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LINEARLY ORDERED ZERO-DIMENSIONAL
 
COMPACT SPACES AS REMAINDERS
 

ELIZA WAJCH 

ABSTRACT. A concept of a GDA-space over a linearly 
ordered set is introduced and applied to a direct method 
of constructing a compactification whose remainder is a 
fixed zero-dimensional linearly ordered compact space. 

INTRODUCTION 

It is well known that, for any Tikhonov space y~, there exists 
a Tikhonov space X with (3X\X homeomorphic to Y (cf.[l: 
4.18]). However, the general problem of finding an internal 
characterization of spaces which have compactifications whose 
remainders are homeomorphic to a fixed Tikhonov space Y is 
difficult. Various authors discovered conditions on a locally 
compact space X which guarantee that members of a certain 
class of compact spaces are remainders of X (cf. for instance 
[2-4,7,8]). The fact that Y is a remainder of a locally compact 
space X is usually proved by using a theorem of Magill, i.e. by 
showing that Y is a continuous image of j3X\X (cf. [6; Thm. 
2.1]). There are not too many methods of adding Y to X in 
order to compactify X. In the present paper we introduce a 
concept of a generalized double-arrow space (abbr. a GDA­
space) over a linearly ordered set and observe that all GDA­
spaces over the same set are homeomorphic. It occurs that a 
zero-dimensional compact Hausdorff space is linearly ordered 
if and only if it is a GDA-space over some set. This property 
leads us to describing those locally compact spaces X which 
have remainders homeomorphic to a fixed linearly ordered zero­
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dimensional compact space Y, and to giving a direct method 
of constructing a compactification oX of X with oX\X = 
Y. Our results generalize those obtained by Hatzenbuhler and 
Mattson in [3-4]. All the spaces considered here are assumed 
to be completely regular and Hausdorff. 

GENERALIZED DOUBLE-ARROW SPACES 

In what follows, S denotes a linearly ordered set with a min­
imal element p and a maximal element q where p =J q. 

1. Definition. Suppose that Y is a compact Hausdorff space 
which has a collection {U3 : s E S} of clopen sets satisfying the 
following conditions: 

I. Up = 0 and Uq = Y; 
II. U3 CUt fors < t (s,t E S); 

III.	 the family {Ut \U3 : s,t E S & s < t} forms an open 
base for Y. 

Then we shall call Y a generalized double arrow-space over S 
(abbr. a GDA (S)-space) 

2. Theorem. Any linearly ordered zero-dimensional compact 
space X is a generalized double-arrow space over some set. 

Proof: Let X = [a, b] and let p ¢ X. Say that p < x for any 
x EX. Considering the set T = {x EX: x has an immediate 
successor} U{p, b} with the order inherited from that of X, and 
putting Ut = {x EX: x ~ t} for t E T, we see that X is a 
GDA(T)-space. 0 

From now on, Y will be a fixed GDA(S)-space, and {U3 : 

s E S}- a collection of clopen sets in Y fulfilling conditions (1)­
(III) of 1. 

By a lower section of S we shall mean a nonempty proper 
subset D of S such that s < t for any sED and t E S\D. 
Denote by L(S) the space of all lower sections of S, equipped 
with the topology induced by the linear order in L(S) given by 
inclusion, i.e. D] < D 2 if and only if D1 C D2 • Clearly, the 
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sets {D E L(8) : D < fp,s]} with s E 8 witness that L(8) is a 
GDA(S)-space. 

3. Theorem. Any GDA(8)-space is homeomorphic to L(8). 

Proof: For y E Y, put j(y) = {s E 8 : y ¢ U,,}. In the light 
of (I) and (II), f(y) E L(S). We shall show that the function 
f : Y --+ L(8) is a homeomorphism. 

Let y, z E Y and y -:/= z. Since Y is Hausdorff, it follows 
from (III) that there exist s, t E S with s < t, Y E Ut \Us and 
z ¢ Ut\U". Then s E j(y), t f/. j(y), but either t E j(z) or 
s ¢ j(z); so j(y) =F j(z). 

Let D E L(8). Since Y is compact, there exists y E n{Ut\Us : 

t E S\D & SED}. For this y, we have f(y) = D; so 
f(Y) = L(S). 

Let y E Y be such that {p} ¥= f(y) # S\{q}. Consider any 
D1,D2 E L(8) with D1 < f(y) < D2. Take to E D2\f(y) 
and So E f(y)\D t • Then y E Uto \U"o. If z E Uto \U"o, then 
So E f(z), while to f/. j(z). This implies that D t < j(z) < D2 , 

so f is continuous at y. Arguing similarly, we can prove that 
f is continuous at f-l({p}) and at f-l(8\{q}). 0 

As an immediate, consequence of 2 and 3, we obtain the 
following 

4. Corollary. A compact zero-dimensional space X is linearly 
ordered if and only if there exists a collection U of its clopen 
subsets such that U is linearly ordered by inclusion and the 
family {U\V: U, V E U} forms an open base for X 

5. Remarks. (a) Suppose that 8 is infinite and any s E 
8\{p, q} has an immediate successor. 0 bserve that if S, 
equipped with the order topology, is compact, then the GDA(8)­
space is homeomorphic to S. Indeed: if {p} is nonisolated in 8, 
it suffices to put Us = fp, s) for s E S\{q}; if p is isolated in S, 
let So = sup{s E S: any t E fp, s] is isolated in S}, Us = fp, s) 

for s < So, and Us = fp, s] for s ~ So (s E S). Of course, if S is 
finite, then IL(8)1 = ISI- 1. 
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(b) Suppose that S with the order topology is both compact 
and connected. Put So = (S\{q}) x {OJ and SI = (S\{p}) x 
{I}. Let the space }Q = So USI be endowed with the topology 
whose base consists of all sets of the form ([s, t) x {OJ )U((s, t] x 
{I}) where s,t E Sand s < t. Defining U. = ((P,s) x {OJ) U 
((p, s] x {I} for s E S, we show that Yo is the GDA(S)-space. 

SPACES FOR WHICH THE GDA(S)-SPACE IS A REMAINDER 

6. Theorem. The GDA(S)-space with lSI ~ 3 is a remainder 
of a locally compact space X if and only if there exist collections 
{V, : s E S\ {p, q}} and {W., : s E S\ {p, q}} of noncompact 
closed subsets of X, such that 
(6.1) V, n W., = 0 for any s E S\{p,q}; 
(6.2) c1x[X\(V., u W.,)] is compact for any s E S\ {p, q}; 
(6.3) clx(V., \~) is compact whenever s, t E S\ {p, q} and s < t; 
(6.4) clx(~\ V.,) is noncompact whenever s, t E S\ {p, q} and 
s < t. 
Proof: Necessity. Suppose that there exists a compactifi­
cation oX of X with oX\X = Y. For s E S\{p, q}, take a 
continuous function Is : oX --+ [0, 1] such that f.,(Y\U.,) = {OJ 
and I.,(U.,) = {I}. Put Ws = f;I([O, ~]) n X and Vs = 
f;l([~, 1]) n X. Then clox[X\(V, u W.,)] ~ 1;1([~, ~]) ~ X; 
hence (6.2) holds. Fix s, t E S\ {p, q} with s < t. Suppose that 
c1x(V,\~) is not compact. There exists Yo Eclax(V,\~) n 
Y. Then Yo E f.,-l([~, 1]), so Yo E U•. On the other hand, 
Yo E It-1 ([0, ~]), so Yo E Y\Ut • But this contradicts the fact 
that Us CUt. Thus we have (6.3). Further, there exists Yl E 
Ut \ U.. If U is any open neighbourhood of Yl in oX such that 
U ~ It-l((~, 1]) n 1;1([0, k)), then U n (~\ V,) ~ 0; hence 
Yl Eclox(~\ V.) and we obtain (6.4). 

Sufficiency. Before constructing the required compactifica­
tion of X, let us denote v;, = 0, Vq = X and prove the following: 
(6.5) bdx(V.,) is compact for any s E S: 
(6.6) [intx(~)]\(v, U J<) =f 0 for any compact subset J( of X 
and any pair s, t E S with s < t; 
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(6.7) for any compact subsets l{i of X and any Si, ti E S with 
i = 1,2 and Sl ~ S2 < tt ~ t 2 , there exists a compact set 
K ~ X such that [intX(lJ;1)]\(lt:,2 U K) ~ [[intX(lJ;l)]\(lt:,l U 
K t )] n [[intx(lJ;2 )]\(It:,2 u 1(2)]; 
(6.8) for any Si,Si E S with i = 1,2 and 51 < tt ~ 52 < t 2, 

there exists a compact set K ~ X such that [(intX(lJ;l) )\(It:,1 U 
K)]n[(intx(lJ;2))\lt:,2] = 0. 

To check (6.5), suppose that x E [bdx(lt:,)]\clx[X\(V, uW.)] 
(s E S\ {p, q} ). There exists a neighbourhood Go of x with 
Go ~ Va U W,. Since x E bdx(V,), for any neighbourhood G of 
x, we have (G n Go) n Ws # 0 and G n Va # 0; however, this is 
impossible by (6.1). Consequently, bdx(V,) ~clx[X\(V,UWs)], 

so bdx(V,) is compact by (6.2). 
Suppose that there are s, t E S with S < t and a compact 

subset !( of X, such that intx(lJ;) ~ V, U 1<. Then ~\ V, ~ 

!(Ubdx(V;). This, together with (6.5), contradicts (6.4). Hence 
(6.6) holds. 

To show (6.7), observe that A = [(intX(lJ;l))\V,2]\[(intx(V;l n 
V;2))\(lt:,1 U V,2 U 1<1 U1(2)] ~ [V;1 \ intx(lJ;2)] U (It:,l \ It:,2) U /(1 U 
K 2 ~ (~1 \~2)Ubdx(~2)U(V,1 \V,2)UI{t U1<2. Using (6.3) and 
(6.5), we deduce that c1x(A) is compact; thus (6.7) is satisfied. 

Property (6.8) follows from (6.3) and from the inclusion 
[(intX(V;l))\V,l] n [( intx(V;2))\V"2] ~ ~l \V"2· 

At last, we are in a position to construct a compactification 
oX of X with oX\X = Y. We may assume that X n Y = 0. 
Put oX = X U Y and denote by B the collection containing 
the original topology of X as well as all the sets (Ut \ U,,) u 
[(intx(V;))\(V,U1<)] where 1( is a compact subset of X, s, t E S 
and S < t. It follows from (1)-(111) and (6.7) that B forms a 
base for some topology in oX. Let us consider oX with the 
topology induced by B. Property (6.6) implies that X is a 
dense subspace of oX. By ( 6.8) and the local compactness of 
X, the space oX is Hausdorff. 

Take any ti, Si E S and any compact subsets l<i of X, such 
that Si < ti for i = 0, ... ,n + 1, p < to ~ t1 ~ ••. ~ tn < 
tn +1 = q, So = P and Ui~~ (Uti \ U"i) = Y. In order to prove 
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that oX is compact, it suffices to check that the set D ­
X\ U~J' [(intx(~i))\(~i U K i )] is compact in X. 

We have D = n~J[(X\intx(~i)) U ~i U Ki ] c E U U~OI Ki 

where E = ni:l[(~n+l \(intx(~i)U intx(~o)))U((VSn+l n~i)\ 
intx(~o))]· Put E i ,1 = ~n+l \[intx(~i)U intx(Vto )] and Ei ,2 = 
(~n+ln~i)\ intx(~o) for i = 1, ... , n. Then E = U{ni:1Ei,J(i) : 
jmaps {I, ... ,n} into {I,2}}. Conditions (6.3) and (6.5) im­
ply that the sets ni:lEi,l and ni=l E i ,2 are compact in X be­
cause, by (II), there exist i,j E {I, ... , n} with Sn+l ~ t i and 

Sj ~ to. Fix f : {I .... ,n} ~ {1,2}. The compactness of 
D will be evident if we show that the set E J = ni:lEi,!(i) is 
compact. 

Observe that if there exist i,j E {I, ... ,n} with f(i) = 
1, j(j) = 2 and i > j, then, by (6.3) and (6.5), EJ is compact 
since Ei,l n Ej ,2 C ~j \ intx(~i). Put io = max f-l(l) and 
suppose that {I, ... ,io} = /-1(1). Then io < n and, by (II), 
there exists jo E {io+1, . .. ,n+I} with S30 ~ tio • The inclusion 
EJ ~ ~jo \ intx(~io)' taken together with (6.3) and (6.5), 
implies that E! is compact. 

7. Corollary. Let T ~ S. If the GDA(S)-space is a remain­
der of X, then the GDA(T U {p,q})-space is a remainder of 
X. Consequently, the GDA(T U {p, q} )-space is a continuous 
image of the GDA(S)-space. 

Proof: The first part of the corollary follows from 6. To show 
that the GDA(T U {p, q} )-space is a continuous image of the 
GDA(S)-space, it suffices to consider any space X with PX\X 
being the GDA(S)-space. 0 

8. Examples. (a) Let X be the free union of noncompact 
locally compact spaces X s with s E S. Putting ~ = Ut<.,X., 
and W., = X\~, we see that Y is a remainder of X whe~e Y 
is a GDA(S)-space. 

(b) Let X be an infinite discrete space with IXI ~ d(Y). 
Take a dense set D ~ Y with IDI ~ d(Y) where Y is a 
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GDA(S)-space. Considering D x X with the discrete topol­
ogy and defining v:, = (U6 nD) xX and W6 = (D xX)\V6 , we 
can construct a compactification oX of X with oX\X home­
omorphic to Y. 

(c) Denote by C the Cantor set. Then C is the GDA­
space over the set T = {a, I} U {an: n E N} with the usu­
al order induced from the real line, where (al,ht),(a2,b2), ... 
is the sequence of all components of the set [O,l]\C. Let 
X = C\{I}. Take any sequence (xn ) of points from the set 
{bn : n E N} such that X n --+ 1 and X n < Xn+l for n E N. 
For any i E N, we can inductively define a sequence (Yn(i)) of 
points from {an: n E N} such that X n < Yn(i) < X n+l and 
Yn(i) < Yn(j) whenever ai < aj(i,j, n EN). Using the sets 
Vi = UnEN([Xn,Yn(i)] n C) and Wi = X\Vi for i E N, we can 
apply Theorem 6 to obtain a compactification of X with C as 
its remainder. 

(d) Let Z be the GDA([O, l])-space, i.e. the interval [-1,1) 
endowed with the topology whose base consist of all the sets 
[a, b) U [-b, -a) where °~ a < b ~ 1. Consider the subspace 
X = Z\ {O} of Z. For s E (0, 1), define "\I:, = UneN([n~1' n~tl))U 

[- n(ntl)' - n~l)) and W" = X \"\1:,. The families {V" : s E 
(0, I)} and {Ws : s E (0, I)} satisfy conditions (6.1)-(6.4); thus 
Z is a remainder of X. 

(e) Juhasz, Kunen and Rudin showed in [5] that if CH holds 
th~n there exists a first countable, locally countable, locally 
compact, perfectly normal, hereditarily separable, zero-dimen­
sional topology T on the real line R which is finer than the 
Euclidean topology and has the property that, for each U E 
T, there exists a usual open set G ~ U such that IU\GI :5 
w. Let X = (R, T). For any s E (0,1), choose a countable 
compact neighborhood ]<6 of s in X. Put Vs = {x E R : x ~ 

s}\ intx(l<s) and Ws = {x E R : x ~ s}\intx(l<s). Now, 
by applying Theorem 6, we can find a compactification of X 
whose remainder is the GDA([O,l])-space. Similarly, we can 
construct a compactification of X which has the Cantor set as 
its remainder. 
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It should be mentioned that conditions (6.1 )-(6.4) were orig­
inally formulated from 8 = [0, WI] by Hatzenbuhler and Matt­
son in [4]. However, the authors of [4] proved the existence of 
oX with oX\X = [O,Wl] by the applying Magill's theorem. 

Finally, let us notice that if 8 is infinite and compact with 
the order topology, then 8 is a continuous image of L(8). This, 
along with the Magill theorem, gives at once the following 

9. Proposition. Suppose that S is infinite and compact with 
the order topology. If the GDA(S)-space is a remainder of X, 
then 8 is a remainder of X . 

Of course, the requirement that 8 be infinite cannot be omit­
ted in the above proposition since there are noncompact locally 
compact spaces that do not have two-point compactifications. 
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