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ABSTRACT. Proving lower bounds for the cost of solving 
problems on a computer is a very difficult problem-not 
least because it is a global problem: one must minimize 
cost over all possible algorithms. As with many other 
global problems, a topological approach has proven fruit­
ful. We give two applications of topology to the problem 
of proving lower bounds. The first is to the computation 
of the topological complexity of a problem. We define 
the New Point Problem and compute tight bounds for 
its topological complexity. The second application is to 
finding lower bounds on one way communication com­
plexity of two processors. 

1. INTRODUCTION 

When analyzing any problem in computer science, there are 
three questions that are asked. These are the questions of 

(1) Solvability:	 Is it possible to solve the given problem 
with a computer? 

(2)	 Upper bounds: What is an upper limit to the number 
of operations the computer must perform to solve the 
problem in the worst case? 

(3)	 Lower bounds: What is a lower bound to the number of 
operations necessary to solve the problem in the worst 
case? 
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Solvability is often quite easy to decide. For many problems, 
especially for simple computational questions such as sorting 
or matrix multiplication, there are obvious algorithms. These 
algorithms were know long before there were computers and it 
is easy to see that a computer can successfully perform them. 

Other problems, for example determining whether a system 
of equations has a solution, are major mathematical questions. 
Until this question was solved by Tarski[13] it was not at all 
clear that this was possible to do algorithmically. 

Of course, there are still significant areas in which this ques­
tion is unanswered. Whether artificial intelligence is possible 
is an article of faith for many workers in the field, but it is still 
hotly debated in philosophical circles. 

Having answered the question of solvability, proving an up­
per bound is often straightforward as well. One analyzes the 
known algorithm and proves that it always terminates after a 
certain number of operations. (Usually one speaks of "cost" in­
stead of "number of operations". The usual assumption is that 
each operation costs one unit. A more realistic model might 
charge twice as much for multiplication as for addition since 
multiplying usually takes longer than adding. One can then 
define "the cost due to multiplying", "the cost due to adding" , 
etc. in the obvious way.) 

Most upper bounds are of this form. It is rare, though not 
unheard of, to prove an upper bound for an unknown algo­
rithm. There are occasional non-constructive proofs of the 

.existence of efficient algorithms, but they are rare. 
The third question, that of finding lower bounds for algo­

rithms, is very hard. Somehow one must prove that all algo­
rithms, including those you don't know, must perform a certain 
number of operations to solve the given problem. This, nat­
urally, is significantly harder than finding and analyzing an 
algorithm. 

In general, computer scientists believe that the first two 
problems have been pretty well solved for most computational 
problems. They believe that the known algorithms are close 
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to optimal. Ideally, the upper bound should match the lower 
bound. Then we would know our algorithm is as fast as it could 
ever be and we could look for new problems. There are some 
problems with matching upper and lower bounds, but this is 
not the general case. Ben-Or [3], building on Steele and Yao's 
work [12], gives a general technique for proving lower bounds 
and provides many examples of both optimal and non-optimal 
lower bounds. 

Problems are are typically classified into those which are 
solvable in polynomial cost, and those which aren't. There is a 
large and important (both theoretically and practically) class 
of problems, the NP-complete problems, which are generally 
believed to be exponential cost. Garey and Johnson [5] is a 
good book defining NP-completeness and provides a list of over 
300 such problems. 

Certainly every known algorithm for an NP-complete prob­
lem has worst case exponential cost. However, the best known 
lower bounds tend to be low order polynomials. For instance, 
all algorithms for the Knapsack Problem (given a list of n num­
bers, is there a subset which adds up to another given number?) 
take a worst case cost which is exponential in n, but the best 
lower bound is only n 2 /2 [3]. 

The questions of solvability and upper bounds are local in 
nature-they are questions about particular known objects. The 
problem of finding lower bounds is global in nature-it is about 
all objects of a given type. It seems natural to try to harness 
topological techniques to this question. Topology has a long 
history of successful application to global questions, from the 
Bridges of Konigsberg to modern Global Analysis. 

The techniques of Ben-Or [3] and Steel and Yao [12] men­
tioned above do, in fact, hinge upon topological results of Mil­
nor [9] and Thorn [14] on the Betti numbers of a solution of 
polynomial equations, so this is not exactly a new observation. 
Bjorner, Lovasz and Yao [4] have another approach which gives 
a lower bound in terms of Euler characteristics. 
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In this paper we will present two areas in which topology can 
provide interesting lower bounds. The first is the topological 
complexity of a problem, which is fundamentally related to the 
topology of the inputs and outputs of the problem. This was 
first studied by Smale [11] for root finding, then by Vasiliav 
[15] and Levine [7]. We will define a new problem, the New 
Point Problem, and compute its topological complexity for a 
variety of spaces. These results are written up in more detail 
in [6]. 

The second application of topology will be to communication 
complexity. Here we have two computers trying to compute 
some function of their inputs and we wish to know how many 
pieces of data they must communicate to each other. This has 
been widely studied in the discrete model of computation and 
less widely in the continuous model. In the continuous model 
a topological approach provides an good intuitive framework. 
We will prove Abelson's theorem [2], and also prove the version 
given by Luo and Tsitsiklis [8], in a manner which is particu­
larly simple and intuitive. 

2. TOPOLOGICAL COMPLEXITY 

In this section we discuss the application of topology to the 
problem of finding the topological complexity of a problem. 
The term "topological complexity" was invented by Smale in 
the study of root finding [11]. 

Topological complexity is the number of branching state­
ments to solve a problem. A typical algorithm is full of state­
ments like "if x > 0 then do this, otherwise to that." To make 
this rigorous we must define our model of computation. 

2.1. The Model Of Computation. 

Definition 2.1. An algorithm is a binary tree where the input 
is n real numbers and at each node a rational function of the 
input is calculated, then compared to zero. The algorithm goes 
down one branch or the other depending on the outcome of 
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the comparison. In a leaf a rational function of the inputs is 
computed. 

Figure 2.1 is an example of an algorithm for computing 
whether Ixl > 1. Here YES and NO are thought of as constant 
functions with some coding for YES and NO, say YES = 1, 
NO = o. 

Input x --.... Ix-II 

~o 

YES • I-x-II 

>0
 

YES NO 

FIGURE 1. Testing Ixl > 1 with 2 branches, no 
multiplications 

Actually, the results we will get can be obtained with the 
assumption that all functions are continuous functions. In this 
model at each node an arbitrary continuous function of the 
inputs is computed and compared to zero. 

Note that this model of computation is not well suited for 
calculating total cost of a computation as many computations 
are done at each node. It is, however, well suited for the study 
of topological complexity. 
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Definition 2.2. The topological complexity of an algorithm 
T is the number of branch nodes in T. Note that this is the 
number of leaves - 1. 

The topological complexity of a problem is the minimum, 
over all algorithms which solve the problem, of the topological 
complexity of each algorithm. 

Many problems have trivial topological complexity. For in­
stance, finding the determinant of an n x n matrix takes no 
branching though this method might have unnecessarily high 
cost. It might be more efficient to do some row and column 
reductions so as to introduce zeros and simplify the resulting 
formula, thus lowering the cost of the computation, but raising 
the topological complexity of the algorithm. 

Because many computational questions can be answered with­
out branching, topological complexity is a more interesting 
concept for search problems, i.e., problems for which there are 
many possible answers. 

Example 2.3 Sorting is a simple example of topological com­
plexity in a search problem. Assuming that each leaf com­
putes a rational function of the inputs which sorts the input­
s, each rational function is just a permutation of the inputs. 
Thus there must be as many leaves as there are possible or­
ders for the inputs, so the topological complexity is n! - 1. 
To have that many branching nodes the algorithm must have 
depth log2(n!) n log2 n. As there are algorithms of depth"J 

O(n log2 n) we have upper and lower bounds of the same or­
der. 

2.1.1 Tradeoffs between Computing and Branching 

Ben-Or's techniques for proving lower bounds [3] give low­
er bounds for the number of multiplications, divisions and 
branching all together. Interestingly, there is often a trade­
off between multiplication/division and branching. For exam­
ple, consider Figure 2.1. It is an algorithm for testing whether 
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Ixl > 1. It has two branch nodes and no multiplications. Fig­
ure 2.2 is another algorithm for the same test, this time with 
only one branch node but with one multiplication. 

2Input x •• IX - 11 

~o 

YES NO 

FIGURE 2. Testing Ixl > 1 with 1 branch, 1 
multiplication 

We would like to know to what extent branching and multi­
plying can be traded off. Clearly you can't compute x n2 with­
out some multiplications, nor can you sort without branching, 
but there is no systematic way of determining how many of 
each are necessary. This work is an start in developing such 
systematics. 

2.1.2 Leaf Spaces 

We can now rephrase topological complexity into topological 
terms. 

Definition 2.4. Let I be the set of all possible inputs to a 
given algorithm. For a given leaf l, the leaf space of l, Vi, is 
the set of points of I for which the algorithm ends at l. 

Since every point in the input space ends up at some leaf, an 
algorithm yields a decomposition of I into leaf spaces Vi, and 
on each Vi there is a function which computes a continuous 
solution to the problem. Thus, the answer to the question 
"What is the topological complexity of a problem?" can be 
bounded below by the answering the the question "What is 
the minimal number of sets Vi that I can be decomposed into, 
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so that there is a continuous solution <Pi on each Vi?" We have 
proven 

Proposition 2.5. The topological complexity of a problem ~ 

the number of sets Vi needed in a partition of the inputs so 
that there are continuous functions solving the problem on each 
Vi-I. 

3. THE NEW POINT PROBLEM 

The New Point Problem (NPP) is a toy problem designed 
specifically to have unavoidable branching without much com­
putation. In its most applicable form it is known as the Burger 
I(ing problem. 

Example 3.1 As owner of all the Burger Kings on Manhattan 
island, you want to open a new Burger King, but there are 
some constraints. In order not to compete with yourself, all 
your restaurants are at least 5 blocks apart. You need to find a 
place to put your new restaurant at least 5 blocks away from all 
your other. Leaving aside questions of optimal location, and 
assuming you haven't filled all the available space, can you 
find a place for the new Burger King? What is the topological 
complexity of doing so? 

The topological complexity of this problem is in Corollary 
3.14, except instead of Manhattan we will use the closed inter­
val. The Corollary will follow from the analysis of a simpler 
question. 

Definition 3.2. The New Point Problem, or NPP: Given a 
list of points Xl, X2, ••• ,Xn in a topological space X, find a 
new point y E X not in the list. 

Remark 3.3 Here we assume that X is somehow modelable on 
a computer in such a way that we can cheaply compute whether 
two points x, y E X are the same, i.e., for unit "charge" against 
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the topological complexity of the algorithm. Examples of such 
spaces are R, [0,1], (0,1), and sn. 
Remark 3.4 It is important that we use a list of points and 
not, for instance, a set. In the first place, computers cannot 
handle unordered collections of elements; all inputs have a first, 
second, etc., even if there is no meaning attached to the order. 
Secondly, as we show in Example 3.8 it is important for these 
results that the elements can be repeated-in fact all the inputs 
can be the same number. 

The topology of the space X has a significant effect on the 
topological complexity of NPP on X. 

Example 3.5 On Sl when n = 1, x t-+ -x gives a new point. 
Thus, the topological complexity of NPP on 81 with n = 1 is 
o. 

Example 3.6 Every continuous map [0, 1] ~ [0, 1] has a fixed 
point, so no such formula works for [0, 1] with n = 1. Thus, 
the topological complexity of NPP on [0, 1] when n = 1 is 1. 

n 

Example 3.7 On R, Ex~ + nis always a new point, so the 
i=l 

topological complexity is O. The open interval (0, 1) is homeo­
morphic to R so the topological complexity is 0 on (0,1), too. 

Example 3.8 Given n distinct points in [0, 1] the topological 
complexity of finding a new point is o. Let {Xi} be the points. 
Define 

n 

f = II Xl - Xi· 
i=2 

Then f is smaller than the distance between Xl and any other 
point, so y = Xl +f2(X2-XI) is a new point. Hence, topological 
complexity is 0 for 2 or more distinct points in [0,1]. 
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3.1. Upper Bounds. There is an trivial upper bound of n 
for any X modelable on a computer. We make it explicit in 
the case of X = [0, 1]. 

Theorem 3.9. The topological complexity of NPP on [0,1] is 
~n. 

Proof: To prove this we need to present an algorithm which 
when given Xl, X2, • •• ,Xn E [0, 1] will find a new point and we 
can guarantee it has only n branch nodes. Consider the points 
{a, ~, ~, ... ,;}. One at a time, our algorithm will test the 
elements of this set against {Xl, X2, • •• ,xn }. Testing can be 
done in one branch step by testing whether 

n k? 
II(xi - -) == 0. 
i=l n 

If no, the Is. is a new point. Otherwise Is. is in the list. 
n n 

After testing the first n tests, assuming we haven't found a 
new point yet, we are guaranteed the final test point is not in 
the set. In this case the algorithm outputs the final point with­
out a test. So the algorithm has exactly n branch nodes. D 

This argument will obviously work for any metric space with 
a metric which is computable without branching. Sometimes 
we can do a bit better. 

Theorem 3.10. NPP on Sl has TC ~ n - 1. 

Proof: Again, we present an algorithm. Let the inputs be 
Xl, X2, • •• ,Xn and let Rs be rotation by O. 

The algorithm is exactly as in the interval case, but with 
test points 

{R21r/(n+I)(XI), R41r/(n+I)(XI), • •• ,R2n1r/(n+I)(Xl)}. 

We are guaranteed that none of these points is Xl, so we have 
effectively eliminated it from the problem. The algorithm does 
the same type of analysis, but in this case the final point is 
guaranteed to be a new point after only n - 1 comparisons. D 
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3.2. Lower Bounds. In this section we will show that the 
upper bounds of the previous section are tight. We will start 
with [0, 1]. 

Theorem 3.11. The topological complexity of NPP on [0,1] is 
n. 

Proof: Suppose not. Then 
n 

[0, l]n = UVi 
i=1 

and we have continuous functions Ii :Vi -+ [0, 1] with 

It(XI, . .. ,xn ) =1= Xj for alli,j. 

Note that if there are fewer than n - 1 branch nodes some of 
the Vi will be empty. 

Extend each It to an open set Ut preserving 

It(Xl' . .. ,xn ) ¥= xi for alli,j. 

Abuse notation and call the resulting functions ft. This is triv­
ial when the It are rational functions. When we only assume 
continuity of the It there are some technical details which are 
worked out in [6]. 

Let Cl C Ul be a closed cover of [0, l]n. Restricting Ii to 
these sets we have 

n 

[0, l]n = UCt 
t=1 

and we have continuous functions fi : Vi -+ [0, 1] with 

Il(xl' . .. ,xn ) =1= xi for alli,j. 

By the Tietze Extension Theorem extend the It to [0, l]n, a­
gain calling the resulting functions ft. Let F = (/1,/2' · .. ,In) : 
[0, l]n --+ [0, l]n. 

Then for all x E [0, l]n,F(x) =1= x because x E Ct and 

It(Xl' ... ,xn ) =1= Xi for all X E Ci , 

contradicting the Brouwer Fixed Point Theorem. 0 
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Remark 3.12 We have used the topology of [0, 1] twice in 
the proof of Theorem 3.11, once when we applied the Tietze 
Extension Theorem, and once to get the contradiction with 
the Brouwer Fixed Point Theorem. It is clear that the same 
proof works for any finite dimensional closed ball. We will 
give some consequences of Theorem 3.11 to other versions of 
NPP, including NPP on Sl, but it is not so clear how to extend 
techniques to other spaces which don't satisfy these properties. 

Corollary 3.13. NPP with inputs in sorted order has topolog­
ical complexity = n. 

Proof: Sorting the inputs is a continuous function, thus if there 
were an algorithm which solves the problem with sorted inputs 
in fewer than n branch nodes, there would be an algorithm (of 
the generalized type, i.e, with continuous functions computed 
at each node) for the unsorted NPP. First it would sort the 
input (no branching required in this model), then it would 
solve the sorted NPP with ~ n - 1 branch node contradicting 
Theorem 3.11. 0 

Corollary 3.14. The Burger ](ing problem on [0,1] has topo­
logical complexity = n. 

Proof: In this problem we have XI,X2, ••• ,Xn E [0,1] such 
that IXi - xii> 6 if i =F j and we want y which also satisfies 
Iy - Xii > 6 for all i. We will reduce the sorted NPP on 
[0, 1 - 2n6] to this problem and apply Corollary 3.13. 

Assume we are given Xl $ X2 $ ... $ X n E [0,1 - 2n6]. We 
can map them to the inputs of the Burger King problem on 
[0, 1] by the continuous map f(XI, X2, ••• ,xn ) = (Xl + 6, X2 + 
36, ... ,Xn + (2n -1)6). 

Now use an algorithm for the Burger King problem to find 
a solution y E [0, Xl) U (Xl + 26, X2 - 26) U · · · U (xn +2n6, 1] 
where some of these intervals may be empty. This is home­
omorphic to to space of solutions to the original problem, 
[0, Xl) U (Xl, X2) U · · · U (xn , 1 - 2n6], by a map which is easily 
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seen to vary continuously (but not rationally) as a function of 
(XI,X2, ... ,xn ). 

Thus the topological complexity of the Burger King Problem 
is at least as great as that of the standard NPP. 0 

Corollary 3.15. NPP in the circle has topological complexity 
=n-l. 

Proof: Represent the circle as [0, 21r]/O 21r. Given any n ­"J 

1 points Xl, X2, ... ,Xn -l E [0, 21r] map them to the n points 
[0], [Xl]' [X2]' . .. , [X n -l] in Sl where [.] represents the element 
under the equivalence relation "J. 

A solution to NPP on Sl with these inputs corresponds to 
exactly one point in [0,1] - {0,Xl,X2, ... ,Xn-l} and the cor­
respondence map varies continuously in the original inputs. 
Thus, we can't solve the NPP in 31 with less than n - 1 branch 
nodes. 0 

3.3. Abstract Problems. If one wishes to solve NPP on s­
paces more complicated than [0, 1] or SI, say on the set of k­
planes in R n or a Lie group, it would seem that more powerful 
techniques are needed. We will need more powerful techniques 
and this requires a more topological setting. 

In this section we will define a general problem and indicate 
how Algebraic topology can be applied to solve the problem. 

Definition 3.16. A problem is a map 1r : 0 -+ I from output 
to input which you wish to invert. 

Example 3.17 In [11], Smale was the first to define a prob­
lem this way. He was interested in the topological complexity 
of finding roots. In this context, the problem of finding the 
roots of a monic, degree d polynomial over C is the problem 
of finding a section of the Veita map 
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Roots(d) = Cd
 
!1r
 

Poly(d) = Cd
 
To make this definition work with all problems, note that it 

is not necessary to forget the original inputs when you know 
the answer. Thus the output space 0 can be intuitively written 
o = {(inputs, solutions)}. The map to the input space I is 
just projection. 

In this context, NPP on some manifold M is the map 
MxMx···xMxM-~ 

!1r 
MxMx···xM 

where 

~ = {(Xl, ... Xn,Xn+l) IXi = xn+l,l:5 i:5 n}. 

Figure 3.3 is a picture of NPP on the interval for the case 
n = 2. Clearly, there is no section of the map 1r which doesn't 
cross the diagonal. We would like to prove lower bounds on 
the number of sets needed to cover M so that 1r has a section 
on each element of the cover. 

Figure 3.3: NPP on the interval for n = 2. 

It turns out that Schwarz proved a theorem in 1961 [10], 
rediscovered by Smale [11], which applies to exactly this sort 
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of situation. First, we need a definition. 

Definition 3.18. The cup-length of a ring is the maximum 
number of elements of the ring which can be multiplied to get 
a non-zero number. 

Theorem 3.19. (Schwarz) Let f : X -+ Y be a continuous 
map, and let k be the number of open sets necessary to cover Y 
so that f has a section over each open set. Then K = ker(f* : 
H*(Y) -+ H*(X)) is a ring under the cup product and k ~ 1+ 
cup-length( /<). 

Smale [11] used this theorem to obtain lower bounds on the 
topological complexity of root finding. Vasiliev [15] improved 
these results by using deeper properties of the Vieta map, but 
for NPP Schwartz's Theorem proves an almost tight bound. 

Theorem 3.20. The cup-length of the kernel of 

1r* : H*(M x··· x M) -+ H*(M x··· x M x M\~) 

is ~ n - 1. 

Corollary 3.21. NPP on any closed manifold has TC ~ n-1. 

The proofs are straight forward and will appear in full in [6]. 
For many manifolds, e.g. any torus, S3, or more generally 

any manifold with a non-zero vector field, the trick from the 
proof of the upper bound on 8 1 (Theorem 3.10) can be used 
to make the upper bound matches this lower bound. Whether 
the trivial upper bound of n can be lowered to n - 1 for other 
manifolds is an interesting question. p2 is a particularly inter­
esting space for this problem because, like the interval, it has 
the fixed point property: Any continuous map p 2 -+ p2 has a 
fixed point. 
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4. ONE WAY COMMUNICATION COMPLEXITY 

Another area in which a topological viewpoint provides a 
particularly intuitive and simplifying point of view is in the 
study of One Way Communication Complexity. 

In this we have two processors (or people) PI and P2 each 
of whom have some information in the form of real number­
s, and they are trying to compute some function f of their 
information. Let x = (Xl, ... ,xm ) be PI'S information and 
Y = (YI,. · · ,Yn) be P2's. Perhaps they each have a vector and 
they want the inner product, or they each have a matrix and 
they want the determinant of the sum of the matrices. 

PI is allowed to communicate with P2 via "messages," each 
consisting of a real number which is a rational function of 
PI'S inputs (or any piecewise smooth function). P2 is then 
allowed to compute another rational function of the messages 
and Yl, ... , Yn to arrive at f(x, y). 

Let ml(x), m2(x), ... ,mk(x) represent the messages passed 
from PI to P2 • Then the "communication protocol" looks like 
Figure 4.4. The idea, of course, is to prove lower bounds on k. 

Y = (Yl' Y2,··· ,Yn) 
! 
P2 

P2 

P2 

FIGURE 3. Figure 4.4: Computing f(x,y) with 
two processors. 

Communication Complexity has been studied widely in dis­
crete models of computation, but less so in continuous models. 
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Some of the earliest work in Communication Complexity was 
Abelson [1] [2] and he studied continuous models. More recent­
ly Luo and Tsitsiklis [8] have done more work. Both papers 
prove versions of the Corollary 4.2 to Theorem 4.1. The proof 
we present here is considerably simpler than their's. 

Theorem 4.1. With P1 ,P2, j, X, Y as defined above, let 

</J : R m 
-+ M aps(Rn

, R) 

be defined by 
x ....... f(x,·). 

Then the communication complexity of computing! is bounded 
below by Dim(lmage(</J)). 

Proof: Since y E R n is arbitrary, P2 must know </>( x) to com­
pute j(x,y). ml,m2, ... ,mk specify a point in a k-dimensional 
space. Since we are assuming rational (or piecewise smooth) 
computations, by invariance of domain if Dim(Image(4») > k 
then P2 can't know 4>(x) for all values of x. 0 

Corollary 4.2. Rank(D</» is a lower bound for the communi­
cation complexity. 

Proof: Rank(D4» is a lower bound for Dim(Image(4»). D 

Example 4.3 Computing the inner product of two vectors. In 
n 

this case we have !(x,y) = LXiYi, and 4>: R n 
-+ L(Rn,R) ~ 

i=l 
R n is the identity map. Thus, Rank(D¢) = n and the commu­
nication complexity ~ n. Since n is obviously an upper bound 
as well, the bound is tight. 

Example 4.4 Computing the polynomial !(x,y) = XIYI + 
XIY2 + X2Yl + X2Y2. Again we have, <p : R 2 

-+ L(R2
, R) ~ R 2 , 

but this time t/J is not the identity. 

D~ = (~ ~)
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and thus the computational complexity is ~ 1. 
Noting !(XI,X2,YI,Y2) = (Xl +X2)(YI +Y2) we see that there 

is a protocol with only one message passed, so again we have 
tight bounds. 
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