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1. INTRODUCTION 

For a completely regular T1 space X, C(X) denotes the set of 
all continuous real-valued functions on X. If Y is a subspace of 
X, C(YIX) = {f E C(Y) : f is extendable continuously over 
X}. Cp(YIX), topologized as a subspace of Cp(Y), has proved 
to be useful in the theory of function spaces. For example, it 
was used by Lutzer and McCoy in [5] to characterize the Baire 
property of Cp(X) as "Cp(X) is Baire if and only if for each 
countable Y ~ X, the space Cp(YIX) is Baire". The barrelled 
property is an important topic of functional analysis. It is 
connected to general topology via the Nachbin-Shirota theorem 
of function spaces which characterizes the barrelled property 
of Ck(X) topologically. In the first part of this paper, we 
give topological characterizations of the barrelled property of 
Cp(YIX) and Ck(YIX) in the similar form of Nachbin-Shirota 
theorem. As an application of the main results, we obtain a 
paralled characterization of the barrelled property of Cp(X) to 
that of the Baire property quoted above. Since Cp(YIX) and 
Ck{YIX) are dense in Cp{Y) and Ck(Y) respectively, the Baire 
property and the barrelled property of the former imply that 
of the latter. So it is an interesting question (see Question 
3.9 in [5]) that whether the Haire property of Cp(X) can be 
characterized by using Cp(Y) instead of Cp(y",X). We give an 
example to show that the answer to this question restated for 
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barrelled property in place of the Baire property is negative. 
All the applications and examples are put in the second part. 

Let X be a space and Y ~ X. For A ~ Y, j E C(YIX) 
and f > 0, denote Wl!,A,f; YIX] = {g E C(YIX) :1 !(x)
g(x) 1:5 f for x E A} and W(!, A, f; YIX) = {g E C(YIX) : 
1j(x)-g(x) 1< fforx E A}. {W(j,F,f; YIX): j E C(YIX), 
F ~ Y is finite and f > O} and {W(j, K, f; YIX) : ! E 
C(YIX), K ~ Y is compact and f > O} are bases of Cp(YIX) 
and Ck(YIX) respectively. In the case ofY = X, Wlj, A, f; YIX] 
and W(!, A, f; YIX) are denoted as Wl!, A, f] and W(!, A, f) 
respectively. 

A set A ~ X is called bounded in X (or a bounded set of 
X) if for each! E C(X), the restriction! fA of f on A is 
bounded. Let E be a linear topological space. A set B ~ E is 
called convex if ta + (1 - t)b E B for t E [0,1] and a, b E B. 
B is called circled if ta E B for t E [-1,1] and a E B. If for 
each x E E, there exists Ax > 0 such that [0, Ax]x ~ B, then 
B is said absorbent. B is called a barrel if it is closed, convex, 
circled and absorbent. A linear topological space E is called 
locally convex if it has a neighborhood base of zero consist
ing of convex sets. Note that Cp(X), Ck(X) and every normed 
linear space are locally convex. For the definition of normed 
linear space, refer to any standard textbook of functional anal
ysis. A complete normed linear space is called a Banach space. 
Let C*(X) denote all the bounded continuous functions on X 
and C;(X) the normed space with the supremum norm. Then 
C:(X) is a Banach space. A locally convex linear topological 
space is called barrelled (or has barrelled property) if each bar
rel is a neighborhood of zero. A topological space is Baire if 
the intersection of countably many open dense sets of the space 
is dense in it. It is known that each Banach space is Baire and 
each Baire locally convex linear topological space is barrelled. 

The following theorems are well-known. 

Theorem I. (Nachbin and Shirota, see [6] or [7]). For a space 
X, the following are equivalent: 
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(1) Every bounded closed set of X is compact. 
(2) Ck(X) is barrelled. 

Theorem II. (Buchwalter and Schmets [2]). For a space X, 
the following are equivalent: 

(1) Every bounded set of X is finite. 
(2) Cp(X) is barrelled. 

We assume all spaces in this paper are completely regular 
T1 • 

2.	 CHARACTERIZATIONS FOR THE BARRELLED PROPERTY 

OF Cp(YIX) AND Ck(YIX) 

Let X be a space. For a subset H of C(X), let 

/{(H) = {x EX:	 for every neighborhood U of x 
there is I f/. H such that flx\u = OJ. 

Obviously, j{(H)	 is closed in X. 
The result below	 is useful. 

Proposition 2.1 (Asanov and Shamgunov [1]). If H is a bar
rel in Ck(X), then l«H) is bounded in X. 

To prove the characterization theorems we give two lemmas 
first. 

Lemma 2.2. Let L be a compact set ofX. If {U1 , U2 , ••• , Un} 
is a collection of open sets of X covering L, then there are 
hI, h2 , ••• ,hn E C(X, [0, 1]) such that for each i, hil(O, 1]) ~ 
Ui, h = Ei::l hi E C(X, [0, 1]) and h(x) = 1 for each x E L. 

Proof: Choose a partition of unity {!O,!l, ... ,In} of X sub
ordinate to the cover {Uo, U1 , ••• , Un}, where Uo = X\L. Let 
hi = Ii for i ~ 1. Then hi'S are desired. 

C*(X) denotes all the bounded continuous functions on X 
and C*(YIX) = C*(Y) n C(YIX). C~(X) and C~(YIX) are 
the space C*(X) and C*(YIX) respectively with the uniform 
norm topology. It is easy to see that Cp(YIX)(Ck(YIX)) is 
dense in Cp(Y)(Ck(Y) resp.). This is different for C~(YIX), 

because 
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Lemma 2.3. C~(YIX) is a closed subspace of C;(Y). 

Proof: denote G = {f E C*(X) : fly = OJ. Then G is a 
closed linear subspace of C;(X). Let C;(X)/G be the quotient 
space of the normed space C:(X) mod G. Since C:(X) is a 
Banach space and G is closed, C:(X)/G is a Banach space. It 
can be proved that there is a norm-preserving linear mapping 
between C:(YIX) and C;(X)/G. So C;(YIX) is also a Banach 
space. D. 

Theorem 2.4. for a space X and a subspace Y of it, the fol
lowing are equivalent: 

(1)	 Ck(YIX) is barrelled. 
(2)	 Every closed subset ofY which is bounded in X is com

pact. 

Proof: The idea of this proof is similar to that of [1]. 
(1) --+ (2). Let A be a closed subset of Y which is bounded 

in X. It is easy to see that W[fo, A, 1; YIX] is a barrel in 
Ck(YIX), where fo = 0 By (1), it is a neighborhood of fo 
and so there are a compact set 1< of Y and f > 0 such that 
W(fo, ](, f; YIX) ~ W[fo, A, 1; YIX]. This implies that A ~ 

]( and so A is compact. 
(2) --+(1). Let 1ry : Ck(X) --+ Ck(YIX) be the restriction 

mapping. Then 1ry is a continuously linear mapping. Given a 
barrel H in Ck(YIX), then 1ryl(H) is a barrel in Ck(X). By 
Proposition 2.1, K(1ryl(H)) is a bounded closed set of X. Let 
G(H) = ]«(1ryl(H))nY. Then G(H) is a closed set of Y which 
is bounded in X. By assumption, G(H) is compact. We proved 
that there is f > 0 such that W(fo,G(H),f; YIX) ~ H. At 
first, we prove 

Claim. If f E C(YIX) and fIG(H) = 0, then f E H. 

Proof of Claim: Suppose! rt H. Since H is closed in Ck(YIX), 
there are a compact set ]( of Y and p > 0 such that W(!, ](, p; 
YIX) n H = 0. We may assume that G(H) -:F Y, otherwise 
Ck(YIX) is just the barrelled space C;(Y). Since fIG(H) 
0, there is an open set U of X such that ]( n G(H) ~ U 
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and for each x E U n Y,I!(x)1 < p. Denote L = ]<\U. By 
the definition of G(H) and the compactness of L, there are 
open sets VI, V2 , • •• ,Vn of X such that L ~i:l ~ and for 
each i, if h E C(X) and hlx\~ = 0, then h E 1ryl(H). By 
Lemma 2.2, there are hI, h2 , • •• ,hn E C(X, [0, 1]) such that 
hilx\l't = 0, h = E,i:l hi E C(X, [0, 1]) and h(x) = 1 for 
every x E L. Let i be a continuous extension of lover X 
and 9 = Ei:l hii. Since nhiilx\l'i = 0, nhii E 1ryl(H). As 
1ryl(H) is convex, 9 = Ei:l(l/n)(nhi j) E 1ryl(H). Let 9 = 
gly. Then 9 E H. Now we derive a contradiction from proving 
that 9 E W(!, ](, p; YIX), i.e., 1f(x) - g(x) 1< p for every 
x E K. As IlL = giL, we may assume x E K n U. Then 
I f(x) = f(x) 1=11- Ei:l hi(x) II f(x) 1:51 f(x) 1< p, and the 
claim is proved. 

By Lemma 2.3, C:(YIX) is a Banach space. Because H n 
C:(YIX) is a barrel in C;(YIX), there exists f > 0 such that 
W(!o, Y, 3f; YIX) ~ H n C;(YIX). We prove that this f is 
the required one. 

Let f E W(fo, G(H), f; YIX). Define g(x) =max{f(x), f}+ 
min{f(x), -fl. Then 9 E C(YIX), gIG(H) = 0 and I f(x) 
g(x) 1:5 f for each x E Y. IT follows that 2g E H by the claim 
and 2(f -g) E HnCn(YIX). Since f = (1/2)(2g)+(1/2)(2/
29), f E H. This completes the proof of the theorem. D 

Remark. If L in the proof is empty, let 9 = fo, the zero 
function. 

Theorem 2.5. For a space X and a subspace Y of it, the fol
lowing are equivalent: 

(1)	 Cp(YIX) is barrelled. 
(2)	 Every (closed) subset of Y which is bounded in X 1S 

finite. 

Proof: (1) --+ (2). Assume A is a subset of Y which is bounded 
in X. Then W[fo, A, 1; YIX] is a barrel in Cp(YIX). By the 
assumption, there are a finite subset F of Y and f > 0 such 



282 HUI TENG, SHOU LIN AND CHUAN LIU 

that W(!o, F, f; YIX) ~ W[!o, A, 1; YIX]. This implies that 
A ~ F and thus A is finite. 

(2) --.. (1). Let H be a barrel in Cp(YIX). Then 7ryl(H) 
is a barrel in Cp(X) and thus in Ck(X). By Proposition 2.1, 
K(7ry l(H)) is bounded in X. Let G(H) is finite. By the same 
method as in the proof of the foregoing theorem, it is proved 
that there is f > 0 such that W(!o, G(H), f; YIX) ~ H. 0 

3. ApPLICATIONS AND EXAMPLES 

At first, we derive some results from the theorems in §2. 

Proposition 3.1. For a space X and a subspace Y of it. if 
Cp(X) is baTTelled, then Cp(YIX) is barrelled. 

Proposition 3.2. For a space X and a closed subspace Y of 
it, Ck(X) is baTTelled, then Ck(YIX) is baTTelled. 

These follow directly from Theorem I and II in §1 and The
orem 2.4 and 2.5. 

Theorem 3.3. For a space X, Cp(X) is barrelled iff for every 
countable subspace Y of X, Cp(YIX) is barrelled. 

Proof: Necessity follows from Proposition 3.1. Now assume 
that for every countable subspace Y of X, Cp(YIX) is barrelled. 
H Cp(X) is not barrelled, by Theorem II, there is an infinite 
bounded set A in X. Let Y be a countably infinite subset of 
A. Then Y is bounded in X but not finite. By Theorem 2.5, 
Cp(YIX) is not barrelled. This contradiction show that Gp(X) 
is barrelled. D 

As Cp(YIX)(CkYIX)) is dense in Cp(Y)(Ck(Y) resp.), if 
Cp(YIX)(Ck(YIX)) is barrelled, then Cp(Y)Ck(Y) reap.) is 
barrelled. The following examples shows that neither converse 
holds. It also emphasizes that Proposition 3.2 needs Y to be 
closed and that "k" may not replace "p" in Theorem 3.3 
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Example 3.4. Let X = {OJ W{lin: n E N} with the subspace 
topology 0/ Rand Y = {lin: n EN}. Then Ck(X) = C;(X) 
and Cp(Y) = W = Ck(Y) are barrelled, but Cp(YIX) = 
Ck(YIX) is not barrelled. 

Proof: Cp(YIX) = Ck(YIX) is not barrelled because Y is 
bounded in X but neither finite nor compact. 0 

Let E and F be linear topological spaces and f an open 
linear continuous mapping from E onto F. Then if E is bar
relled, F is also barrelled. Although 1ry : C:(X) ~ C~(YIX) 

is always an open mapping (Under this map the unit bal
l of C~(YIX) is the image of the unit ball of C:(X)), 1ry : 

Cp(X) --+ Cp(YIX) (or 1ry : Ck(X) -+ Ck(YIX)) need not be 
(see Example 3.4). However, as the following shows, they are 
open when Y is a closed subspace of X. So Proposition 3.2 
can be also proved in this way. 

Proposition 3.5. Let X be a space and Y a closed subspace of 
X. Then 1ry : Cp(X) --+ Cp(YIX) and 1ry : Ck(X) --+ Ck(YIX) 
are open mappings. 

Proof: We only give a proof for the case of " k", that for the 
case of "p" is similar. Let W(f, ](, f) be an open set of Ck(X), 
where! E C(X),]( is a compact set of X and f > o. Then 
1ry(W(!,K,f)) = W(!IY,]< n Y,f; YIX). In fact, it is easy 
to see that 1rY(W(!,]( < f)) ~ W(!IY,!( n Y, f; YIX). Let 
9 E W(fIY,]( n Y, f; YIX). Choose a continuous extension 9 
of 9 and then an open set U of X such that ]( n Y ~ U and 
sup{1 f(x) - g(x) I: x E U} < f. Since 1<\U and Yare disjoint 
closed sets of X and !<\U is compact, there is ¢ E C{X, 0, 1) 
such that 4>([<\U) = 0 and 4>(Y) = 1. Let 9= g. 4>+ f· (1- 4». 
Then gly = gly = 9 and 

sup {I f{x) - g{x) I: x E ](} 
= sup{1 f(x) - g(x) · ¢(x) - f{x) + f{x) · ¢(x) I: x E ](} 
= sup{1 f(x) - g(x) I · 14>(x) I: x E [(} 
= max{sup{1 f(x) - g(x) I · I 4>(x) I: x E ]<\U}, 

sup{1 f(x) - g(x) I · I </>(x) I: x E ]< n U}} 
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= sup{1 f(x) - g(x) 1· 14>(x) I: x E ]( n U} 
~ sup{1 !(x) - g(x) I: x E ]( n U} < f. 

So 9E W(!, ](, f) a~d thus 9 E 1rY(W(!, ](, f)). The proof is 
complete. 0 

Let X and Y be the spaces in Example 3.4. W(!o, {OJ, 1) is 
an open set of Cp(X), where !o = o. Then 1ry(W(!o, {OJ, 1)) 
is the set of all convergent sequences with limits in (-1,1). It 
is obvious that 1ry(W(!o, {OJ, 1)) is not open in Ck(YIX). 

In an opposite direction to Example 3.4, we give an example 
to show that an analog for Ck(X) of Theorem 3.3 is not true. 

Example 3.6. Let X = WI with the interval topology. Then 
for every countable closed subspace Y of Ck(YIX) is baTTelled, 
but Ck(X) is not. 

Proof: Since every countable closed subspace Y of X is com
pact, so Ck(YIX) - Ck(Y) = C:(Y) is barrelled. However, 
since X is a pseudo-compact but not compact space. By The
orem I, Ck(X) is not barrelled. D 

It is shown in [4] that for a space X and a subspace Y of 
it, Cp(YIX) is Cech - complete jf and only if Cp(Y) is Cech 
complete and Y is C - embedded in X, i.e., every continuous 
function on Y can be continuously extended over X. But this 
is different for the barrelled property. 

Example 3.7. Let X = W U {p} and Y = w, where p E (3w\w. 
Then Cp(YIX) and Cp(Y) = W are barrelled, but Y is not C 
- embedded in X. 

Proof: Note that if Y is countable and C - embedded in X, then 
Y must be closed in X. So Y is not C - embedded in X. To 
prove that Cp(YIX) is barrelled (Cp(Y) is obviously barrelled), 
we prove that every countably infinite subset A of y must be 
unbounded in X. Let A = Al U A2 such that IAII = No = IA2 1 

and Al n A2 = 0. Since clx Al nclx A2 = 0, without loss of 
generality, we may assume that p ¢ clxAI. Denote Al = {an: 
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n EN}. Define a continuous function f E C(X) as f(a n ) = n 
and f(x) = 0 for other x's in X. Then flA is unbounded. 

At last, we give an example to show that in Theorem 3.3, 
Cp(YIX) can not be replaced with Cp(Y). This also answers a 
question in [5] (Question 3.9) restated for the barrelled prop
erty in place of the Baire property. 

Example 3.8. Let X = (3w. then for every countable subspace 
Y of X, Cp(Y) is barrelled, but Cp ( X) is not barrelled. 

Proof: It is obvious by Theorem II that Cp(X) is not barrelled. 
Let Y be a countable subspace of X. The following fact about 
{jw is used now and then in the proof: 

"If x E {3w and B ~ (3w with IBI = No, then there is a clopen 
neighborhood Uof x such that IB\UI = No". 

We can assume that Y is infinite, otherwise, Cp(Y) is obvi
ously barrelled. Let A be an infinite subset of Y. We prove 
that A is unbounded in Y. Then by Theorem II, Cp(Y) is 
barrelled. 

Enumerate Y as {Yi : i E N}. Let nI = 1. By the fact above, 
there is a clopen neighborhood VI of Ynl such that IA\UII = No. 
Let n2 = min {i : i E Nand Yi f/. UI }. Then there is a clopen 
neighborhood U2 of Yn2 such that VI n V2 = 0 and IA\ (VI U 
U2 )1 = No· Let n3 =min{ i : i E Nand Yi f/. VI U U2 }. There is 
a clopen neighborhood V3 of Yn3 such that U3 n (VI U U2 ) = 0 
and IA\(UI UU2 UU3 )1 = No. Continuing in this way, we obtain 
a pairwise disjoint cover {Ui : i E N} of Y by clopen sets of X 
such that A has nonempty intersections with infinitely many 
members of the cover. Let Wi = Vi n Y for i EN. Then 
{Wi : i E N} is a pairwise disjoint open cover of Y. Define a 
function f E C(Y) as f{y) = i if and only if Y E Wi· Then f 
is obviously unbounded on A. The proof finishes. D 

Remark. The authors would like to thank the referee for 
simplifying the proof of Example 3.8. The original proof in
volves a case discussion for the derived set of Y. 
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