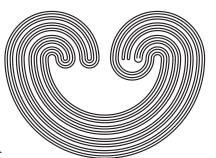
Topology Proceedings

Web: http://topology.auburn.edu/tp/


Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT ${}_{\bigodot}$ by Topology Proceedings. All rights reserved.

LINEARLY ORDERED ZERO-DIMENSIONAL COMPACT SPACES AS REMAINDERS

ELIZA WAJCH

ABSTRACT. A concept of a GDA-space over a linearly ordered set is introduced and applied to a direct method of constructing a compactification whose remainder is a fixed zero-dimensional linearly ordered compact space.

Introduction

It is well known that, for any Tikhonov space Y, there exists a Tikhonov space X with $\beta X \setminus X$ homeomorphic to Y (cf.[1: 4.18]). However, the general problem of finding an internal characterization of spaces which have compactifications whose remainders are homeomorphic to a fixed Tikhonov space Y is difficult. Various authors discovered conditions on a locally compact space X which guarantee that members of a certain class of compact spaces are remainders of X (cf. for instance [2-4,7,8]). The fact that Y is a remainder of a locally compact space X is usually proved by using a theorem of Magill, i.e. by showing that Y is a continuous image of $\beta X \setminus X$ (cf. [6; Thm. [2.1]). There are not too many methods of adding Y to X in order to compactify X. In the present paper we introduce a concept of a generalized double-arrow space (abbr. a GDAspace) over a linearly ordered set and observe that all GDAspaces over the same set are homeomorphic. It occurs that a zero-dimensional compact Hausdorff space is linearly ordered if and only if it is a GDA-space over some set. This property leads us to describing those locally compact spaces X which have remainders homeomorphic to a fixed linearly ordered zerodimensional compact space Y, and to giving a direct method of constructing a compactification αX of X with $\alpha X \setminus X = Y$. Our results generalize those obtained by Hatzenbuhler and Mattson in [3-4]. All the spaces considered here are assumed to be completely regular and Hausdorff.

GENERALIZED DOUBLE-ARROW SPACES

In what follows, S denotes a linearly ordered set with a minimal element p and a maximal element q where $p \neq q$.

- 1. Definition. Suppose that Y is a compact Hausdorff space which has a collection $\{U_s : s \in S\}$ of clopen sets satisfying the following conditions:
 - I. $U_p = \emptyset$ and $U_q = Y$;
 - II. $U_s \subset U_t$ for $s < t \ (s, t \in S)$;
 - III. the family $\{U_t \setminus U_s : s, t \in S \& s < t\}$ forms an open base for Y.

Then we shall call Y a generalized double arrow-space over S (abbr. a GDA(S)-space)

2. Theorem. Any linearly ordered zero-dimensional compact space X is a generalized double-arrow space over some set.

Proof: Let X = [a, b] and let $p \notin X$. Say that p < x for any $x \in X$. Considering the set $T = \{x \in X : x \text{ has an immediate successor}\} \cup \{p, b\}$ with the order inherited from that of X, and putting $U_t = \{x \in X : x \leq t\}$ for $t \in T$, we see that X is a GDA(T)-space. \square

From now on, Y will be a fixed GDA(S)-space, and $\{U_s : s \in S\}$ - a collection of clopen sets in Y fulfilling conditions (I)-(III) of 1.

By a lower section of S we shall mean a nonempty proper subset D of S such that s < t for any $s \in D$ and $t \in S \setminus D$. Denote by L(S) the space of all lower sections of S, equipped with the topology induced by the linear order in L(S) given by inclusion, i.e. $D_1 < D_2$ if and only if $D_1 \subset D_2$. Clearly, the

sets $\{D \in L(S) : D < [p, s]\}$ with $s \in S$ witness that L(S) is a GDA(S)-space.

3. Theorem. Any GDA(S)-space is homeomorphic to L(S).

Proof: For $y \in Y$, put $f(y) = \{s \in S : y \notin U_s\}$. In the light of (I) and (II), $f(y) \in L(S)$. We shall show that the function $f: Y \to L(S)$ is a homeomorphism.

Let $y, z \in Y$ and $y \neq z$. Since Y is Hausdorff, it follows from (III) that there exist $s, t \in S$ with s < t, $y \in U_t \setminus U_s$ and $z \notin U_t \setminus U_s$. Then $s \in f(y)$, $t \notin f(y)$, but either $t \in f(z)$ or $s \notin f(z)$; so $f(y) \neq f(z)$.

Let $D \in L(S)$. Since Y is compact, there exists $y \in \cap \{U_t \setminus U_s : t \in S \setminus D \& s \in D\}$. For this y, we have f(y) = D; so f(Y) = L(S).

Let $y \in Y$ be such that $\{p\} \neq f(y) \neq S \setminus \{q\}$. Consider any $D_1, D_2 \in L(S)$ with $D_1 < f(y) < D_2$. Take $t_0 \in D_2 \setminus f(y)$ and $s_0 \in f(y) \setminus D_1$. Then $y \in U_{t_0} \setminus U_{s_0}$. If $z \in U_{t_0} \setminus U_{s_0}$, then $s_0 \in f(z)$, while $t_0 \notin f(z)$. This implies that $D_1 < f(z) < D_2$, so f is continuous at g. Arguing similarly, we can prove that $g \in f(z)$ is continuous at $g \in f(z)$ and at $g \in f(z)$. \square

As an immediate, consequence of 2 and 3, we obtain the following

- **4.** Corollary. A compact zero-dimensional space X is linearly ordered if and only if there exists a collection $\mathcal U$ of its clopen subsets such that $\mathcal U$ is linearly ordered by inclusion and the family $\{U \mid V: U, V \in \mathcal U\}$ forms an open base for X
- **5.** Remarks. (a) Suppose that S is infinite and any $s \in S \setminus \{p,q\}$ has an immediate successor. Observe that if S, equipped with the order topology, is compact, then the GDA(S)-space is homeomorphic to S. Indeed: if $\{p\}$ is nonisolated in S, it suffices to put $U_s = [p,s)$ for $s \in S \setminus \{q\}$; if p is isolated in S, let $s_0 = \sup\{s \in S: \text{ any } t \in [p,s] \text{ is isolated in } S\}$, $U_s = [p,s)$ for $s < s_0$, and $U_s = [p,s]$ for $s \ge s_0$ ($s \in S$). Of course, if S is finite, then |L(S)| = |S| 1.

(b) Suppose that S with the order topology is both compact and connected. Put $S_0 = (S \setminus \{q\}) \times \{0\}$ and $S_1 = (S \setminus \{p\}) \times \{1\}$. Let the space $Y_0 = S_0 \cup S_1$ be endowed with the topology whose base consists of all sets of the form $([s,t) \times \{0\}) \cup ((s,t] \times \{1\})$ where $s,t \in S$ and s < t. Defining $U_s = ([p,s) \times \{0\}) \cup ((p,s] \times \{1\})$ for $s \in S$, we show that Y_0 is the GDA(S)-space.

SPACES FOR WHICH THE GDA(S)-space is a remainder

- **6. Theorem.** The GDA(S)-space with $|S| \ge 3$ is a remainder of a locally compact space X if and only if there exist collections $\{V_s: s \in S \setminus \{p,q\}\}$ and $\{W_s: s \in S \setminus \{p,q\}\}$ of noncompact closed subsets of X, such that
- (6.1) $V_s \cap W_s = \emptyset$ for any $s \in S \setminus \{p, q\}$;
- (6.2) $\operatorname{cl}_X[X \setminus (V_s \cup W_s)]$ is compact for any $s \in S \setminus \{p, q\}$;
- (6.3) $\operatorname{cl}_X(V_s \setminus V_t)$ is compact whenever $s, t \in S \setminus \{p, q\}$ and s < t;
- (6.4) $\operatorname{cl}_X(V_t \backslash V_s)$ is noncompact whenever $s, t \in S \backslash \{p, q\}$ and s < t.

Proof: Necessity. Suppose that there exists a compactification αX of X with $\alpha X \setminus X = Y$. For $s \in S \setminus \{p,q\}$, take a continuous function $f_s: \alpha X \to [0,1]$ such that $f_s(Y \setminus U_s) = \{0\}$ and $f_s(U_s) = \{1\}$. Put $W_s = f_s^{-1}([0,\frac{1}{3}]) \cap X$ and $V_s = f_s^{-1}([\frac{1}{3},\frac{1}{3}]) \cap X$. Then $\operatorname{cl}_{\alpha X}[X \setminus (V_s \cup W_s)] \subseteq f_s^{-1}([\frac{1}{3},\frac{2}{3}]) \subseteq X$; hence (6.2) holds. Fix $s,t \in S \setminus \{p,q\}$ with s < t. Suppose that $\operatorname{cl}_X(V_s \setminus V_t)$ is not compact. There exists $y_0 \in \operatorname{cl}_{\alpha X}(V_s \setminus V_t) \cap Y$. Then $y_0 \in f_s^{-1}([\frac{2}{3},1])$, so $y_0 \in U_s$. On the other hand, $y_0 \in f_t^{-1}([0,\frac{2}{3}])$, so $y_0 \in Y \setminus U_t$. But this contradicts the fact that $U_s \subset U_t$. Thus we have (6.3). Further, there exists $y_1 \in U_t \setminus U_s$. If U is any open neighbourhood of y_1 in αX such that $U \subseteq f_t^{-1}([\frac{2}{3},1]) \cap f_s^{-1}([0,\frac{1}{3}))$, then $U \cap (V_t \setminus V_s) \neq \emptyset$; hence $y_1 \in \operatorname{cl}_{\alpha X}(V_t \setminus V_s)$ and we obtain (6.4).

Sufficiency. Before constructing the required compactification of X, let us denote $V_p = \emptyset$, $V_q = X$ and prove the following: (6.5) $bd_X(V_s)$ is compact for any $s \in S$:

(6.6) $[\operatorname{int}_X(V_t)] \setminus (V_s \cup K) \neq \emptyset$ for any compact subset K of X and any pair $s, t \in S$ with s < t;

(6.7) for any compact subsets K_i of X and any $s_i, t_i \in S$ with i = 1, 2 and $s_1 \leq s_2 < t_1 \leq t_2$, there exists a compact set $K \subseteq X$ such that $[\operatorname{int}_X(V_{t_1})] \setminus (V_{s_2} \cup K) \subseteq [[\operatorname{int}_X(V_{t_1})] \setminus (V_{s_1} \cup K_1)] \cap [[\operatorname{int}_X(V_{t_2})] \setminus (V_{s_2} \cup K_2)];$

(6.8) for any $s_i, s_i \in S$ with i = 1, 2 and $s_1 < t_1 \le s_2 < t_2$, there exists a compact set $K \subseteq X$ such that $[(\operatorname{int}_X(V_{t_1})) \setminus (V_{s_1} \cup K)] \cap [(\operatorname{int}_X(V_{t_2})) \setminus V_{s_2}] = \emptyset$.

To check (6.5), suppose that $x \in [bd_X(V_s)] \setminus cl_X[X \setminus (V_s \cup W_s)]$ $(s \in S \setminus \{p,q\})$. There exists a neighbourhood G_0 of x with $G_0 \subseteq V_s \cup W_s$. Since $x \in bd_X(V_s)$, for any neighbourhood G of x, we have $(G \cap G_0) \cap W_s \neq \emptyset$ and $G \cap V_s \neq \emptyset$; however, this is impossible by (6.1). Consequently, $bd_X(V_s) \subseteq cl_X[X \setminus (V_s \cup W_s)]$, so $bd_X(V_s)$ is compact by (6.2).

Suppose that there are $s,t \in S$ with s < t and a compact subset K of X, such that $\operatorname{int}_X(V_t) \subseteq V_s \cup K$. Then $V_t \setminus V_s \subseteq K \cup bd_X(V_t)$. This, together with (6.5), contradicts (6.4). Hence (6.6) holds.

To show (6.7), observe that $A = [(\operatorname{int}_X(V_{t_1})) \setminus V_{s_2}] \setminus [(\operatorname{int}_X(V_{t_1} \cap V_{t_2})) \setminus (V_{s_1} \cup V_{s_2} \cup K_1 \cup K_2)] \subseteq [V_{t_1} \setminus \operatorname{int}_X(V_{t_2})] \cup (V_{s_1} \setminus V_{s_2}) \cup K_1 \cup K_2 \subseteq (V_{t_1} \setminus V_{t_2}) \cup bd_X(V_{t_2}) \cup (V_{s_1} \setminus V_{s_2}) \cup K_1 \cup K_2$. Using (6.3) and (6.5), we deduce that $\operatorname{cl}_X(A)$ is compact; thus (6.7) is satisfied.

Property (6.8) follows from (6.3) and from the inclusion $[(\operatorname{int}_X(V_{t_1})) \setminus V_{s_1}] \cap [(\operatorname{int}_X(V_{t_2})) \setminus V_{s_2}] \subseteq V_{t_1} \setminus V_{s_2}$.

At last, we are in a position to construct a compactification αX of X with $\alpha X \setminus X = Y$. We may assume that $X \cap Y = \emptyset$. Put $\alpha X = X \cup Y$ and denote by \mathcal{B} the collection containing the original topology of X as well as all the sets $(U_t \setminus U_s) \cup [(\operatorname{int}_X(V_t)) \setminus (V_s \cup K)]$ where K is a compact subset of $X, s, t \in S$ and s < t. It follows from (I)-(III) and (6.7) that \mathcal{B} forms a base for some topology in αX . Let us consider αX with the topology induced by \mathcal{B} . Property (6.6) implies that X is a dense subspace of αX . By (6.8) and the local compactness of X, the space αX is Hausdorff.

Take any $t_i, s_i \in S$ and any compact subsets K_i of X, such that $s_i < t_i$ for $i = 0, \ldots, n+1, p < t_0 \le t_1 \le \ldots \le t_n < t_{n+1} = q$, $s_0 = p$ and $\bigcup_{i=0}^{n+1} (U_{t_i} \setminus U_{s_i}) = Y$. In order to prove

that αX is compact, it suffices to check that the set $D = X \setminus \bigcup_{i=0}^{n+1} [(\operatorname{int}_X(V_{t_i})) \setminus (V_{s_i} \cup K_i)]$ is compact in X.

We have $D=\bigcap_{i=0}^{n+1}[(X\backslash\operatorname{int}_X(V_{t_i}))\cup V_{s_i}\cup K_i]\subset E\cup\bigcup_{i=0}^{n+1}K_i$ where $E=\bigcap_{i=1}^n[(V_{s_{n+1}}\backslash(\operatorname{int}_X(V_{t_i})\cup\operatorname{int}_X(V_{t_0})))\cup((V_{s_{n+1}}\cap V_{s_i})\backslash\operatorname{int}_X(V_{t_0}))]$. Put $E_{i,1}=V_{s_{n+1}}\backslash[\operatorname{int}_X(V_{t_i})\cup\operatorname{int}_X(V_{t_0})]$ and $E_{i,2}=(V_{s_{n+1}}\cap V_{s_i})\backslash\operatorname{int}_X(V_{t_0})$ for $i=1,\ldots,n$. Then $E=\cup\{\bigcap_{i=1}^n E_{i,f(i)}:f$ maps $\{1,\ldots,n\}$ into $\{1,2\}\}$. Conditions (6.3) and (6.5) imply that the sets $\bigcap_{i=1}^n E_{i,1}$ and $\bigcap_{i=1}^n E_{i,2}$ are compact in X because, by (II), there exist $i,j\in\{1,\ldots,n\}$ with $s_{n+1}\leq t_i$ and $s_j\leq t_0$. Fix $f:\{1,\ldots,n\}\xrightarrow{onto}\{1,2\}$. The compactness of D will be evident if we show that the set $E_f=\bigcap_{i=1}^n E_{i,f(i)}$ is compact.

Observe that if there exist $i, j \in \{1, \ldots, n\}$ with f(i) = 1, f(j) = 2 and i > j, then, by (6.3) and (6.5), E_f is compact since $E_{i,1} \cap E_{j,2} \subset V_{s_j} \setminus \operatorname{int}_X(V_{t_i})$. Put $i_0 = \max f^{-1}(1)$ and suppose that $\{1, \ldots, i_0\} = f^{-1}(1)$. Then $i_0 < n$ and, by (II), there exists $j_0 \in \{i_0+1, \ldots, n+1\}$ with $s_{j_0} \leq t_{i_0}$. The inclusion $E_f \subseteq V_{s_{j_0}} \setminus \operatorname{int}_X(V_{t_{i_0}})$, taken together with (6.3) and (6.5), implies that E_f is compact.

7. Corollary. Let $T \subseteq S$. If the GDA(S)-space is a remainder of X, then the $GDA(T \cup \{p,q\})$ -space is a remainder of X. Consequently, the $GDA(T \cup \{p,q\})$ -space is a continuous image of the GDA(S)-space.

Proof: The first part of the corollary follows from 6. To show that the $GDA(T \cup \{p,q\})$ -space is a continuous image of the GDA(S)-space, it suffices to consider any space X with $\beta X \setminus X$ being the GDA(S)-space. \square

- 8. Examples. (a) Let X be the free union of noncompact locally compact spaces X_s with $s \in S$. Putting $V_s = \bigcup_{t \leq s} X_s$ and $W_s = X \setminus V_s$, we see that Y is a remainder of X where Y is a GDA(S)-space.
- (b) Let X be an infinite discrete space with $|X| \ge d(Y)$. Take a dense set $D \subseteq Y$ with $|D| \le d(Y)$ where Y is a

- GDA(S)-space. Considering $D \times X$ with the discrete topology and defining $V_s = (U_s \cap D) \times X$ and $W_s = (D \times X) \setminus V_s$, we can construct a compactification αX of X with $\alpha X \setminus X$ homeomorphic to Y.
- (c) Denote by C the Cantor set. Then C is the GDA-space over the set $T=\{0,1\}\cup\{a_n:n\in N\}$ with the usual order induced from the real line, where $(a_1,b_1),(a_2,b_2),\ldots$ is the sequence of all components of the set $[0,1]\backslash C$. Let $X=C\backslash\{1\}$. Take any sequence (x_n) of points from the set $\{b_n:n\in N\}$ such that $x_n\to 1$ and $x_n< x_{n+1}$ for $n\in N$. For any $i\in N$, we can inductively define a sequence $(y_n(i))$ of points from $\{a_n:n\in N\}$ such that $x_n< y_n(i)< x_{n+1}$ and $y_n(i)< y_n(j)$ whenever $a_i< a_j(i,j,n\in N)$. Using the sets $V_i=\bigcup_{n\in N}([x_n,y_n(i)]\cap C)$ and $W_i=X\backslash V_i$ for $i\in N$, we can apply Theorem 6 to obtain a compactification of X with C as its remainder.
- (d) Let Z be the GDA([0,1])-space, i.e. the interval [-1,1) endowed with the topology whose base consist of all the sets $[a,b)\cup[-b,-a)$ where $0\leq a< b\leq 1$. Consider the subspace $X=Z\setminus\{0\}$ of Z. For $s\in(0,1)$, define $V_s=\cup_{n\in N}([\frac{1}{n+1},\frac{n+s}{n(n+1)})\cup[-\frac{n+s}{n(n+1)},-\frac{1}{n+1}))$ and $W_s=X\setminus V_s$. The families $\{V_s:s\in(0,1)\}$ and $\{W_s:s\in(0,1)\}$ satisfy conditions (6.1)-(6.4); thus Z is a remainder of X.
- (e) Juhász, Kunen and Rudin showed in [5] that if CH holds then there exists a first countable, locally countable, locally compact, perfectly normal, hereditarily separable, zero-dimensional topology T on the real line R which is finer than the Euclidean topology and has the property that, for each $U \in T$, there exists a usual open set $G \subseteq U$ such that $|U \setminus G| \le \omega$. Let X = (R, T). For any $s \in (0, 1)$, choose a countable compact neighborhood K_s of s in X. Put $V_s = \{x \in R : x \le s\} \setminus \inf_X(K_s)$ and $W_s = \{x \in R : x \ge s\} \setminus \inf_X(K_s)$. Now, by applying Theorem 6, we can find a compactification of X whose remainder is the GDA([0,1])-space. Similarly, we can construct a compactification of X which has the Cantor set as its remainder.

It should be mentioned that conditions (6.1)-(6.4) were originally formulated from $S = [0, \omega_1]$ by Hatzenbuhler and Mattson in [4]. However, the authors of [4] proved the existence of αX with $\alpha X \setminus X = [0, \omega_1]$ by the applying Magill's theorem.

Finally, let us notice that if S is infinite and compact with the order topology, then S is a continuous image of L(S). This, along with the Magill theorem, gives at once the following

9. Proposition. Suppose that S is infinite and compact with the order topology. If the GDA(S)-space is a remainder of X, then S is a remainder of X.

Of course, the requirement that S be infinite cannot be omitted in the above proposition since there are noncompact locally compact spaces that do not have two-point compactifications.

REFERENCES

- [1] R. E. Chandler, Hausdorff Compactifications, M. Dekker, New York, 1976.
- [2] R. E. Chandler and Fu-Chien Tzung, Remainders in Hausdorff compactifications, Proc. Amer. Math. Soc., 70 (1978), 196-202.
- [3] J. Hatzenbuhler and D. A. Mattson, Spaces for which all compact metric spaces are remainders, Proc. Amer. Math. Soc., 82 (1981), 478-480.
- [4] J. Hatzenbuhler and D. A. Mattson, Spaces for which the first uncountable ordinal space is a remainder, Period. Math. Hung. 19 (1988), 107-112.
- [5] I. Juhász, K. Kunen, M. E. Rudin, Two more hereditarily separable non-Lindelöf spaces, Canad. J. Math., 28 (1976), 988-1005.
- [6] K. D. Magill, Jr., A note on compactifications, Math. Z. 94 (1966), 322-325.
- [7] J. W. Rogers, On compactifications with continua as remainders, Fund. Math., 70 (1971), 7-11.
- [8] Y. Ünlü, Spaces for which the generalized Cantor space 2^J is a remainder, Proc. Amer. Math. Soc., 86 (1982), 673-678.

Institute of Mathematics University of Łódź ul. S. Banacha 22 90-238 Łódź, Poland