 

(4) If X contains no closed copy of S2, then {Fo ; (} < A} is 
hereditarily closure-preseMJing in X. 

(5) If X contains no closed copy of Sw and no S2' then 
{Fer; 0 < A} is locally finite in x. 
Proof: (1) and (2) are due to [21; Lemma 2.5]. For (3), suppose 
that {Fo ; 0 < A} is not point-finite. Since each Fa is Frechet, 
it follows from (2) that X contains a closed copy of Sw. This 
is a contradiction. Then {Fo ; Q < A} is point-finite. For 
(4), suppose that {Fer; 0 < A} is not hereditarily closure
preserving. Then for each 0 < A, there exists a closed subset 
Co of Fo such that A = U{Co ; 0 < A} is not closed in X. 
By (1), A n Fa is not closed in some Frechet space Fo. Thus 
there exist a point x ¢ A, a sequence {xm ; mEN} in A, and 
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an infinite subset {a(m); mEN} of {a; a < A} such that 
Xm~ x, X m E CaCm). But each Fa(m) is Frechet. Then for each 
mEN, there exists a sequence {xm n; n E N} in LOt(m) such 
that X m n -. X m · Let T = {x} U {xm ; mEN} U {xm n; m, n E 
N}. Then, it follows from (2) that T is a closed copy of 52. Thus 
X contains a closed copy of 52. This is a contradiction. Then 
{Fa; a < A} is hereditarily closure-preserving. (5) follows form 
(1) and (2). 

Theorem 3.3 Let X be a space dominated by {XOt }. Then (1) 
and (2) below hold. 

(1) Let each X Ot be first countable. Then X is an o-metric 
if and only if X contains no closed copy of Sw. 

(2) Let each X Ot be Frechet. Then X is Frechet if and only 
if X contains no closed copy of 52. 

Proof: (1) We prove only the "if' part. By (1) and (2) in 
Lemma 3.2, X is determined by a point-finite cover {FOt ; 0' < 
A}. But each FOt is an o-metric. Then X is an o-metric by 
Theorem 2.1. 

(2) For the "if" part by Lemma 3.2(4), X has a hereditarily 
closure-preserving cover {FOt ; a < A}. Since each FOt is Frechet, 
so is X. The "only if' part follows from the easy fact that any 
Frechet space contains no copy of 52. 

Theorem 3.4. Let X be a space dominated by {Xo }. 

(1) Suppose that the Xo are semi-metric. Then the follow
ing are equivalent. 

(a) X is symmetric. 
(b) X is o-metric. 
(c) X contains no closed copy of Sw. 
(2) Suppose that the X Ot are metric; semi-metric; quasi

metric; n.a.-quasi-metric; ,-metric; or developable. Then the 
following are equivalent. 

(a) X is so respectively. 
(b) X is first countable. 
(c) X contains no closed copy of 5w and no 52. 
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Proof: (1) holds in view of (1) in Theorem 2.1 &3.3 and Lemma 
·3.2. (2) follows from Lemma 3.1 and Lemma 3.2(5). (For the 
metric case, (a) ~ (c) is due to [22; Theorem 1.5].) 

In view of (1) in Theorem 3.3 and 3.4, we have a question 
below. If (2) is affirmative, then so is (1). When the Xo are 
semi-stratifiable, (1) is affirmative. Indeed, by [18; Theorem 
4.5], X is semi-stratifiable. While, X is o-metric. Then X is 
symmetric by (a) in Diagram. 

Question 3.5. Let X be a space dominated by {XOt }. Suppose 
that the X Ot are symmetric. 

(1) If X is o-metric, then X is symmetric? 
(2) If X contains no closed copy of Sw, then X is symmetric? 
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