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k-NETWORKS
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INTRODUCTION

We investigate spaces with star-countable or locally count-
able k-networks.

Let us recall some basic definitions. Let X be a space, and
let P be a cover (not necessarily open or closed) of X. Then
P is a k-network, if whenever K C U with K compact and U
open in X, then K C UP* C U for some finite P* C P. If
we replace “compact” by “single point”, then such a cover is
called a “network”. A space is an N-space [17] (resp. Ro-space
[12]) if it has a o-locally finite k-network (resp. countable k-
network). If we replace “k-network” by “network”, then such
a space is a o-space (resp. cosmic space [13]). A closed (resp.
compact; Lindelof, separable) k-network is a k-network consist-
ing of closed (resp. compact; Lindeldf; separable) subsets.

Let X be a space, and let C be a cover of X. Then X is
determined by C [6] (= X has the weak topology with respect
to C in the usual sense), if F C X is closed in X if and only
if FNC is closed in C for every C € C. Here, we can replace
“closed” by “open”. A space X is a k-space (resp. sequential
space) if it is determined by the cover of all compact (resp.
compact metric) subsets of X. A space X is a k,-space [14] if
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it is determined by a countable cover of compact subsets of X.
A space X is Fréchet if whenever z € A, then there exists a
sequence in A converging to the point z. Any Fréchet space is
sequential. Any sequential space, or k,-space is a k-space.

A collection in X is star-countable (resp. point-countable) if
each member (resp. single point) meets only countable many
members. Not every locally countable collection is star-
countable, but any o-locally countable collection of Lindel6f
subsets is star-countable. Every star-countable collection is
point-countable, but not necessarily locally countable.

We consider relationships among spaces with star-countable
k-networks, spaces with locally countable k-networks, and
spaces with point-countable k-networks, etc. We give char-
acterizations of spaces with star-countable k-networks, and
spaces with star-countable closed k-networks. Among k-spaces
or Fréchet spaces, we give some characterizations for spaces to
have star-countable closed k-networks. Also, as applications of
star-countable or locally countable k-networks, we give chara-
terizations for certain quotient images of locally separable met-
ric spaces, etc. Shou Lin [7] (resp. C. Liu and J. P. Song [11])
showed that every k-space with a locally countable k-network
is characterized as the quotient, strong s-image (resp. local-
ly Lindel6f image) of a metric space (resp. locally separable
metric space), etc. The proofs of these characterizations are
based on the classical construction of certain subsets of the
0-dimensional Baire space as the domains. We give another
chracterization by a simpler proof in terms of weak topologies
with respect to star-countable covers.

We assume that spaces are regular 77, and maps are contin-
uous and onto.

1. STAR-COUNTABLE, LOCALLY COUNTABLE, OR
POINT-COUNTABLE k-NETWORKS

We consider the relationships among spaces with certain
star-countable k-networks, and spaces with locally countable k-
networks, and spaces with certain point-countable k-networks,
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etc.
The following lemma holds by the proof for (a) = (b) of
Theorem 1 in [22].

Lemma 1.1. Let C be a star-countable cover of X. Then the
following (1) and (2) hold.

(1) X is a disjoint union of {X,; a € A}, where each X,
is a countable union of elements of C.

(2) If X is determined by C, then X is the topological sum
of the collection {X,; a € A} in (1), and the cover C is locally
countable.

The following holds by Lemma 1.1(2).

Corollary 1.2. Let X be a space determined by a star-
countable cover P. If P is a k-network (resp. compact k-
network; network), then X is the topological sum of Wo-spaces
(resp. k,-and-Ro-spaces; cosmic spaces).

The following lemma is routinely shown, so we omit the
proof.

Lemma 1.3. (1) Let X be determined by {X,; a € A}, and
each X, CY,. Then X is determined by {Y,; a € A}.

(2) Let X be determined by {X,; a € A}, and let each X,
be determined by {X.p; B € B}. Then X is determined by
{Xap; @€ A, Be B}

(3) Let f : X — Y be a quotient map. If X is determined
by {Xa;a € A}, then Y is determined by {f(X,);x € A}.

E. Michael [15] characterized countably bi-k-spaces as the
countably bi-quotient images of paracompact M-spaces. For
the definition and properties of countably bi-k-spaces, see [15;
4E]. Any first countable space, or any locally compact space
is countably-bi-k, Any countably bi-k-space is a k-space. We
recall that a space is meta-Lindeldf if every open cover has a
point-countable open refinement.
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Theorem 1.4. (1) For a space X, (a) or (b) = (c) = (d)
holds.
(a) X has a locally countable k-network,
(b) X has a o-locally finite closed Lindelof k-network,
(¢c) X has a star-countable closed k-network,
(d) X has a star-countable k-network.
(2) If X is a k-space, then (a) & (b) & (c) holds.
(8) If X is a meta-Lindeldf space, then (a) = (b) holds.
(4) If X is a countably bi-k-space, then (d) = (a) and (b)
holds, indeed (d) implies “X is locally separable metric”.

Proof: (1) Obviously, (b) = (c) holds, and clearly (c) = (d)
holds. To show that (a) = (c) holds, let P be a locally count-
able k-network for X. Here, we can assume that each element
of P is closed. For each ¢ € X, there exists a nbd V, of z such
that V; meets only countably many elements of P. Then each
V; is a Lindelof space (indeed, No-space). Let P* = {P € P; P
is contained in V; for some z € X}. Then it is easy to show
that P* is a locally countable closed Lindelof k-network, hence
P* is a star-countable closed k-network for X.

(2) Let P be a closed k-network for X. Then each compact
subset is contained in a finite union of elements of P. Then,
since X is a k-space, by Lemma 1.3(1), X is determined by the
cover of all finite unions of elements of P. But, any space is
determined by any of its finite closed cover. Thus, by Lemma
1.3(2), X is determined by P. Thus, (c) = (a) and (b) holds
by Lemma 1.1(2) and Corollary 1.2.

(3) Suppose (a) holds. Then each point of X has a nbd V;, of
z such that V, is an No-space. Since X is meta-Lindelof, there
exists a point-countable open cover C of Ro-spaces. But C is
star-countable, and X is determined by C, since C is an open
cover of X. Then (b) holds by means of Lemma 1.1(2).

(4) Since X is a countable bi-k-space with a point-countable
k-network, X has a point-countable base B in view of [6; Corol-
lary 3.6]. Let P be a star-countable k-network for X.
Since X is a first countable space, and P is a point-countable
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k—network for X, by [6; Proposition 3.2], foreach z € X, z €
int UP* for some finite P* C P. Since P is star-countable,
each element of P is a cosmic space. Thus, X is locally separa-
ble. Then we can assume that each element of B is separable,
hence that B is a star-countable base. Thus, by Lemma 1.1(2),
X 1is the topological sum of separable metric spaces. Hence X
is locally separable metric.

In the previous theorem, (a) = (b) in (1), or (b) = (a) in
(3) doesn’t hold in general. The k-ness of meta-Lindel6fness
in (2) or (3) is essential. In (1) and (2), the closedness of the
star-countable k-network is essential. In (4), it is impossible to
replace “countably bi-k” by “countably compact”. For counter
examples, see Example 4.1 in Section 4.

Proposition 1.5. Let X be a k-space (resp, meta-Lindelof
space). Then the following are equivalent.

(a) X has a star-countable closed k-network (resp. locally

countable k-network ),

(b) X is the topological sum of Ro-spaces,

(¢) X is a paracompact, locally Rq-space,

(d) X is a locally Lindelof , R-space,

(e) X is a locally separable, R-space.

Proof: (a) = (b) holds in view of the proof of Theorem 1.4(2)
& (3). (b) = (c) is obvious. To show (c) =>(d), suppose
(c) holds. Since X is a paracompact, locally Ro-space, X has
a locally finite closed cover of Ry-spaces. But, each compact
subset of X meets only finitely many elements of this cover.
Thus, it is shown that X is an R-space. Thus (d) holds. (d)
= (e) is easy. To show (d) = (a), suppose (d) holds. Then,
as in the proof of (a) = (c) of Theorem 1.4, X has a o-locally
finite closed Lindeldf k-network. Hence X has a star-countable
closed k-network. Thus (a) holds. To show (e) = (d), suppose
(e) holds. Since X is a o-space, each compact subset of X is
metric. But, X is a k-space. Then X is sequential. In [8], it is
proved that every sequential space with a o-locally countable
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k-network is meta-Lindelof . Then X is meta-Lindeldf. Hence
every separable closed subset of X is Lindelof. Thus (d) holds.

As is well-known, not every separable, first countable o-
space is Lindeléf. Also, not every separable space with a
locally countable (hence star-countable), and o-locally finite
k-network is Lindelof; see Example 4.1(5), and not every sep-
arable k-space with a point-countable compact k-network is
Lindeldf ; cf. [6; Example 9.3]. And, obviously, not every
connected metric space is Lindelof. But the following holds.

Proposition 1.6. (1) Let X be a separable space. Then each
one of the following implies that X is Lindelof. Indeed, X is
an Ro-space for (a), (b), or (c), and a cosmic space for (d).
(a) X is a k-space with a star-countable closed k-network,
(b) X is a k-space with a o-locally countable k-network,
(c) X is a Fréchet space with a point-countable k-network,
(d) X is determined by a star-countable network.
(2) Let X be a connected space. Then (a) or (d) implies that
X s Lindeldf. Indeed, X is an Ro-space for (a), and a cosmic

space for (d).

Proof: We prove only (1). For (a), by Proposition 1.5, X is
the topological sum of Ry-spaces. Since X is separable, X is
an No-space. For (b), by the proof of (¢) = (d) in Proposition
1.5, X is Lindel6f. Then X is an Ng-space. For (c), by [6;
Theorem 5.2, X is an Ro-space. For (d), by Corollary 1.2, X
is the topological sum of cosmic spaces. Then X is a cosmic
space

Not every Fréchet space with a point-countable separable
k-network has a star-countable closed, or locally countable k-
network ; see Example 4.1(6). But the following holds.

Proposition 1.7. Let X be a Fréchet space. Then the follow-
ing are equivalent.

(a) X has a star-countable closed k-network,

(b) X has a point-countable separable closed k-network,
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(c) X is a locally separable space with a point-countable k-
network.

Proof: (a) = (b) holds, for any element of a star-countable
k-network is cosmic, hence separable. For (b) = (c), let P
be a point-countable separable closed k-network. Since X is
Fréchet, for each ¢ € X, = € int U{P € P; z € P} by [6;
Lemma 5.1]. Then X is locally separable. For (c) = (a), since
X is a locally separable Fréchet space, X is the topological
sum of Ro-spaces by [6; Proposition 8.8]. Thus, X has a star-
countable closed k-network.

2. SPACES WITH STAR-COUNTABLE, OR STAR-COUNTABLE
CLOSED k-NETWORKS

We consider spaces with star-countable k-networks, and
spaces with star-countable closed k-networks, and differences
between these spaces.

Theorem 2.1. Let f : X — Y be a closed map. Then (1)
and (2) below hold.
(1) Let X have a star-countable k-network. Then each one

of the following tmplies that Y has a star-countable k-
network.

(a) X is a k-space,

(b) X is a paracompact space,

(¢) Each point of X is a Gs-set,

(d) Each Bf~(y) (boundary of f~'(y)) is Lindelsf.

(2) Let (a) or (b) below hold. ThenY has a star-countable

k-network. When each Bf~(y) is Lindelof , Y has
a locally countable k-network, hence, a star-countable
closed k-network.

(a) X is determined by a star-countable k-network,

(b) X has a locally countable k-network,

Proof: (1) Let P be a star-countable k-network for X. For
each y €Y, take z, € f~'(y), and let A = U{z,; y € Y}. Let
P* = {f(ANP); P € P}. Then P* is a star-countable cover
of Y. Also, the proof for Theorem 1.5 in [10] implies that one
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of the properties implies that P* is a k-network for Y. Hence,
Y has a star-countable k-network.

(2) (a) implies (b) by Corollary 1.2, and (b) implies that each
point of X is a Gj-set, and X has a star-countable k-network
by Theorem 1.4. Thus Y has a star-countable k-network by
(1). For the latter part, since f is closed, we can assume that
each f~!(y) is Lindeldf (indeed, take z, € f~'(y) for each
y€Y,andlet C, = Bf~'(y) if Bf~1(y) # 0, and C, = {z,}
if Bf~'(y) = 0. Instead of X, consider a closed subset C' =
U{Cy; ¥ € Y} of X with f(C) = Y). Let P be a locally
countable k-network for X, and let P* = {f(P); P € P}.
Then, since f is closed and each f~!(y) Lindeldf, it is easy
to show that P* is a locally countable network for Y. Then
each point of Y is a Gs-set. Then it is easy to see that each
compact subset of Y is sequentially compact. Also, P* is a
point-countable cover of Y, f is closed, and each point of X
is a Gs-set. Then we see that P* is a k-network for Y by
means of Propostition 1.2(1) & Lemma 1.6 in [24]. Then P* is
a star-countable k-network for Y.

Not every closed image of a locally compact metric space has
a star-countable closed k-network ; see Example 4.1(6). But
the following holds.

Corollary 2.2. Let f : X — Y be a closed map. Let X be a
k-space with a star-countable closed k-network. In particular,
let X be a locally separable metric space. Then the following
(1) and (2) hold.
(1) Y has a star-countable k-network
(2) The following are equivalent.
(a) Every Bf~'(y) is Lindelof ,
(b) Y has a point-countable closed k-network,
(c) Y has a star-countable closed k-network.

Proof: (1) follows from Theorem 2.1(1). For (2), (a) = (c)
holds by Theorem 2.1(2) and Theorem 1.4(2). (c) = (b) is
clear. Suppose (b) holds. While, X is a paracompact R-space
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by Proposition 1.5. Then (a) holds by [6; Proposition 6.4].
Thus (b) = (a) holds.

Let X be a space, and C be a closed cover of X. Then X s
dominated by C [12] (= X has the weak topology with respect
to C in the sense of [16]), if the union of any subcollection C*
of C is closed in X, and the union is determined by C*. Every
space is dominated by a hereditarily closure preserving closed
cover. Clearly, if X is dominated by C, then X is determined
by C. When C is an increasing countable closed cover, then the
converse holds, however, the converse doesn’t hold in general.
It is well known that every space dominated by paracompact
spaces is paracompact; see [12], or [16].

Lemma 2.3. (1) Let X be dominated by {X); A < a}. For
each A < a; let Yo = Xo, Y = X) —U{X,; p < a}. If
To € Y\ for each A < a, then {z,; A < a} is closed and
discrete in X.

(2) Let C be a closed (resp. point-countable) cover. Let X
be dominated (resp. determined) by C. Let {K,; n € N} be
a decreasing sequence in X such that K = N{K,; n € N} is
compact, and any nbd of K contains some K,,. Then some K,,
is contained in a finite union of elements of C.

Proof: (1) is due to [25; Lemma 2.5]. For (2), note that if z,, €
K, for each n € N, then {z,; n € N} has an accumulation
point in X. Then, by (1), some K,, is contained in a finite
union of elements of the cover {Y); A < a} of X. Hence, (2)
holds. The parenthetic part of (2) holds in view of the proof
of Lemma 6 in [22].

Theorem 2.4. (1) Let X be dominated by a closed cover of
Ro-spaces. Then the following (i) and (ii) hold.
(i) X has a star-countable k-network.
(71) In the following, (a) & (b) = (c¢) = (d) = (e) holds. If
X is a k-space, then (e) = (a), hence (a) ~ (e) are equivalent.
(a) X is locally separable,
(b) X is locally Lindelof ,
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(¢) X is an R-space,
(d) X has a o-locally countable k-network,
(e) X has a star-countable closed k-network.

(2) Let X be a space determined by a point-countable cover
of No-spaces. Then (c) or (d) = (e). If X is a k-space, then
(c) & (d) & (e) holds. When X is a Fréchet space, (c), (d)
and (e) hold.

Proof: (1) Let X be dominated by {X); A < a}, and each
X, be an Ny-space. For each A < a, let Yy = X, Y, =
X) —U{X,; ¢ < a}, and let P, be a countable k-network for
X. To show (i) holds, let P = U{P,NY); A < a}. Then P is
a star-countable cover of X. To see that P is a k-network for X,
let K C U with K compact, and U open in X. Then by Lemma
2.3(1) K meets only finitely many Y),(n = 1,2,... ,m). Since
K N X,, C U for each A,, there exists a finite Py, C Pi
such that K N X, C UP,, C U for each A,. Let P* =
U{P,, NY,; n =1,2,...,m}. Then P* C P is finite such
that K C UP* C U. Then P is a k-network for X. Thus P is
a star-countable k-network for X. For (ii), we note that X is
paracompact, because X is dominated by paracompact spaces
X\(A < a). Thus (a) = (b) holds. To see (b) = (a) and (c), for
z € X, let V, be a nbd of £ whose closure is Lindel6f. Then, by
Lemma 2.3(1), V; is contained in a countable union of X ,’s
(n € N). Thus V, is separable. Hence (a) holds. Besides,
V, is dominated by a closed cover C = {X\, N V;;n € N}
of Ng-spaces. Then each compact subset of V is contained
in a finite union of elements of C by Lemma 2.3(2). Thus
V, is an Rg-space. Hence X is a locally No-space. But X is
paracompact. Then X has a locally finite closed cover of No-
spaces. Thus, X is an R-space. Hence (c) holds. (c) = (d)
is clear. To show (d) = (e), let P = U{P,; n € N} be a
o-locally countable closed k-network for X, here, assume that
P, C Ppny1, and P, is closed under finite intersections for each
n € N. Let K be a compact subset of X. Since K meets
only countably many elements of P, there exists a decreasing
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sequence {K,; n € N} such that each K, is a finite union of
elements of P, K = N{K,; n € N}, and any nbd of K contains
some K,. Thus, by Lemma 2.3(2), some K,, is contained in
a finite union of X)’s, hence the K,, is Lindel6f. This shows
that P* = {P € P; P is Lindelof } is a k-network for X. Since
P* is a o-locally countable closed Lindelof k-network, P* is a
star-countable closed k-network for X. Thus (e) holds. If X is
a k-space, then (e) = (a) by Proposition 1.5, hence (a) ~ (e)
are equivalent.

(2) This holds by the proof of (d) = (e) in the above, and
Proposition 1.5. The latter part holds by [6; Corollary 8.9].

We note that, in the first half of Theorem 2.4(2), even if X is
separable, and Lindeldf , (c) or (d) doesn’t hold; see Example
4.1(7).

We give characterizations for k-spaces with a star-countable
closed (or compact) network in terms of weak topologies.

Theorem 2.5. The following are equivalent.

(a) X is a k-space with a star-countable closed (resp. com-
pact) k-network,

(b) X is the topological sum of k-and-No-spaces (resp. k-
and-Ro-spaces),

(¢) X is determined by a countable closed cover of locally sep-
arable, k-and-R-spaces (resp. locally compact, metric spaces),

(d) X is an R-space determined by a point-countable closed
cover of k-and-Rq-spaces (resp. compact spaces),

(e) X is an R-space dominated by k-and-Ro-spaces (resp.
compact spaces),

(f) X is a locally separable space dominated by k-and-Ro-
spaces (resp. compact metric spaces).

Proof: (a) = (b) holds by Proposition 1.5. (b) = (c) holds,
because X is a locally separable, k-and-R-space. (b) = (d)
and (e) is obvious. For (c) = (d), let X be determined by a
countable closed cover {X,; n € N} of locally separable, k-
and-N-spaces. Then each compact subset of X is contained in
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a finite union of X,,’s by Lemma 2.3(2), and each X, is a closed
subset which is an N-space. Then X is an R-space. While, each
X, 1s the topological sum of k-and-Rg-spaces X, .(a € A)
by Proposition 1.4. Hence X, is determined by the point-
countable cover {X,, ,; @ € A}. Then, by Lemma 1.3(2), X
is determined by a point-countable closed cover {X,.; n €
N, a € A} of k-and-R¢-spaces. Thus (c) = (d) holds. For
(d) or (e) = (a), since X is determined by k-spaces, X is
determined by a cover of compact spaces by Lemma 1.3(2),
hence X is a k-space. Thus, (d) or (e) = (a) holds by Theorem
2.4. (e) & (f) holds in view of Theorem 2.4(1).

We prove the parenthetic part holds. For (a) = (b), let P
be a star-countable compact k-network. Since X is a k-space,
it is determined by P. Thus (a) = (b) holds by Corollary
1.2. For (b) = (c), (d), and (e), let X be the topological
sum of {X); A < a} of k,-and -Rg-spaces. Then X is an R-
space. Since each X, is a k,-and-Ro-space, X, is dominated
by an increasing countable cover of {X) ,; n € N} of compact
metric spaces. Then, X is dominated by a point-countable
closed cover C = {X\n; A < &, n € N} of compact metric
spaces. Thus (d) and (e) hold. To show (c) holds, let Y, =
U{Xn; A < a} for each n € N. Then each Y, is a closed
subset of X which is locally compact metric space. But, X is
determined by C, and each X, C Y,. Thus, by Lemma 1.3(1),
X is determined by a countable closed cover {Y,; n € N} of
locally compact metric spaces. Thus (c) holds. Hence, (b) =
(c), (d), and (e) holds. The proof for (c¢) = (d) is similar to the
above one. for (d) or (e) = (a), X is a k-space, and X has a
star-countable compact k-network as in the proof of Theorem
2.4. Thus (d) or (e) = (a) holds. (e) < (f) holds by Theorem
2.4(1).

Corollary 2.6. (1) Every space dominated by locally separable
metric spaces has a star-countable k-network.

(2) Every space determined by a star-countable closed cover
of locally separable (resp. locally compact) metric spaces has a
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star-countable closed (resp. compact) k-network.

(3) Every Fréchet space determined by a point-countable lo-
cally separable metric spaces has a star-countable closed k-
network.

Proof: For (1), any locally separable metric space has a star-
countable (closed) k-network. Thus, the proof for (i) of The-
orem 2.4(1) suggests that X has a star-countable k-network.
(2) follows form Lemma 1.1(2) and Theorem 2.5. For (3), X
is determined by a point-countable cover of separable metric
spaces by means of Lemma 1.3(2). Thus (3) holds by Theorem
2.4(2).

In (2) of the previous corollary, it is impossible to replace
“star-countable ” by “point-countable”; see Example 4.1(7).

Concerning CW-complexes, Proposition 2.8 below holds in
terms of star-countable k-networks. A CW-complex is count-
able if it consists of countable cells. As for CW-complexes, see

[28], for example. In the following lemma, (1) is well-known,
and (2) is due to [26].

Lemma 2.7. (1) Every CW-complez is a k-space dominated
by a cover of compact metric spaces.

(2) A CW-complez is an R-space if and only if it is the topo-
logical sum of countable CW-complezes.

Proposition 2.8. Let X be a CW-complex. Then the follow-
ing hold.

(1) X, as well as every closed image of X, has a star-
countable k-network.

(2) X has a star-countable closed k-network if and only if X
is the topological sum of countable CW-complezes.

(3) Let X have a star-countable closed k-network. If X is
separable, or connected, then X is a countable CW-complex.

(4) X, as well as every closed image of X, is locally separable
metric if it is a countable bi-k-space. :
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Proof: (1) follows from Theorems 2.1(1) & 2.4(1), and Lemma
2.7(1). (2) holds by Proposition 1.5 and Theorem 2.5, and
Lemma 2.7. (3) holds by (2), and (4) holds by (1) and Theorem
1.4(4).

Note that not every CW-complex has a star-countable closed
k-network. Indeed, not every Fréchet , connected CW-complex
has a star-countable closed k-network ; see Example 4.1(6). Al-
so, every connected CW-complex with a point-countable com-
pact k-network is not a countable CW-complex; cf. [26], hence
doesn’t have a star-countable closed k-network.

3. QUOTIENT STRONGLY LINDELOF MAPS

We consider characterizations for certain quotient images of
locally separable metric spaces by means of locally countable
k-networks.

Let f : X — Y be a map. Then f is Lindelof if ev-
ery f(y) is Lindelof , and, f is an s-map if every f~!(y) is
separable. Let us call f strongly Lindeldf if for any Lindelof
subset L of Y, f~1(L) is Lindelof in X. Any strongly Lindeldf
map is Lindelof , and any closed Lindelof map is strongly Lin-
delof. Every closed Lindelof image of a space with a locally
countable k-network has a locally countable k-network ; see
Theorem 2.1(2). Besides, we have the following.

Proposition 3.1. Let f : X — Y be a quotient strongly
Lindelof map, or open s-map. Let X be a k-space . If X has a
locally countable (resp. locally countable compact) k-network,
then so does Y (respectively).

Proof: Let f be a quotient strongly Lindel6f map. In view of
the proof of Theorem 1.4(1), X has a locally countable, closed
Lindel6f k-network P. Let P* = {f(P); P € P}. Since f is
strongly Lindeléf and each element of P is Lindeléf , P* is a
star-countable network for Y. While, since X is a k-space, X is
determined by the closed k-network P. Since f is quotient, Y is
determined by P* from Lemma 1.3(3). Thus, by Lemma 1.1(2),
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P* is a locally countable network for Y. Thus each compact
subset of Y is sequentially compact. While, since X has a
locally countable network, each compact subset of X is metric,
hence, a k-space X is sequential. Then, since P* is a point-
countable cover of Y, f is quotient, and X is sequential, P* is
a k-network for Y by means of Proposition 1.2(1) & Lemma
1.6 in [24]. Thus, Y has a star-countable k-network. Next, let
f be an open s-map. To show f is strongly Lindelof, let L be
Lindelof in Y. Since X is locally separable, there exist open
separable subsets V,, in X such that L C U{f(V,); n € N}.
Let G = U{f~Y(f(V,)); » € N}. Then f~}(L) C G. But,
since each f(V,)) is separable, and f is an open s-map, it is
routinely shown that each f~'(f(V;)) is separable. Thus G
is separable. Also, G is a k-space, for it is open in a k-space
X. Thus, f~}(L) is Lindelof by Proposition 1.6. Thus f is
a quotient strongly Lindel6f map. Thus Y has also a locally
countable k-network.

A map f: X — Y is a strong s-map [7] if each point of Y’
has anbd V in Y such that f~*(V) isseparable. If f: X — Y
is a strong s-map, then X and Y are locally separable. We note
that any open s-map defined on a locally separable space is a
strong s-map in view of the proof of Proposition 3.1. A map
f: X — Y is compact-covering [13] if each compact subset
of Y is the image of some compact subset of X.

Lemma 3.2. Let f: X — Y. Then the following hold.

(1) Let X be paracompact, and let X be a o-space (resp. R-
space). If f is a strong s-map (resp. compact-covering, strong
s-map), then X and Y have locally countable networks (resp.
k-networks).

(2) Let X be a paracompact o-space. Then [ is a strong s-
map if and only if it is a strongly Lindelof map with Y locally
Lindelsf.

(8) Let f be a quotient map, and X be a k-space with a
locally countable k-network. Then f is a strong s-map if and
only if it is strongly Lindelof.
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Proof: For (1) and (2), note that a subset of X is separable if
and only if it is (hereditarily) Lindeldf, because X is a para-
compact, o-space. Thus (1) and (2) are routinely proved. For
(3), X is a paracompact, o-space by Proposition 1.5. Thus,
the “only if” part holds by (2). The “if” part holds by (2),
because Y is locally Lindel6f by Proposition 3.1.

Theorem 3.3. The following are equivalent.

(a) X is a k-space with a locally countable (resp. locally
countable compact) k-network,

(b) X is the quotient strongly Lindelof image of a locally
separable (resp. locally compact) metric space,

(c) X is the quotient strong s-image of a locally separable
(resp. locally compact) metric space.

Proof: To show (a) = (b), suppose (a) holds. Then X has
a star-countable closed (resp. compact) k-network by Theo-
rem 1.4(1). Since X is a k-space, by Theorem 2.5, X is the
topological sum of k-and-Ry-spaces (resp. k,-and-Ro-spaces)
X,(a € A). Let X be the topological sum of {X,; a € A}.
Each X, is the quotient image of a separable metric space M,
by [13; Corollary 11.5]. For the parenthetic part, let M, be the
topological sum of a countable compact k-network for X,. Let
M be the topological sum of {M,; a € A}. Let f: M — X
be the obvious map. Then M is locally separable (resp. locally
compact) metric, and f is quotient strongly Lindelof. (b) =
(a) follows from Proposition 3.1. (b) < (c) holds by Lemma
3.2.(3).

Remark 3.4 We recall that a space is hemicompact if it has
a countable cover C of compact subsets such that each compact
subset is contained in a finite union of elements of C. Here, we
can replace “finite union of elements” by “some element”. Any
Lindelof locally compact space is hemicompact. We note that
a k,-space is precisely a hemicompact, k-space by Lemmas 1.1

& 3.2
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The following (1), (2), and (3) hold. Indeed, these are shown
in view of Lemmas 1.1 & 3.2, and the proof of Theorem 3.3.
Here, we recall that the fact that every cosmic space (resp. No-
space) is precisely the image (resp. compact-covering image)
of a separable metric space [13].

(1) The following (a), (b), and (c) are equivalent.

(a) X is a space with a countable compact k-network (resp.
k-space with a countable compact k-network ),

(b) X is a hemicompact Ro-space (resp. k,-and-Roy-space).

(c) X is a hemicompact cosmic space (resp. k., and cosmic
space),

(d) X is the compact-covering (resp. quotient) image of a
separable locally compact metric space.

(2) X has a locally countable k-network (resp. locally count-
able compact k-network ) < X is the compact-covering, strong
s-image of a locally separable (resp. locally compact) metric
space.

(3) X has a locally countable network < X is a disjoint
and locally countable sum of cosmic spaces < X is the strong
s-image of a locally separable metric space.

Now, amap f : X — Y is pseudo-open if for any y € Y
and any open subset U of Y with f~!(y) C U, y € int f(U).
Any open map or any closed map is pseudo-open, and every
pseudo-open map is quotient. We recall that a quotient map
from a metric space onto Y is pseudo-open if and only if Y is
Fréchet [1].

In the following proposition, the equivalence among (a), (c),
and (d) (resp. (c) and (d) for the parenthetic part) is shown
in [8] (resp. [23]).

Proposition 3.5. The following are equivalent.

(a) X is a Fréchet space with a locally countable k-network
(resp. locally countable compact k-network),

(b) X is the pseudo-open strongly Lindelof image of a locally
separable (resp. locally compact) metric space,
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(¢) X is the pseudo-open Lindelof image of a locally separable
(resp. locally compact) metric space,

(d) X is the closed Lindelf image of a locally separable (re-
sp. locally compact) metric space.

Proof: The equivalence between (a) and (b) holds by means
of Theorem 3.3. To show (a) = (d), let X have a locally
countable closed (resp. compact) k-network. Since X is a
k-space, by Theorem 1.4(2) & 2.5, X is the topological sum
of Fréchet Ry-spaces (resp. Fréchet , k,-and-Ro-space). But,
every Fréchet Ro-space (resp. Fréchet , k,-and-Ro-space) is the
closed image of a separable (resp. locally compact separable)
metric space by [4] (resp. [19]). Thus (d) holds. (b) = (c)
is clear. For (c) = (a), note that X is the topological sum of
Ro-spaces X, by mean of [6; Proposition 8.8], hence (a) holds.
For the parenthetic part, let f : M — X be a pseudo-open
Lindelof map with M a locally compact metric space. Then
M is determined by a locally countable cover C of compact
spaces. Since f is quotient and Lindel6f, by Lemma 1.3(3),
X is determined by a point-countable cover f(C) of compact
spaces. But each X, is closed in X. Then X, is determined
by a point-countable cover of compact spaces. But, each X, is
an No-space. Then, by the same way as in the proof for (ii) of
Theorem 2.4(1), each X, has a countable compact k-network.
Then X has a locally countable compact k-network. Thus (a)
holds.

We note that it is impossible to replace “pseudo-open” by
“quotient”, and to omit “ locally separable” in the previous
proposition; see Example 4.2.

Reviewing the previous sections, as a summary, we have The-
orems 3.6 and 3.7 below. Theorem 3.6 holds by Theorems 1.4,
2.5, and 3.3.

Theorem 3.6. Let X be a k-space. Then the following are
equivalent.
(a) X has a star-countable closed (resp. compact) k-network,
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(b) X has a locally countable (resp. locally countable com-
pact) k-network,

(c) X is determined by a countable closed cover of Ro-spaces
(resp. locally compact metric spaces),

(d) X is the quotient strongly Lindelof image of a locally
separable (resp. locally compact) metric space.

Theorem 3.7. Let X be a Fréchet space. Then the following
are equivalent.

(a) X has a star-countable closed (resp. compact) k-network,

(b) X has a locally countable (resp. locally countable com-
pact) k-network,

(¢) X has a point-countable separable closed (resp. point-
countable compact) k-network,

(d) X is determined by a countable closed cover of Ro-spaces
(resp. locally compact metric spaces),

(e) X is determined by a point-countable cover of Ro-spaces
(resp. locally compact metric spaces),

(f) X s the pseudo-open (strongly) Lindelof image of a lo-
cally separable (resp. locally compact) metric space,

(g9) X is the closed Lindelif image of a locally separable (resp.
locally compact) metric space.

Proof: This holds by Propositions 1.7 & 3.5, and Theorem
2.4(2). For the parenthetic part, we show that (c) or (e) =
(a) holds. Let (c) hold, and let P be a point-countable com-
pact k-network for X. But, every compact space with a point-
countable k-network is metric by [2; Theorem 3.1]. Thus each
element of P is separable. Then X has a locally countable
closed k-network by the implication (c) = (a). While, since X
is a k-space, X is determined by P. Then, as in the proof of
Theorem 2.4(2). X has a star-countable compact k-network.
Thus (a) holds. Let () hold. Then X is determined by a point-
countable cover of compact metric spaces by Lemma 1.3(2).
Then (a) holds by a similar argument.
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4. EXAMPLES AND QUESTIONS

In Example 4.1 below, (1) shows that, in Theorem 1.4(1),
(a) = (b) doesn’t hold in general, and that the k-ness or meta-
Lindelofness in Theorem 1.4(2) or (3) is essential. (2) shows
that, in Theorem 1.4(3), (b) = (a) doesn’t hold in general.
(3) shows that, in Theorem 1.4(2), the k-ness is essential, and
that, in Theorem 1.4(4), it is impossible to replace “countably
bi-k” by “countably compact”. (4) or (5) shows that, in Propo-
sition 1.5, the k-ness is essential. (5) shows that the k-ness in
Proposition 1.6 is essential. (6) shows that the closedness of
the star-countable k-network in Theorem 1.4 (1) & (2), and
Propositions 1.5 & 1.7 is essential. (7) (resp. (8)) shows that,
in Proposition 1.7, it is impossible to replace “Fréchet space”
by “k-space ” (resp. “separable” by “Lindelof” in (b) or (c) of
Proposition 1.7).

Example 4.1. (1) A o-space X with a locally countable
(hence, star-countable) compact k-network, but X is not an
R-space, and not meta-Lindel6f.

(2) A paracompact space X with a o-locally finite compact
k-network, but X has no locally countable network (indeed, X
is not locally Lindel6f).

(3) A countably compact space X with a star-countable com-
pact k-network, but X has no o-locally countable k-networks
(indeed, X is not a locally Lindeldf space, and it has a point
which is not a Gs-set).

(4) A Lindelof space X with a star-countable compact k-
network, but X is not locally separable.

(5) A separable space X with a o-locally finite, and lo-
cally countable compact k-network (resp. o-locally finite k-
network), but X is not Lindelof (resp. locally Lindelof).

(6) A Fréchet , CW-complex X with a star-countable separa-
ble, Lindel6f k-network, but X has no star-countable closed k-
networks (indeed, X has no point-countable closed k-networks
and it is not locally separable).

(7) A separable, Lindelof, and k-space X with a point-
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countable compact k-network, but X has no star-countable
k-networks and no o-locally countable k-networks.

(8) A first countable, Lindeldf space X with a point-countable
closed Lindelof k-network, but X has no star-countable k-
networks.

Proof: (1) There exists a o-space with a locally countable k-
network, but not an R-space by [8; Example 1]. This space is
not meta-Lindel6f by Theorem 1.4(3).

(2) is a modification of [9]. Let A be an uncountable set, and
X ={p}U(A X {n; n € N}). Let any point of X except the
point p be isolated and for the point p, let {p}U(U{B, xn; n >
m}), where each B, C A with A — B, at most finite, be a
basic nbd base of p in X. Then X is paracompact. Since any
compact subset of X is finite, X has a o-locally finite compact
k-network {{z}; z € X}. But X is not locally Lindelof.

(3) Let X be an infinite, countably compact space X whose
compact subsets are finite; see [5]. Then X has a star-finite
compact k-network. But X has no o-locally countable k-
networks, indeed, no o-locally countable networks. Suppose
that X has a o-locally countable network. Then, each point of
X is contained in a Gs-set which is cosmic, hence each point
of X is a Gs-set. Thus, since X is countably compact, X is
first countable. Hence X is discrete. This is a contradiction.
Then X has no o-locally countable networks. We note that
X 1is not locally Lindel6f, because X is a countable compact
space which is not locally compact.

(4) Let A be an uncountable set, and X = AU {p}. Let any
point of X except the point p be isolated, and for the point
p, let {p} U B, where B C A with A — B at most countable,
be a basic nbd base of p in X. Then X is Lindelof, but it is
not locally separable. While, since each compact subset of X
is finite, X has a star-finite compact k-network {{z}; = € X}.

(5) Let X = PU(Q x {n: n € N}), where P is the set of
irrational numbers and @ is the set of rational numbers. Let
each point of X — P be isolated in X and for each z € P, let
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{z} U (U{((@nz,bsn) N Q) X n; n > m}) be a basic nbd of z
in X, where z —1/n < @p, < 2 < by <z +1/n, n € N.
Then X is a separable space, but it is not Lindel6f. Since any
compact subset of X is finite, X has a locally countable, and
o-locally finite compact k-network {{z}; z € X}.

For the parenthetic part, let X* = {p} U (U{X X {n}; n €
N}). Let {p} U (U{X X% {n}; n > m}) be a basic nbd of p
in X* , and let each X x n be open in X*. Then X* has a
o-locally finite k-network {{z} x n; z € X, n € N}U {{p} U
(U{X x {n}; n > m}); m € N}), hence X* is an R-space. X*
is a separable space, but it is not locally Lindelof.

(6) Let X be the quotient space obtained from the topolog-
ical sum of w; many closed unit intervals [0,1] by identifying
all the zero points to a single point. Then X is a Fréchet
CW-complex, and it has a star-countable separable, Lindelof
k-network. But X is not locally separable nor locally Lindel6f,
and X has no point-countable closed k-networks in view of [21;
Proposition 1].

(7) We show that the space X in [27; Example 1.6(2)] is
the required space. Indeed, let S = {1/n; n € N} U {0}, and
let I = [0,1] be a subspace of the Euclidean space R. Let
C={Ix1/n; ne N}U{I x{0}}U{{t} xS; t €I} Let
X =1 x S be the space determined by the point-finite cover
C of compact metric subsets of R?. Then X is a separable,
Lindelof space. Every compact subset of X is contained in a
finite union of elements of C by Lemma 2.3(2). Then X has a
point-countable compact k-network. To show that X has no
star-countable k-networks, let P be a k-network for X. For
eacha€l,letV, ={(z,y) € X; y> |z —a|} U{l x{0}},
and Cy = {(a,1/n); n € N} U {(,0)}. Then each V, is an
open subset of X, and contains the compact set C,. Then for
each a € [0,1], there exists P, € P such that P, C V,, and
P, contains a subsequence A, of C,. We note that P, # Pg if
a # (. There exists n € N such that L, = {(z,1/n); z € I}
meets w; many A,. But, since L, is an open and compact
subset of X, there exists a finitely many P; € P(: < m) such
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that L, = U{P;; i < m}. Thus some P; meets w; many A,, so
P; meets wy many C,. This shows that P is not star-countable.
Thus X has no star-countable k-networks. Next, suppose that
X has a o-locally countable k-network. Since X is Lindelof, X
has a countable k-network, hence a star-countable k-network.
This is a contradiction. Hence X has no o-locally countable
k-networks.

(8) Let X be the space in [3; Example 6.4]. As is seen there,
X is a Lindel6f space with a point-countable base, but X has
a closed subset which is not a Gs-set. Obviously, X has a
o-disjoint (hence, point-countable) closed (hence, Lindelf) -
network. Since X is a first countable space which is not metric,
X has no star-countable k-networks by Theorem 1.3(4).

In Example 4.2 below, (1) shows that, in (d) of Theorem
3.3, it is impossible to replace “ strongly Lindelof image (re-
sp. strong s-image)” by “Lindel6f image (resp. s-image)” and
shows that, in Proposition 3.5, it is also impossible to replace
“pseudo-open” by “quotient”. (2) and (3) show that, in Propo-
sition 3.5, the separability of the metric space is essential.

Example 4.2. (1) A separable, Lindel6f space X which is
the quotient finite-to-one image of a locally compact metric
space, but X is not the quotient strongly Lindelof nor quotient
strong s-image of a metric space, and X has no star-countable
k-networks.

(2) A Lindel6f space X which is the open Lindeldf, s-image
of a metric space, but X is not the closed, quotient strongly
Lindelof, nor quotient strong s-image of a metric space, and X
has no star-countable k-networks.

(3) A space X which is the open finite-to-one, strongly Lin-
del6f image of a metric space, but X is not the closed image
of a metric space.

Proof: (1) Let L be the topological sum of the cover C of the
space X in Example 4.1(7), and f : L — X be the obvi-
ous map. Then L is locally compact metric, and f is quotient
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finite-to-one. Suppose that X is the quotient strongly Lindelof
image of a metric space. Since X is Lindeldf, it is the quotient
strongly Lindel6f image of a separable metric space. Thus X
has a locally countable k-network by Proposition 3.1. This is
a contradiction to Example 4.1(7). Then X is not the quo-
tient strongly Lindelof image of a metric space, hence not the
quotient strong s-image of a metric space by Lemma 3.2(2).

(2) Let X be the Lindeldf space in Example 4.1(8). Since X
has a point-countable base, X is the open Lindeldf, s-image of
a metric space by [18]. Since X has a closed subset which is
not a Gs-set, X is not a closed image of a metric space. Also,
since X does not have a star-countable k-network, X is not
the quotient strongly Lindeldf or quotient strong s-image of a
metric space as in the proof of (1).

(3) For each r € R, let X, = {(z,y); y = |z — r|}. Define a
topology on X, as follows:

Each point (z,y) with y > 0 is isolated, and for (r,0) € X,,
let {(z,y);y = |z —r| < 1/n}, where n € N. be a basic nbd
of (r,0) in X,.

Let M be the topological sum of {X,; r € R}. Let X be an
upper half plane and f : M — X be the obvious function,
and let X be the quotient space by f. Then M is metric, and
f is open finite-to-one. Since the map f is finite-to-one and
any Lindelof subset of X is countable, f is strongly Lindelof.
But, X is not normal. Then X is not the closed image of a
metric space.

We conclude this paper with Question 4.3 below. (1) is pro-
posed in view of Theorem 1.4 and Example 4.1(1) & (3). (2),
(3), and (4) are respectively proposed in view of Proposition
1.6, Proposition 1.7, and Theorem 2.1.

In view of results in this paper, (1) is affirmative if X is a
k-space, meta-Lindeldf, or f-refinable (here, every §-refinable
(= submetacompact) space with a locally countable network is
a o-space by [20]), (2) and (3) are affirmative if the k-network
is closed, and (4) is affirmative if X is a k-space, paracompact,
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or each point of X is a Gs-set, etc.

Question 4.3. (1) Is every space X with a locally countable
k-network a o-space, or space in which every closed subset is
a Gs-set?

(2) Is every separable k-space X with a star-countable k-
network a Lindelof space?

(3) Does every Fréchet space X with a point-countable sep-
arable k-network have a star-countable k-network ?

(4) Does every closed image of a space X with a star-countable
k-network have a star-countable k-network, or a point-countable
k-network?

Comment: Quite recently, Masami Sakai pointed out that
(1) and (4) are negative if X is a Hausdor{f space.
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