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DIMENSION OF PRODUCTS WITH CONTINUA

A. N. DRANISHNIKOV, D. REPOVS! AND E. V. SCEPIN

ABSTRACT. We construct a subset W C R® and a con-
tinuum Y with the dimension of the product dim(W x
Y) = dim W = 2. This solves negatively a long standing
problem in dimension theory.

0. INTRODUCTION

It has been known ever since the 1930’s that the logarithmic
law for dimension, dim(X x Y) = dimX + dimY/, fails to
hold for arbitrary compact metric spaces. The first known
counterexamples are due to L. S. Pontryagin (see e.g. [8]). His
compacta, now called Pontryagin surfaces, lie in R* and are
2-dimensional whereas the dimension of their product is equal
to three.

The ingredients of Pontryagin’s construction come from al-
gebraic (rather than point-set) topology. Note that it follows
from a classical theorem of P. S. Aleksandrov [8] that there are
no such counterexamples in R3.

It is well known that the product inequality dim(X x Y) <
dim X +dimY always holds. Also, for compact spaces X and Y
of dimension > 1 it is also known that dim(X xY) > dim X +1.
On the other hand, as it was shown in [2], for any fixed n =
dim X and m = dimY this inequality cannot be improved any
further.

Approximately 40 years ago, K. Morita [10] proved that for
every X (not necessarily compact), multiplication of X by the

1 Supported in part by a grant from the Ministry of Science and Tech-
nology of the Republic of Slovenia.
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58 DRANISHNIKOV, REPOVS AND SCEPIN

interval I increases dimension by one, dim(X x I) > dim X +1.
A natural question arose whether the inequality dim(X xY) >
dim X +1 holds for an arbitrary compactum Y with dimY > 1
(see [8], [11; Problem (42.5)]).

The purpose of this paper is to give a negative answer to
this question. Namely, we construct a 2-dimensional subset
W C R2 and a 1-dimensional metric continuum Y such that
dim(W x Y) = 2. Although this solves a problem in gener-
al topology, this paper, like in Pontryagin’s case [8], belongs
essentially to algebraic topology.

1. SUPERSOLENOIDS

Every sequence of numbers {m; > 1};cn defines a solenoid
as the limit space of the inverse system {S; pi*'};cn where
each projection pi*! is an m; times winding of the circle S?
onto itself. When m; = p for all ¢, the solenoid is called the
p-adic solenoid and it’s denoted by ¥,.

Let (C, c*) be a continuum with a fixed pair of points c¢t, ¢~ €
C. Attach an arc I to C at the points ¢* and denote such a
continuum by C. The exact sequence of the pair (C,C) pro-
duces the short exact sequence

0—-Z— H(C)— HYC)—0 (*)

for the Cech cohomology with integer coefficients. Note that
the pair (C, {c*, c™}) produces exactly the same sequence. The
problem of splitting this exact sequence has a direct relation
to the Generalized homotopy problem and was considered in
[1], [12]. In the case when C is a solenoid we give the following
splitting criterion: Let (C, c¢*) be a solenoid. Then the sequence
(%) can be split if and only if ¢t and ¢~ can be connected by a
path in C. For the p-adic solenoid ¥, this criterion claims, in
algebraic terms, that ¢t generate a splittable sequence (x) if
and only if the pair ¢* is homotopic to a pair a* with at —a~ €
Z C A, C X,. Here A, denotes the group of p- adic integers
and C means ‘is a subgroup of’. Note that every pair ¢* in X,
is homotopic to a pair in a* € A,.
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Let Z;) denote the localization of Z in p. Then there exist
the inclusions Z C Z,) C A,.

Proposition 1.1. Let C be a p-adic solenoid. Then there exist
¢t € C such that Hom(r,Z) = 0, where 7 = H*(C).

Proof: We will consider the Steenrod-Sitnikov homology. When-
ever we omit the coefficient group we mean the integers. By [9]

Hom(w,Z) = H,(C). Since C is one-dimensional, the

Steenrod homology H;(C) coincides with the Cech homolo-

gy H,(C) [13]. So it suffices to prove that the one-dimensional

Cech homology group of C is trivial.

We do that here for any ¢* with ¢t —c™ € A,—Z,). Actually,
we can prove a criterion which claims that a pair ¢* produces
the nontrivial Hom(7, Z) if and only if it is homotopic to a pair
a* such that at — a~ € Zy,).

Since C' = lim{S* U I}, where each bonding map sends S*

onto S!, winding p times around, and sends [ onto / homeo-
morphically, it follows that H,(C) = im{H,(S* U I), @1 }ien.

We are going to describe the bonding maps ¢i*' : Z® Z —
Z @ Z. Note that A, is identified with a fiber of the projec-
tion X, — S'. Without loss of generality, we may assume that
¢™ = 0. Let ¢* be represented as an element of A, in the fol-
lowing way: ¢t = ng+nyp+ -+ +ngp* + .-+ [7]. To choose
a basis in H;(S* U I), fix an orientation on the circle S* and
on the interval I and consider this oriented circle as the first
basis element, and the cycle generated by the interval I and a
part of the circle with proper orientation as the second basis

element. Then a homomorphism ¢:*! is defined by the matrix

| P
e (37)
Claim. If ¢t ¢ Z) then im{Z & Z; A;} = 0.
pl —npl
Indeed, we may consider A;! = ( 0 ’1 ) over Q.

Let c; denote the truncated c¢*: ¢y = ng 4 nyp + - - - + nip*.
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Then

k 4—1 -1 -1 1 —c
prAL 0---0A; 0 AT = ( 0 pt )

First, show that the projection of the limit group on the
first level is trivial. Choose an arbitrary (n,m) € Z & Z. If
there is an element in the limit group which is projected to
(n,m) then for each i, the number n — ¢;ym is divisible by p*.
Let us consider a p-adic number 8 = n — ¢c*m. Then the
p-adic norm of f is zero hence 8 = 0 and mct € Z. Therefore
¢t =2 cQnNA, =Z; so we get a contradiction.

Thus, by the above argument we can prove that the projec-
tion on the second level is trivial, and so on. This proves the
claim and also the proposition. [J

Proposition 1.2. In the p-adic solenoid C there are points c*
for which the inclusion-induced homomorphism Ho({c™,ct}) —
Ho(C) is a monomorphism.

Proof: Consider the exact sequence of the pair (C,c*) for
the points ¢* from Proposition 1.1. It suffices to show that
H;(C/ct) = 0. This was proved above. [J

For convenience, instead of the triple (C, ct) we shall consid-
er sometimes a continuum with hands, i.e. a continuum C with
two arcs [b7,c”] and [c¢t,bt] attached to the marked points.
We denote a continuum with hands obtained from (C, ¢*) by

(C", b%).

Definition. Let (C’,b*) be a continuum with hands. A com-
pactum X with the property
(#*)for every closed subset A C X and every continuous map

¢:A— {b”,b*} this is an extension ¢ : X — C’

is called a (C, c*)-compactum. We call X a (C, c¢t)-continuum
if it is in addition a continuum. (Note that hands are inessen-
tial here.) A (C,c*)-continuum for solenoid C we shall call a
supersolenoid.
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Proposition 1.3. Let X be a (C,c*)-compactum and let A C
X be a closed subset. Then

(a) A is a (C,c%)-compactum; and

(b) X/A is a (C,c*)-compactum.

The proof easily follows from the definition.

Proposition 1.4. Suppose that X andY are (C,ct)-compacta
and that diim(XNY) = 0. Then XUY is a (C,c*)-compactum.

Proof: For arbitrary ¢ : A — {c*} first extend p over X NY
toget ¥ : AU(XNY) — {c*}. Then extend 1 separately over
X andover Y. O

Proposition 1.5. Let 7 = H'(C). Then for every (C,c*)-
compactum X there ezxists an epimorphism &r — H(X).

Proof: There is a natural projection w : C — S! with one
non-trivial preimage. Since X has the property (*x) it follows
that for every map f : X — S! there is a homotopy lifting
f': X - C. Let {f:}ien be a countable family of maps to
the circle, representing all cohomologies of X, and let {f/}ien
be a family of liftings. Consider the diagonal product Af! :
X =11 C. It induces an epimorphism for the 1-dimensional

cohomologies. It remains to note that H MC)=er. O

Theorem 1.6. 1) For every triple (C, ct) there exists a (C, ¢*)-
continuum. 3

2) Suppose that a cohomology theory h* is trivial on a one-
dimensional continuum C. Then for every n, there exists an
n-dimensional (C, ct)-continuum.

Proof: We prove 2) so that the construction for 2) is valid also
for 1).
We construct an n-dimensional (C, c)-continuum X as the

limit space of an inverse system {X;, pi*'}ien. The system will
be constructed by induction.
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Define X, = S™. Note that h*(X,) is a nontrivial group.

For each z, we define a finite covering U; of a compact space
X; by closed sets A of diameter < 1/¢ and moreover with diam-
eters of projections p}(A) less than 1/, for all k£ < i. Denote by
B; the set of all disjoint pairs (B~, B*) consisting of the unions
of elements of U;. For every element f = (B~,B%) € B; fix a
map g : B~ U Bt — {b7,b%}, by setting p3(B~) = b~ and
pp(BT) = b*.

Now we can describe a step of the induction from k to k + 1.

We suppose the set U B; has a numeration: {fi, B2, ..., Bm}-

Choose 8 = B;. We have B = (B~,B") € B; for some i < k.
The map ¢z produces a map % : (pF)~}(B~ U B*) — {b*}.

Let 7 : C' — [—1,1] be a projection which sends [6~,¢~] onto
[-1,0] and [ct, b] onto [0, 1] and C in 0. There is an extension
1 of the composition map 7o with dim()"1(0)) < n—1 (see
for instance [5]). Define X, as the pull-back of the following
diagram:

X . [-1,1]

The projection pf*! is defined as a projection of the pull-

back onto X;. Note that:
k+1):

(a) A homomorphism (pj is an isomorphism for h* by
virtue of the Vietoris-Begle theorem.

(b) Dimension of X, is < n because X4, consists of an
open subset which is homeomorphic to a subset of X}
and a closed set 9~1(0) x C which is n-dimensional.

(c) The map ¢g has an extension as a map to C' on the
k + 1 level. Indeed, 3’ = @g o pf*! has an extension '
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Choose a covering Uiy, and define By, and add it to the

union Uk B; with the corresponding numbering.
i<

Properties a) and b) will imply the n-dimensionality of the
limit space. Since all X; are continua the limit space is also a
continuum.

The property c) and the construction guarantee the condi-
tion (**). Indeed, if ¢ : A — {b*} is a map, there exists

B = (B-,B%) € U B; such that (°)"'(B~ UB*) O A and
1=0

©p 0p°|a = ¢. By the construction there is an extension in C'
of ¢z onto some level k£ > :. Hence ¢ has an extension. [

Corollary 1.7. . For any family of primes £ and for every
pair z* € ¥, there erist the £-adic supersolenoid of arbitrary
dimension n > 0.

v *

Proof: Let p € £. Then H (X42Z,) =0, where Z, = Z/pZ. 0O

2. CONNECTEDNESS WITH RESPECT TO A GROUP

We call a space Y connected with respect to an abelian
group G if its reduced Steenrod-Sitnikov 0-dimensional homol-
ogy group with the coefficients in G is trivial. For example,
Proposition 1.2 implies that a p-adic solenoid is disconnected
with respect to the integers. This is also true for the corre-
sponding supersolenoid.

Proposition 2.1. . Suppose that the inclusion ¢t C C in-
duces a monomorphism of homology groups. Then for any
(C, c*)-compactum X and for arbitrary pair z* C X, the in-
clusion induces a monomorphism.

Proof: Extend the map {z*} — {c*} to a map X — C. Then
our homomorphism is a left divisor of a monomorphism. O

Proposition 2.2. Let a one-dimensional continuum X be the
limit space of an inverse system {X;, ' }ien, all projection of
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which are retractions. Then l‘iinl{Hom(Ivfl(X,-),w)} = 0 for
an arbitrary group . t

Proof: Let B; be a left inverse to (rit!)*, i.e. B; o (rit!)* =
id. Show that every homomorphism h; : Hom(H*(X;11),7) —
Hom(H'(X;), ) is an epimorphism. Let f : H'(X;) — 7 be
an arbitrary homomorphism. Note that k;(fo ;) = (foBi) o
() =foBio(ri™))=f O

Proposition 2.3. Let (X,D) = l‘iLn{(X,-,D,-);rf+1 where X
is a 1-dimensional continuum, D; = D are two-point sets
and ri*t! are retractions. Suppose that for all i, the bound-
ary homomorphism H,(X;/D;;w) — Ho(D;, ) is an epimor-
phism. Then the boundary homomorphism 0 : H;(X/D;7) —
Ho(D;) is also an epimorphism.

Proof: First, we show that the limit homomorphism
lim H,(X;/D;; w) — lim Ho(D;; )

is an epimorphism. We have the functor lim applied to the
short exact sequence:

0— Hl(X,';ﬂ') — Hl(Xi/Di;ﬂ‘) — HO(D,-;ﬂ) —0
hence by [9] we have an exact sequence
lim Hy(X;/Dy; ) — lim Ho(D;; 7) — l‘iianl(X,-; 7).

Since X; are one-dimensional, H,(X;;7) = Hom(H(X;), 7).
Apply Proposition 2.2 to obtain the required epimorphism.
Since X is 1-dimensional, in dimension one Steenrod homolo-
gies coincide with the Cech homologies and hence
lim Hy(X;/Di;m) = Hi(X/Djm). 1t is easy to check that
Ho(D; m) = lim Ho(D;; ) and our epimorphism coincides with

0. O
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Lemma 2.4. Let X be a (C, ct)-compactum and suppose that
dimC = 1. Then the inclusion-induced homomorphism
Hy(c*; HY(X)) — Ho(C; HY(X)) is trivial (the points ¢~ and
ct are H'(X)-connected in C.

Proof: 1t is sufficient to show that the boundary homomor-
phism is an epimorphism. The boundary homomorphism is
generated by the functor Hom( , H*(X)) from the co-boundary

homomorphism & : H({c*}) — H'(C/c*). Choose an arbi-
trary homomorphism f : H°({c*}) — H'(X) and consider the
extension problem. This extension problem diagram

c . S

N

can be obtained from the diagram by applying cohomologies
H'. Here g represents f(1) and the horizontal arrow is the
collapsing of C in C to the point (see §1).

Since X is a (C,c*)-compactum there exists a homotopy
lifting ¢’ of g. O

Proposition 2.5. For any one-dimensional compactum X there

is a map of the Cantor discontinuum f : K — X which induces
an epimorphism f. : Hy(K;G) — Ho(X;G) for every group G.

Proof: We define a sequence of finite tilings H; = {H]} of X
by closed subsets with nonempty interiors such that
a) the diameter of H} is less than 1/;
2) dim(H} N HF) < 0 for all 4, 5, k;
3) His1 is a refinement of H;; and
4) each H; has an one-dimensional nerve.
This sequence defines an inverse system {X;,p:*1}ien with

X; € X and with the limit space homeomorphic to the Cantor
set K. Denote by E; = U(H} N HF). Fix embeddings X; C R3
ik
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and X;;; C R3 and consider a graph of pit! in R® x R®. For
every z € E; we join the points in (pf“) 1(z) by a straight
interval in {z} x R3. The resulting space we shall denote by
Xi+1. Since the projection of X;,; on X; is a cell-like map, the
inclusion-induced homomorphism Hy(Xi41;G) — Ho(Xi11; G)
coincides with the bonding homeomorphism (pi*!)..

In order to prove that every bonding homomorphism is an
epimorphism it is sufficient to show that HO(X,,X,,G) =0
for every 1. Note that Ho(X;, X;;G) —-Ext(Hl(X,,X) Q).
ThlS Ext group is trivial because of HY(X;, X;) = H'(S! x

Ei_1,{pt} x Ei_y) = HY(S' x E;_;) = H°(E;_;) = ®Z is a free
abelian group. 0O

Proposition 2.6. Let X be a separable metrizable space and
G be an abelian group. Suppose that X is G-connected and
locally G-connected, i.e. for every two-points subset D C X
the inclusion-induced homomorphism Ho(D; G) — Ho(X;G) is
trivial and if diameter of D is small enough then the inclusion-
induced homomorphism is trivial in a small neighbourhood.

Then Ho(X;G) = 0.

Proof: We show that for every compact Y C X, the inclusion-
induced homomorphism i, is trivial. Choose an arbitrary o €
Hy(Y;G). By Proposition 2.5, there exist amap f: K —» Y
of the Cantor set and an element § € Ho(K;G) such that
f«(B) = a. There are maps p, : K —» D" and ¢, : D" — K
such that lim g, o p, =idx. Here D" is a 2"-point set. Since X
is locally G-connected, any two close enough maps of K in Y
send a given element of the 0-dimensional homology of K into
the same element of Hy(X; G). Therefore for some n, we have
that 7.(a) = . fu(B) = tufe(gn)«(Pn)«(B). The right hand side
of this equality is trivial because the cycle (p,).(8) has a finite
support. O
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3. CONTINUA NETS AND THEIR COMPLEMENTS IN R3.

Let N® C R® be the integer lattice and let A} = (%N)3
denote the corresponding subdivision of N®. Two points in N}
are called neighbor points if they agree in two coordinates and
they differ in the third by 7. Let (X, z%) be a one-dimensional
continuum. We construct a 1-dimensional net T} by attaching
to every neighbor points a copy of X at the points = and z*.

Proposition 3.1. For every I-dimensional continuum (X, z%)
there exists a sequence of nets Ty with the following proper-
ties:
(a) all ezamples X in Ty intersect each other only in the
vertices of N at their marked points;
(b) for everyn >k, Ty NT,, = Ny; and
(c) every ezample X of Ty has diameter < ;.

The proof easily follows by general position property in R3. O

Denote by T' the union of all T}.

Proposition 3.2. Let (C,c*) be a 1-dimensional continuum
with 7 = HY(C) such that Hom(r,Z) = 0 and let the net T be
constructed by means of (C, ct)-continuum (X,z%). Then for
any compactum Y C T and for any two-point subset D C Y
there exists a proper subcompactum Y’ CY, D CY’, such that
the inclusion-induced homomorphism H,(Y'/D) — H,(Y/D)
is an epimorphism.

Proof: It follows by the Baire Category theorem that there
exists an open set V C Y — D such that V C T} for some k.
Define Y/ = Y — V and consider the exact sequence of the pair

(Y/D,Y"/D)

Hy(V) —» Hyi(Y'/D) - Hi(Y/D) — Hy(V).
First, note that Hy(V) = 0 by dimension reasons, and H;(V) =
Hom(H}(V),Z) = Hom(H(Z),Z), where Z = CIlV/dV. By
Propositions 1.3 and 1.4, Zis a (C, ci)-compactum. By Propo-
sition 1.5, there is an epimorphism & 7 — H'(Z). The functor
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Hom gives a monomorphism Hom(H(Z),Z) — Hom(&;~,Z).
The target is zero by the assumption, therefore H;(V) =0. O

Lemma 3.3. Let T be as in Proposition 3.2. Then for every
open subset U C T, Ho(U) # 0.

Proof: Suppose to the contrary that Ho(U) = 0. Let D Cc U
be a two-points set. Then there is a compactum Y O D such
that the inclusion-induced homomorphism Hy(D) — Ho(Y) is
trivial. This means that H;(Y/D) # 0. By the transfinite
induction construct a decreasing sequence of compacta Y; D
YD - DY, D Y41 such that
a) D C Y, for every q;
b) Y1 =Y; and
3) the inclusion Y, C Y induces an isomorphism H,(Y,/D) —
H,(Y/D).

We can do every non-limit step of the induction due to

Proposition 3.2. Let us consider a limit step, a = gén B.
o

We define in that case that Y, = NYs. Since Y, /D is one-
B

dimensional, H(Y,/D) = lim H;(Y3/D) and the property 3)
holds. Properties 1)-2) hold by trivial reasons. Any decreasing
sequence of distinct closed subsets of a metric compact space
can not be more than countable. But we have constructed such
a sequence of the length w,. This contradiction completes the
proof. [0

By the definition, a paracompact space Y has the cohomo-
logical dimension < n with respect to abelian group G (we
write c-dimg(Y') < n) if for every closed subset A C Y and ev-
ery map ¢ : A — K(G,n) to the Eilenberg-MacLane complex
K(G,n) has an extension. It is well known (see e.g. [8]) that
this definition is equivalent to the property that H™*(Y, A;
G) = 0, for every closed subset A C Y (here we consider the
Alexander-Spanier cohomologies).

Let us consider the net T as in Proposition 3.2. Such a
net exists by virtue of Propositions 1.1 and 3.1. Additionally,
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we may assume the property of (C,ct) from Proposition 1.2.
Denote by W(C, c¢*) the complement of T in R3.

Theorem 3.4. Under the above conditions the space W(C, c¥)
is two-dimensional.

Proof: Let B be a 3-dimensional ball in R3. Sitnikov duality
implies Hy(IntBNT) = H*(W(C,ct) N B,(C,c*) N dB). By
Lemma 3.3, this group is nontrivial, hence the integral coho-
mological dimension of W(C, ¢*) is greater than or equal to 2.
It is easy to see that it is less than 3. O

Definition [8]. A system of open subsets {U,} is called a
big basis for X if for every closed subset A C X and for every
neighborhood V O A there exists a locally finite covering of A
by elements of {U,} lying in V.

Ezample [8]. For X C R" the set U(a,r) = {z : d(z,a) <
r} N X is a big basis for X.

Lemma 3.5. [8] Suppose that X is a paracompact space and
{U4} is a big basis for X. Assume that H**Y(X, X-U,;G) =0
for all a. Then c-dimgX < n.

Theorem 3.6. Let W(C, c*) be as above and suppose that the
net T is constructed by means of (C,ct)-continuum (X, z%).
Then for every (X, zt)-compactum Y, c-dimﬁl(y)W(C, ct) =
1.

Proof: Consider a big basis for W(C, ¢*) from the above exam-
ple. For every regular open ball V C R3 we prove that VNT is
connected and locally connected with respect to the coefficient
group H(Y). We prove the connectedness of VNT. For every
two-point set D = {a,b} C V N T there are two sequences
{a;}ien and {b;}ien converging to a and b respectively, with
the following properties:

(1) a; and b; are neighbor points for some A/ and the con-
tinuum X, joining a and b, lies in V; and
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(2) for every i, points a; and a;4; (also b; and bi4;) are
neighbor points for some N and the corresponding ex-
ample of continuum X joining those points lies in V.

The union of all those continua X defines a compactum Z.
We may assume that Z consists of an infinite chain of continua,
homeomorphic to X, between a and b. Hence the continuum
Z can be represented as the limit space of an inverse system
of continua Z;, consisting of the parts of that chain from a; to
b;. The bonding maps in this system are retractions defined
by collapsing the ends to the end points. Lemma 2.4 implies
that for each space Z;, the inclusion D; = {a;,b;} C Z; induces
trivial homomorphism of the 0-dimensional homology groups
with H'(Y) as coefficients. Apply Proposition 2.3 to obtain
that the inclusion D C Z induces a trivial homomorphism in
the dimension 0. )

By Proposition 2.6, Ho(V N T; H'(Y)) = 0. The Sitnikov
duality for the n- sphere S™ says that H?(X;G) = H;_,_,(S"—
X; G), for every nonempty subset X C S™ (c.f. [9; Corollary
(11.21)]). Let us consider the quotient space V/9V ~ S$3 and
let us apply the Sitnikov duality to U/0U C V/dV, where
U =V NW is an element of our big basis for W = W(C, c%).
We obtain that

H*(U/oU; H\(Y)) = Ho(V - W;H(Y))
=~ Hy(VNT;H(Y)) =0

Note also that H*(W,W—U; H\(Y)) & H*(U/oU; H\(Y)). O

4. THE MAIN RESULT.

The following fact we leave without a proof because it is an
elementary exercise in general topology.

Lemma 4.1. Let {U,} be a big basis for a paracompact space
W and let {V3} be a basis for compact space Y. Then {U, %V}
forms a big basis for the product W x Y.
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Theorem 4.2. There ezist a 2-dimensional subset W C R3
and a 1-dimensional continuum Y with dim(W xY) = 2.

Proof: We consider W = W(C,ct), where C & %, and ¢*
are as in Proposition 1.2 and the net T is constructed by us-
ing a (C,ct-continuum (X,z%). Let Y be a 1-dimensional
(X, z%)-continuum. For every open subset V C X, the space
CI(V)/dV is a (X,z*)-compactum by virtue of Proposition
1.3. By Lemma 4.1 and Lemma 3.5, it suffices to show that
H3(W xY,W xY — U x V)) = 0 for every element U of big
basis for W, described in §3, and every openset V C Y.
Note that

HWxY, WxY -UxV)
= HY((W,W -U) x (Y,Y = V))
= HY(W,W -U); H(Y,Y - V))
H(W,W —U); H(C[(V)/8V)) =0

The last equality is due to Theorem 3.6.
The space W is 2-dimensional according to Theorem 3.4. [J

Lemma 4.3. Let Y be a continuum and D C Y a two-point
subset. Then for every prime p, the localization Z,) belongs to
the Bockstein family o(H'(Y/D)).

Proof: By the definition of the Bockstein family it suffices
to show that Z,~ ® H(Y/D) # 0 [4]. Since TorH(Y) =
0, the multiplication of the short exact sequence 0 — Z —
H\Y/D) — H'(Y) — 0 by Z,~ produces a monomorphism
ZQZ,~ — H(Y/D). O

Theorem 4.4. There exists a space W such that dimzg W = 2
and sup{dimyg W;h € 0(Z)} = 1. In particular, the Bockstein
theorem asserting that c-dimgX = sup{c-dimygX; H € o(G)}
does not generalize to the class of noncompact spaces.
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Proof: Suppose that Bockstein theorem were correct. Con-
sider a space W from Theorem 4.2. Then by Lemma 4.3
and Theorem 3.6, it would follow that c—dimz(P)W <1. S-
ince 0(Z) = {Zy); p runs over all primes}, Bockstein theorem
would then imply that c-dimzW < 1 which would contradict
Theorem 3.4. [

Remark. 1t is possible to construct such a space W as above
with the dimensions = 1 with respect to all localization Z.
This solves a problem from [8].
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