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SPACES HAVING STAR-COUNTABLE 
k-NETWORKS 

YOSHITO IKEDA AND YOSHIO TANAKA 

INTRODUCTION 

We investigate spaces with star-countable or locally count
able k-networks. 

Let us recall some basic definitions. Let X be a space, and 
let P be a cover (not necessarily open or closed) of X. Then 
P is a k-network, if whenever ]{ C U with ]{ compact and U 
open in X, then ]{ C UP* c U for some finite P* C P. If 
we replace "compact" by "single point", then such a cover is 
called a "network". A space is an N-space [17] (resp. No-space 
[12]) if it has a u-Iocally finite k-network (resp. countable k
network). If we replace "k-network" by "network", then such 
a space is au-space (resp. cosmic space [13]). A closed (resp. 
compact; Lindelof, separable) k-network is a k-network consist
ing of closed (resp. compact; Lindelof; separable) subsets. 

Let X be a space, and let C be a cover of X. Then X is 
determined by C [6] (= X has the weak topology with respect 
to C in the usual sense), if F C X is closed in X if and only 
if F n C is closed in C for every C E C. Here, we can replace 
"closed" by "open". A space X is a k-space (resp. sequential 
space) if it is determined by the cover of all compact (resp. 
compact metric) subsets of X. A space X is a kw-space [14] if 
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it is determined by a countable cover of compact subsets of X. 
A ,space X is Frechet if whenever x E A, then there exists a 
sequence in A converging to the point x. Any Frechet space is 
sequential. Any sequential space, or kw-space is a k-space. 

A collection in X is star-countable (resp. point-countable) if 
each member (resp. single point) meets only countable many 
members. Not every locally countable collection is star
countable, but any a-locally countable collection of Lindelof 
subsets is star-countable. Every star-countable collection is 
point-countable, but not necessarily locally countable. 

We consider relationships among spaces with star-countable 
k-networks, spaces with locally countable k-networks, and 
spaces with point-countable k-networks, etc. We give char
acterizations of spaces with star-countable k-networks, and 
spaces with star-countable closed k-networks. Among k-spaces 
or Frechet spaces, we give some characterizations for spaces to 
have star-countable closed k-networks. Also, as applications of 
star-countable or locally countable k-networks, we give chara
terizations for certain quotient images of locally separable met
ric spaces, etc. Shou Lin [7] (resp. C. Liu and J. P. Song [11]) 
showed that every k-space with a locally countable k-network 
is characterized as the quotient, strong s-image (resp. local
ly Lindelof image) of a metric space (resp. locally separable 
metric space), etc. The proofs of these characterizations are 
based on the classical construction of certain subsets of the 
O-dimensional Baire space as the domains. We give another 
chracterization by a simpler proof in terms of weak topologies 
with respect to star-countable covers. 

We assume that spaces are regular T1 , and maps are contin
uous and onto. 

1.	 STAR-COUNTABLE, LOCALLY COUNTABLE, OR 

POINT-COUNTABLE k-NETWORKS 

We consider the relationships among spaces with certain 
star-countable k-networks, and spaces with locally countable k
networks, and spaces with certain point-countable k-networks, 
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etc. 
The following lemma holds by the proof for (a) :::} (b) of 

Theorem 1 in [22]. 

Lemma 1.1. Let C be a star-countable cover of X. Then the 
following (1) and (2) hold. 

(1) X is a disjoint union of {Xa ; a E A}, where each X a 

is a countable union of elements of C. 
(2) If X is determined by C, then X is the topological sum 

of the collection {Xa ; Q E A} in (1), and the cover C is locally 
countable. 

The following holds by Lemma 1.1(2). 

Corollary 1.2. Let X be a space determined by a star
countable cover P. If P is a k-network (resp. compact k
network; network), then X is the topological sum of ~o-spaces 

(resp. kw-and-~o-spaces; cosmic spaces). 

The following lemma is routinely shown, so we omit the 
proof. 

Lemma 1.3. (1) Let X be determined by {Xa ; Q E A}, and 
each X a C Ya . Then X is determined by {Ya ; Q E A}. 

(2) Let X be determined by {Xa ; Q E A}, and let each X a 

be determined by {Xa~; (3 E B}. Then X is determined by 
{Xa,p; a E A, (3 E B}. 

(3) Let f : X ~ Y be a quotient map. If X is determined 
by {Xa ; a E A}, then Y is determined by {f(Xa ); a E A}. 

E. Michael [15] characterized cQuntably bi-k-spaces as the 
countably hi-quotient images of paracompact M -spaces. For 
the definition and properties of countably hi-k-spaces, see [15; 
4E]. Any first countable space, or any locally compact space 
is countably-bi-k, Any countably bi-k-space is a k-space. We 
recall that a space is meta-Lindelof if every open cover has a 
point-countable open refinement. 
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Theorem 1.4. (1) For a space X, (a) or (b) => (c) => (d) 
holds. 

(a) X has a locally countable k-network, 
(b) X has a a-locally finite closed Lindelof k-network, 
(c) X has a star-countable closed k-network, 
(d) X has a star-countable k-network. 

(2) If X is a k-space, then (a) ¢} (b) ¢} (c) holds. 
(3) If X is a meta-Lindelof space, then (a) => (b) holds. 
(4) If X is a countably bi-k-spaceJ then (d) => (a) and (b) 

holds, indeed (d) implies 'X is locally separable metric". 

Proof: (1) Obviously, (b) => (c) holds, and clearly (c) => (d) 
holds. To show that (a) =} (c) holds, let P be a locally count
able k-network for X. Here, we can assume that each element 
of P is closed. For each x EX, there exists a nbd Vx of x such 
that Vx meets only countably many elements of P. Then each 
Vx is a Lindelof space (indeed, ~o-space). Let P* = {P E P; P 
is contained in Vx for some x E X}. Then it is easy to show 
that P* is a locally countable closed Lindelof k-network, hence 
P* is a star-countable closed k-network for X. 

(2) Let P be a closed k-network for X. Then each compact 
subset is contained in a finite union of elements of P. Then, 
since X is a k-space, by Lemma 1.3(1), X is determined by the 
cover of all finite unions of elements of P. But, any space is 
determined by any of its finite closed cover. Thus, by Lemma 
1.3(2), X is determined by P. Thus, (c) =} (a) and (b) holds 
by Lemma 1.1(2) and Corollary 1.2. 

(3) Suppose (a) holds. Then each point of X has a nbd Vx of 
x such that Vx is an ~o-space. Since X is meta-Lindelof, there 
exists a point-countable open cover C of ~o-spaces. But C is 
star-countable, and X is determined by C, since C is an open 
cover of X. Then (b) holds by means of Lemma 1.1(2). 

(4) Since X is a countable bi-k-space with a point-countable 
k-network, X has a point-countable base 8 in view of [6; Corol
lary 3.6]. Let P be a star-countable k-network for X. 
Since X is a first countable space, and P is a point-countable 



SPACES HAVING STAR-COUNTABLE k-NETWORKS 111 

k-network for X, by [6; Proposition 3.2], for each x E X, x E 
int UP* for some finite P* C P. Since P is star-countable, 
each element of P is a cosmic space. Thus, X is locally separa
ble. Then we can assume that each element of B is separable, 
hence that B is a star-countable base. Thus, by Lemma 1.1(2), 
X is the topological sum of separable metric spaces. Hence X 
is locally separable metric. 

In the previous theorem, (a) =} (b) in (1), or (b) =} (a) in 
(3) doesn't hold in general. The k-ness of meta-Lindelofness 
in (2) or (3) is essential. In (1) and (2), the closedness of the 
star-countable k-network is essential. In (4), it is impossible to 
replace "countably bi-k" by "countably compact". For counter 
examples, see Example 4.1 in Section 4. 

Proposition 1.5. Let X be a k-space (resp, meta-Lindelof 
space). Then the following are equivalent. 

(a) X	 has a star-countable closed k-network (resp. locally 
countable k-network ), 

(b) X is the topological sum of No-spaces, 
(c) X is a paracompact, locally No-space, 
(d) X is a locally Lindelof, N-space, 
(e) X is a locally separable, N-space. 

Proof: (a) =} (b) holds in view of the proof of Theorem 1.4(2) 
& (3). (b) =} (c) is obvious. To show (c) =}(d), suppose 
(c) holds. Since X is a paracompact, locally No-space, X has 
a locally finite closed cover of No-spaces. But, each compact 
subset of X meets only finitely many elements of this cover. 
Thus, it is shown that X is an N-space. Thus (d) holds. (d) 
=} (e) is easy. To show (d) => (a), suppose (d) holds. Then, 
as in the proof of (a) :::} (c) of Theorem 1.4, X has au-locally 
finite closed Lindelof k-network. Hence X has a star-countable 
closed k-network. Thus (a) holds. To show (e) :::} (d), suppose 
(e) holds. Since X is a u-space, each compact subset of X is 
metric. But, X is a k-space. Then X is sequential. In [8], it is 
proved that every sequential space with a u-Iocally countable 
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k-network is meta-Lindelof . Then X is meta-Lindelof. Hence 
every separable closed subset of X is Lindelof. Thus (d) holds. 

As is well-known, not every separable, first countable u
space is Lindelof. Also, not every separable space with a 
locally countable (hence star-countable), and u-Iocally finite 
k-network is Lindelof; see Example 4.1(5), and not every sep
arable k-space with a point-countable compact k-network is 
Lindelof ; cf. [6; Example 9.3]. And, obviously, not every 
connected metric space is Lindelof. But the following holds. 

Proposition 1.6. (1) Let X be a separable space. Then each 
one of the following implies that X is Lindelof. Indeed, X is 
an No-space for (a), (b), or (c), and a cosmic space for (d). 

(aJ X is a k-space with a star-countable closed k-network, 
(b) X is a k-space with a u-Iocally countable k-network, 
(c) X is a Frechet space with a point-countable k-network, 
(d) X is determined by a star-countable network. 

(2) Let X be a connected space. Then (a) or (dJ implies that 
X is Lindelof Indeed, X is an No-space for (aJ, and a cosmic 
space for (dJ. 

Proof: We prove only (1). For (a), by Proposition 1.5, X is 
the topological sum of No-spaces. Since X is separable, X is 
an No-space. For (b), by the proof of (e) => (d) in Proposition 
1.5, X is Lindelof. Then X is an No-space. For (c), by [6; 
Theorem 5.2], X is an No-space. For (d), by Corollary 1.2, X 
is the topological sum of cosmic spaces. Then X is a cosmic 
space 

Not every Frechet space with a point-countable separable 
k-network has a star-countable closed, or locally countable k
network; see Example 4.1(6). But the following holds. 

Proposition 1.7. Let X be a Frechet space. Then the follow
ing are equivalent. 

(a) X has a star-countable closed k-network, 
(b) X has a point-countable separable closed k-network, 
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(c) X is. a locally separable space with a point-countable k

network. 

Proof: (a) => (b) holds, for any element of a star-countable 
k-network is cosmic, hence separable. For (b) => (c), let P 
be a point-countable separable closed k-network. Since X is 
Frechet, for each x E X, x E int U{P E P; x E P} by [6; 
Lemma 5.1]. Then X is locally separable. For (c) => (a), since 
X is a locally separable Frechet space, X is the topological 
sum of No-spaces by [6; Proposition 8.8]. Thus, X has a star
countable closed k-network. 

2.	 SPACES WITH STAR-COUNTABLE, OR STAR-COUNTABLE 

CLOSED k-NETWORKS 

We consider spaces with star-countable k-networks, and 
spaces with star-countable closed k-networks, and differences 
between these spaces. 

Theorem 2.1. Let f : X -----+ Y be a closed map. Then (1) 
and (2) below hold. 

(1)	 Let X have a star-countable k-network. Then each one 
of the following implies that Y has a star-countable k
network. 

(aJ X is a k-space, 
(b) X is a paracompact space,
 
(cJ Each point of X is a Gs-set,
 
(dJ Each Bf-l(y) (boundary of f-l(y)) is Lindelof.
 

(2)	 Let (aJ or (b) below hold. Then Y has a star-countable 
k-network. Men each Bf-l(y) is Lindelof , Y has 
a locally countable k-network, hence, a star-countable 
closed k-network. 

(a) X is determined	 by a star-countable k-network, 
(b)	 X has a locally countable k-network, 

Proof: (1) Let P be a star-countable k-network for X. For 
each y E Y, take X y E f-l(y), and let A = U{xy; Y E Y}. Let 
P* = {j(Anp); PEP}. Then P* is a star-countable cover 
of Y. Also, the proof for Theorem 1.5 in [10] implies that one 
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of the properties implies that P* is a k-network for Y. Hence, 
Y has a star-countable k-network. 

(2) (a) implies (b) by Corollary 1.2, and (b) implies that each 
point of X is a Gs-set, and X has a star-countable k-network 
by Theorem 1.4. Thus Y has a star-countable k-network by 
(I). For the latter part, since f is closed, we can assume that 
each f-l(y) is Lindelof (indeed, take X y E f-l(y) for each 
y E Y, and let Cy = Bf-l(y) if Bf-l(y) # 0, and Cy = {x y} 
if Bf-l(y) = 0. Instead of X, consider a closed subset C = 
U{Cy ; y E Y} of X with f( C) = V). Let P be a locally 
countable k-network for X, and let P* = {f(P); PEP}. 
Then, since f is closed and each j-l (y) Lindelof, it is easy 
to show that P* is a locally countable network for Y. Then 
each point of Y is a Gs-set. Then it is easy to see that each 
compact subset of Y is sequentially compact. Also, P* is a 
point-countable cover of Y, f is closed, and each point of X 
is a Gs-set. Then we see that P* is a k-network for Y by 
means of Propostition 1.2(1) & Lemma 1.6 in [24]. Then P* is 
a star-countable k-network for Y. 

Not every closed image of a locally compact metric space has 
a star-countable closed k-network ; see Example 4.1(6). But 
the following holds. 

Corollary 2.2. Let f : X -----+ Y be a closed map. Let X be a 
k-space with a star-countable closed k-network. In particular, 
let X be a locally separable metric space. Then the following 
(1) and (2) hold. 

(1) Y has a star-countable k-network 
(2) The following are equivalent. 

(a) Every Bf-l(y) is Lindelof, 
(b) Y has a point-countable closed k-network, 
(c) Y has a star-countable closed k-network. 

Proof: (I) follows from Theorem 2.1(1). For (2), (a) ::::} (c) 
holds by Theorem 2.1(2) and Theorem 1.4(2). (c)::::} (b) is 
clear. Suppose (b) holds. While, X is a paracompact N-space 
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by Proposition 1.5. Then (a) holds by [6; Proposition 6.4]. 
Thus (b) => (a) holds. 

Let X be a space, and C be a closed cover of X. Then X is 
dominated by C [12] (== X has the weak topology with respect 
to C in the sense of [16]), if the union of any subcollection C* 
of C is closed in X, and the union is determined by C*. Every 
space is dominated by a hereditarily closure preserving closed 
cover. Clearly, if X is dominated by C, then X is determined 
by C. When C is an increasing countable closed cover, then the 
converse holds, however, the converse doesn't hold in general. 
It is well known that every space dominated by paracompact 
spaces is paracompact; see [12], or [16]. 

Lemma 2.3. (1) Let X be dominated by {XA; ,\ < a}. For 
each ,\ < a; let Yo == X o, YA = X A - U{Xj.t; J.L < a}. If 
X a E YA for each ,\ < Q, then {xa ; ,\ < Q} is closed and 
discrete in X. 

(2) Let C be a closed (resp. point-countable) cover. Let X 
be dominated (resp. determined) by C. Let {I{n; n E N} be 
a decreasing sequence in X such that !{ = n{ !{n; n E N} is 
compact, and any nbd of ]{ contains some ]{n. Then some ]{m 

is contained in a finite union of elements of C. 

Proof: (1) is due to [25; Lemma 2.5]. For (2), note that if X n E 
]{n for each n E N, then {xn ; n E N} has an accumulation 
point in X. Then, by (1), some !{m is contained in a finite 
union of elements of the cover {Y,X; A < a} of X. Hence, (2) 
holds. The parenthetic part of (2) holds in view of the proof 
of Lemma 6 in [22]. 

Theorem 2.4. (1) Let X be dominated by a closed cover of 
~o-spaces. Then the following (i) and (ii) hold. 

(i) X has a star-countable k-network. 
(ii) In the following, (aJ ¢:> (b) => (cJ => (d) => (e) holds. If 

X is a k-space, then (e) => (a), hence (a) ~ (e) are equivalent. 
(a) X is locally separable, 
(b) X is locally Lindelof, 
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(c) X is an N-space, 

(d) X has a a-locally countable k-network, 

(e) X has a star-countable closed k-network. 
(2) Let X be a space determined by a point-countable cover 

of No-spaces. Then (c) or (d) :::} (e). If X is a k-space, then 
(c) {:} (d) {:} (e) holds. Men X is a Frechet space, (c), (dJ 
and (e) hold. 

Proof: (1) Let X be dominated by {X,,; A < a}, and each 
X" be an No-space. For each A < a, let YO = X o, Y" = 
X,\ - U{Xjl; fl < a}, and let P" be a countable k-network for 
X". To show (i) holds, let P = U{p"nY:x; A < a}. Then P is 
a star-countable cover of X. To see that P is a k-network for X, 
let !{ C U with !( compact, and U open in X. Then by Lemma 
2.3(1) !( meets only finitely many Y"n{n = 1,2, ... ,m). Since 
!{ n X"n C U for each An, there exists a finite P"n C P" 
such that ]{ n X"n C UP"n C U for each An. Let P* = 
U{P"n n Yx n ; n = 1,2, ... ,m}. Then P* C P is finite such 
that ]( C UP* C U. Then P is a k-network for X. Thus P is 
a star-countable k-network for X. For (ii), we note that X is 
paracompact, because X is dominated by paracompact spaces 
X,\(A < a). Thus (a) =} (b) holds. To see (b) =} (a) and (c), for 
x EX, let Vx be a nbd of x whose closure is Lindelof. Then, by 
Lemma 2.3(1), ~ is contained in a countable union of X",n's 
(n EN). Thus Vx is separable. Hence (a) holds. Besides, 
Vx is dominated by a closed cover C = {X",n n ~; n E N} 
of No-spaces. Then each compact subset of Vx is contained 
in a finite union of elements of C by Lemma 2.3(2). Thus 
Vx is an No-space. Hence X is a locally No-space. But X is 
paracompact. Then X has a locally finite closed cover of No
spaces. Thus, X is an N-space. Hence (c) holds. (c) =} (d) 
is clear. To show (d) =} (e), let P = U{Pn ; n E N} be a 
a-locally countable closed k-network for X, here, assume that 
Pn C Pn +1 , and Pn is closed under finite intersections for each 
n EN. Let!( be a compact subset of X. Since [( meets 
only countably many elements of P, there exists a decreasing 
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sequence {!{n; n E N} such that each !{n is a finite union of 
elements of P, ]{ = n{!{n; n EN}, and any nbd of K contains 
some K n • Thus, by Lemma 2.3(2), some ]{m is contained in 
a finite union of XA's, hence the Km is Lindelof. This shows 
that P* = {P E P; P is Lindelof} is a k-network for X. Since 
P* is a u-Iocally countable closed Lindelof k-network, P* is a 
star-countable closed k-network for X. Thus (e) holds. If X is 
a k-space, then (e) =} ( a) by Proposition 1.5, hence (a) (e)"J 

are equivalent. 
(2) This holds by the proof of (d) ::::} (e) in the above, and 

Proposition 1.5. The latter part holds by [6; Corollary 8.9]. 

We note that, in the first half of Theorem 2.4(2), even if X is 
separable, and Lindelof , (c) or (d) doesn't hold; see Example 
4.1(7). 

We give characterizations for k-spaces with a star-countable 
closed (or compact) network in terms of weak topologies. 

Theorem 2.5. The following are equivalent. 
(a) X is a k-space with a star-countable closed (resp. com

pact) k-network, 
(b) X is the topological sum of k-and-~o-spaces (resp. kw 

and-No -spaces), 
(c) X is determined by a countable closed cover of locally sep

arable, k-and-~-spaces (resp. locally compact, metric spaces), 
(d) X is an N-space determined by a point-countable closed 

cover of k-and-No-spaces (resp. compact spaces), 
(e) X is an N-space dominated by k-and-No-spaces (resp. 

compact spaces), 
(f) X is a locally separable space dominated by k-and-~o

spaces (resp. compact metric spaces). 

Proof: (a) ::::} (b) holds by Proposition 1.5. (b) ::::} (c) holds, 
because X is a locally separable, k-and-N-space. (b) => (d) 
and (e) is obvious. For (c) => (d), let X be determined by a 
countable closed cover {Xn ; n E N} of locally separable, k
and-~-spaces. Then each compact subset of X is contained in 



118 YOSHITO IKEDA AND YOSHIO TANAKA 

a finite union of Xn's by Lemma 2.3(2), and each X n is a closed 
subset which is an N-space. Then X is an N-space. While, each 
X n is the topological sum of k-and-No-spaces Xn,a(a E A) 
by Proposition 1.4. Hence X n is determined by the point
countable cover {Xn,a; a E A}. Then, by Lemma 1.3(2), X 
is determined by a point-countable closed cover {Xn,a; n E 
N, a E A} of k-and-No-spaces. Thus (c) :::} (d) holds. For 
(d) or (e) => (a), since X is determined by k-spaces, X is 
determined by a cover of compact spaces by Lemma 1.3(2), 
hence X is a k-space. Thus, (d) or (e) => (a) holds by Theorem 
2.4. (e) {:} (f) holds in view of Theorem 2.4(1). 

We prove the parenthetic part holds. For (a) => (b), let P 
be a star-countable compact k-network. Since X is a k-space, 
it is determined by P. Thus (a) => (b) holds by Corollary 
1.2. For (b) => (c), (d), and (e), let X be the topological 
sum of {X,\; A < a} of kw-and -No-spaces. Then X is an N
space. Since each X,\ is a kw-and-~o-space, X,\ is dominated 
by an increasing countable cover of {X'\,n; n E N} of compact 
metric spaces. Then, X is dominated by a point-countable 
closed cover C = {X'\,n; A < a, n E N} of compact metric 
spaces. Thus (d) and (e) hold. To show (c) holds, let Yn == 
U{X'\,n; A < a} for each n E N. Then each Yn is a closed 
subset of X which is locally compact metric space. But, X is 
determined by C, and each X'\,n C Yn- Thus, by Lemma 1.3(1), 
X is determined by a countable closed cover {Yn ; n E N} of 
locally compact metric spaces. Thus (c) holds_ Hence, (b) => 
(c), (d), and (e) holds_ The proof for (c) => (d) is similar to the 
above one. for (d) or (e) => (a), X is a k-space, and X has a 
star-countable compact k-network as in the proof of Theorem 
2.4. Thus (d) or (e) =} (a) holds. (e) <=> (f) holds by Theorem 
2.4(1). 

Corollary 2.6. (1) Every space dominated by locally separable 
metric spaces has a star-countable k-network. 

(2) Every space determined by a star-countable closed cover 
of locally sepamble (resp. locally compact) metric spaces has a 
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star-countable closed (resp. compact) k-network. 
(3) Every Pre-chet space determined by a point-countable lo

cally separable metric spaces has a star-countable closed k
network. 

Proof: For (1), any locally separable metric space has a star
countable (closed) k-network. Thus, the proof for (i) of The
orem 2.4(1) suggests th,at X has a star-countable k-network. 
(2) follows form Lemma 1.1(2) and Theorem 2.5. For (3), X 
is determined by a point-countable cover of separable metric 
spaces by means of Lemma 1.3(2). Thus (3) holds by Theorem 
2.4(2). 

In (2) of the previous corollary, it is impossible to replace 
"star-countable" by "point-countable"; see Example 4.1(7). 

Concerning CW-complexes, Proposition 2.8 below holds in 
terms of star-countable k-networks. A CW-complex is count
able if it consists of countable cells. As for CW-complexes, see 
[28], for example. In the following lemma, (1) is well-known, 
and (2) is due to [26]. 

Lemma 2.7. (1) Every CW-complex is a k-space dominated 
by a cover of compact metric spaces. 

(2) A CW-complex is an N-space if and only if it is the topo
logical sum of countable CW-complexes. 

Proposition 2.8. Let X be a CW-complex. Then the follow
ing hold. 

(1) X, as well as every closed image of X, has a star
countable k-network. 

(2) X has a star-countable closed k-network if and only if X 
is the topological sum of countable OW-complexes. 

(3) Let X have a star-countable closed k-network. If X is 
separable, or connected, then X is a countable CW-complex. 

(4) X, as well as every closed image ofX, is locally separable 
metric if it is a countable bi-k-space. 
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Proof: (1) follows from Theorems 2.1(1) & 2.4(1), and Lemma 
2.7(1). (2) holds by Proposition 1.5 and Theorem 2.5, and 
Lemma 2.7. (3) holds by (2), and (4) holds by (I) and Theorem 
1.4{4). 

Note that not every CW-complex has a star-countable closed 
k-network. Indeed, not every Frechet , connected CW-complex 
has a star-countable closed k-network ; see Example 4.1(6). Al
so, every connected CW-complex with a point-countable com
pact k-network is not a countable CW-complex; cf. [26], hence 
doesn't have a star-countable closed k-network. 

3. QUOTIENT STRONGLY LINDELOF MAPS 

We consider characterizations for certain quotient images of 
locally separable metric spaces by means of locally countable 
k-networks. 

Let f : X -----+ Y be a map. Then f is Lindelof if ev
ery f-l(y) is Lindelof , and, f is an s-map if every f-l{y) is 
separable. Let us call f strongly Lindelof if for any Lindelof 
subset L of Y, f-l(L) is Lindelof in X. Any strongly Lindelof 
map is Lindelof , and any closed Lindelof map is strongly Lin
delaf. Every closed Lindelof image of a space with a locally 
countable k-network has a locally countable k-network ; see 
Theorem 2.1(2). Besides, we have the following. 

Proposition 3.1. Let f : X ~ Y be a quotient strongly 
Lindelof map} or open s-map. Let X be a k-space . If X has a 
locally countable (resp. locally countable compact) k-network} 
then so does Y (respectively). 

Proof: Let f be a quotient strongly Lindelof map. In view of 
the proof of Theorem 1.4(1), X has a locally countable, closed 
Lindelof k-network P. Let P* = {f(P); PEP}. Since f is 
strongly Lindelof and each element of P is Lindelof , P* is a 
star-countable network for Y. While, since X is a k-space, X is 
determined by the closed k-network P. Since f is quotient, Y is 
determined by P* from Lemma 1.3(3). Thus, by Lemma 1.1(2), 
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P* is a locally countable network for Y. Thus each compact 
subset of Y is sequentially compact. While, since X has a 
locally countable network, each compact subset of X is metric, 
hence, a k-space X is sequential. Then, since P* is a point
countable cover of Y, f is quotient, and X is sequential, P* is 
a k-network for Y by means of Proposition 1.2(1) & Lemma 
1.6 in [24]. Thus, Y has a star-countable k-network. Next, let 
f be an open s-map. To show f is strongly Lindelof, let L be 
Lindelof in Y. Since X is locally separable, there exist open 
separable subsets Vn in X such that L C U{f(Vn ); n EN}. 
Let G = U{f-l(f(Vn )); n EN}. Then f-l(L) C G. But, 
since each f(Vn }) is separable, and f is an open s-map, it is 
routinely shown that each f-l(f(Vn )) is separable. Thus G 
is separable. Also, G is a k-space, for it is open in a k-space 
X. Thus, f- 1(L) is Lindelof by Proposition 1.6. Thus f is 
a quotient strongly Lindelof map. Thus Y has also a locally 
countable k-network. 

A map f : X ~ Y is a strong s-map [7] if each point of Y 
has a nbd V in Y such that 1-1(V) is separable. If I : X ~ Y 
is a strong s-map, then X and Yare locally separable. We note 
that any open s-map defined on a locally separable space is a 
strong s-map in view of the proof of Proposition 3.1. A map 
I : X ~ Y is compact-covering [13] if each compact subset 
of Y is the image of some compact subset of X. 

Lemma 3.2. Let f : X ~ Y. Then the following hold. 
(1) Let X be paracompact, and let X be au-space (resp. ~

space). If f is a strong s-map (resp. compact-covering, strong 
s-map), then X and Y have locally countable networks (resp. 
k-networks). 

(2) Let X be a paracompact u-space. Then f is a strong s
map if and only if it is a strongly Lindelof map with Y locally 
Lindelof· 

(3) Let f be a quotient map, and X be a k-space with a 
locally countable k-network. Then f is a strong s-map if and 
only if it is strongly Lindelof. 
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Proof: For (1) and (2), note that a subset of X is separable if 
and only if it is (hereditarily) Lindelof, because X is a para
compact, a-space. Thus (1) and (2) are routinely proved. For 
(3), X is a paracompact, a-space by Proposition 1.5. Thus, 
the "only if" part holds by (2). The "if" part holds by (2), 
because Y is locally Lindelof by Proposition 3.1. 

Theorem 3.3. The following are equivalent. 
(a) X is a k-space with a locally countable (resp. locally 

countable compact) k-network, 
(b) X is the quotient strongly Lindelof image of a locally 

separable (resp. locally compact) metric space, 
(c) X is the quotient strong s-image of a locally separable 

(resp. locally compact) metric space. 

Proof: To show (a) =} (b), suppose (a) holds. Then X has 
a star-countable closed (resp. compact) k-network by Theo
rem 1.4(1). Since X is a k-space, by Theorem 2.5, X is the 
topological sum of k-and-No-spaces (resp. kw-and-~o-spaces) 

Xa(a E A). Let X be the topological sum of {Xa; a E A}. 
Each X a is the quotient image of a separable metric space Ma 

by [13; Corollary 11.5]. For the parenthetic part, let M a be the 
topological sum of a countable compact k-network for X a . Let 
M be the topological sum of {Ma ; a E A}. Let f : M -----+ X 
be the obvious map. Then M is locally separable (resp. locally 
compact) metric, and f is quotient strongly Lindelof. (b) =} 

(a) follows from Proposition 3.1. (b) <=> (c) holds by Lemma 
3.2.(3). 

Remark 3.4 We recall that a space is hemicompact if it has 
a countable cover C of compact subsets such that each compact 
subset is contained in a finite union of elements of C. Here, we 
can replace "finite union of elements" by "some element". Any 
Lindelof locally compact space is hemicompact. We note that 
a kw-space is precisely a hernicompact, k-space by Lemmas 1.1 
& 3.2. 
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The following (1), (2), and (3) hold. Indeed, these are shown 
in view of Lemmas 1.1 & 3.2, and the proof of Theorem 3.3. 
Here, we recall that the fact that every cosmic space (resp. No
space) is precisely the image (resp. compact-covering image) 
of a separable metric space [13]. 

(1) The following (a), (b), and (c) are equivalent. 
(a) X is a space with a countable compact k-network (resp. 

k-space with a countable compact k-network ), 
(b) X is a hemicompact No-space (resp. kw-and-No-space). 
(c) X is a hemicompact cosmic space (resp. kw and cosmic 

space), 
(d) X is the compact-covering (resp. quotient) image of a 

separable locally compact metric space. 
(2) X has a locally countable k-network (resp. locally count

able compact k-network ) {:} X is the compact-covering, strong 
s-image of a locally separable (resp. locally compact) metric 
space. 

(3) X has a locally countable network <=> X is a disjoint 
and locally countable sum of cosmic spaces ¢:> X is the strong 
s-image of a locally separable metric space. 

Now, a map f : X ----? Y is pseudo-open if for any y E Y 
and any open subset U of Y with f-l(y) c U, Y E int f(U). 
Any open map or any closed map is pseudo-open, and every 
pseudo-open map is quotient. We recall that a quotient map 
from a metric space onto Y is pseudo-open if and only if Y is 
Frechet [1]. 

In the following proposition, the equivalence among (a), (c), 
and (d) (resp. (c) and (d) for the parenthetic part) is shown 
in [8] (resp. [23]). 

Proposition 3.5. The following are equivalent. 
(aJ X is a Frechet space with a locally countable k-network 

(resp. locally countable compact k-networkJ, 
(b) X is the pseudo-open strongly Lindelof image of a locally 

separable (resp. locally compact) metric space, 
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(c) X is the pseudo-open Lindelof image of a locally separable 
(resp. locally compact) metric space, 

(d) X is the closed Lindelof image of a locally separable (re
sp. locally compact) metric space. 

Proof: The equivalence between (a) and (b) holds by means 
of Theorem 3.3. To show (a) => (d), let X have a locally 
countable closed (resp. compact) k-network. Since X is a 
k-space, by Theorem 1.4(2) & 2.5, X is the topological sum 
of Frechet ~o-spaces (resp. Frechet, kw-and-~o-space). But, 
every Frechet No-space (resp. Frechet , kw-and-No-space) is the 
closed image of a separable (resp. locally compact separable) 
metric space by [4] (resp. [19]). Thus (d) holds. (b) => (c) 
is clear. For (c) => (a), note that X is the topological sum of 
No-spaces X a by mean of [6; Proposition 8.8], hence (a) holds. 
For the parenthetic part, let f : M ----+ X be a pseudo-open 
Lindelof map with M a locally compact metric space. Then 
M is determined by a locally countable cover C of compact 
spaces. Since f is quotient and Lindelof, by Lemma 1.3(3), 
X is determined by a point-countable cover f (C) of compact 
spaces. But each X Q is closed in X. Then X a is determined 
by a point-countable cover of compact spaces. But, each X a is 
an No-space. Then, by the same way as in the proof for (ii) of 
Theorem 2.4(1), each X a has a countable compact k-network. 
Then X has a locally countable compact k-network. Thus (a) 
holds. 

We note that it is impossible to replace "pseudo-open" by 
"quotient", and to omit " locally separable" in the previous 
proposition; see Example 4.2. 

Reviewing the previous sections, as a summary, we have The
orems 3.6 and 3.7 below. Theorem 3.6 holds by Theorems 1.4, 
2.5, and 3.3. 

Theorem 3.6. Let X be a k-space. Then the following are 
equivalent. 

(a) X has a star-countable closed (resp. compact) k-network, 
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(b) X has a locally countable (resp. locally countable com
pact) k-network, 

(c) X is determined by a countable closed cover of "«o-spaces 
(resp. locally compact metric spaces), 

(d) X is the quotient strongly Lindelof image of a locally 
separable (resp. locally compact) metric space. 

Theorem 3.7. Let X be a Frechet space. Then the following 
are equivalent. 

(a) X has a star-countable closed (resp. compact) k-network, 
(b) X has a locally countable (resp. locally countable com

pact) k-network, 
(c) X has a point-countable separable closed (resp. point

countable compact) k-network, 

(d) X is determined by a countable closed cover of No-spaces 
(resp. locally compact metric spaces), 

(e) X is determined by a point-countable cover of ~o-spaces 

(resp. locally compact metric spaces), 
(/) X is the pseudo-open (strongly) Lindelof image of a lo

cally separable (resp. locally compact) metric space, 

(g) X is the closed Lindelof image of a locally separable (resp. 
locally compact) metric space. 

Proof: This holds by Propositions 1.7 & 3.5, and Theorem 
2.4(2). For the parenthetic part, we show that (c) or (e) =} 

(a) holds. Let (c) hold, and let P be a point-countable com
pact k-network for X. But, every compact space with a point
countable k-network is metric by [2; Theorem 3.1]. Thus each 
element of P is separable. Then X has a locally countable 
closed k-network by the implication (c) =} (a). While, since X 
is a k-space, X is determined by P. Then, as in the proof of 
Theorem 2.4(2). X has a star-countable compact k-network. 
Thus (a) holds. Let (e) hold. Then X is determined by a point
countable cover of compact metric spaces by Lemma 1.3(2). 
Then (a) holds by a similar argument. 



126 YOSHITO IKEDA AND YOSHIO TANAKA 

4. EXAMPLES AND QUESTIONS 

In Example 4.1 below, (1) shows that, in Theorem 1.4(1), 
(a) =} (b) doesn't hold in general, and that the k-ness or meta
Lindelofness in Theorem 1.4(2) or (3) is essential. (2) shows 
that, in Theorem 1.4(3), (b) ~ (a) doesn't hold in general. 
(3) shows that, in Theorem 1.4(2), the k-ness is essential, and 
that, in Theorem 1.4(4), it is impossible to replace "countably 
bi-k" by "countably compact". (4) or (5) shows that, in Propo
sition 1.5, the k-ness is essential. (5) shows that the k-ness in 
Proposition 1.6 is essential. (6) shows that the closedness of 
the star-countable k-network in Theorem 1.4 (1) & (2), and 
Propositions 1.5 & 1.7 is essential. (7) (resp. (8)) shows that, 
in Proposition 1.7, it is impossible to replace "Frechet space" 
by "k-space " (resp. "separable" by "Lindelof" in (b) or (c) of 
Proposition 1.7). 

Example 4.1. (1) A O"-space X with a locally countable 
(hence, star-countable) compact k-network, but X is not an 
N-space, and not meta-Lindelof. 

(2) A paracompact space X with a u-locally finite compact 
k-network, but X has no locally countable network (indeed, X 
is not locally Lindelof). 

(3) A countably compact space X with a star-countable com
pact k-network, but X has no O"-locally countable k-networks 
(indeed, X is not a locally Lindelof space, and it has a point 
which is not a Gs-set). 

(4) A Lindelof space X with a star-countable compact k
network, but X is not locally separable. 

(5) A separable space X with a u-locally finite, and lo
cally countable compact k-network (resp. u-Iocally finite k
network), but X is not Lindelof (resp. locally Lindelof). 

(6) A Frechet , CW-complex X with a star-countable separa
ble, Lindelof k-network, but X has no star-countable closed k
networks (indeed, X has no point-countable closed k-networks 
and it is not locally separable). 

(7) A separable, Lindelof, and k-space X with a point
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countable compact k-network, but X has no star-countable 
k-networks and no u-Iocally countable k-networks. 

(8) A first countable, Lindelof space X with a point-countable 
closed Lindelof k-network, but X has no star-countable k
networks. 

Proof: (1) There exists a u-space with a locally countable k
network, but not an N-space by [8; Example 1]. This space is 
not meta-Lindelof by Theorem 1.4(3). 

(2) is a modification of [9]. Let A be an uncountable set, and 
X = {p} U (A x {n; n E N}). Let any point of X except the 
point p be isolated and for the point p, let {p}U(U{Bn xn; n ~ 

m}), where each Bn C A with A - Bn at most finite, be a 
basic nbd base of p in X. Then X is paracompact. Since any 
compact subset of X is finite, X has a u-Iocally finite compact 
k-network {{x}; x E X}. But X is not locally Lindelof. 

(3) Let X be an infinite, countably compact space X whose 
compact subsets are finite; see [5]. Then X has a star-finite 
compact k-network. But X has no u-Iocally countable k
networks, indeed, no a-locally countable networks. Suppose 
that X has a a-locally countable network. Then, each point of 
X is contained in a Gs-set which is cosmic, hence each point 
of X is a Gs-set. Thus, since X is countably compact, X is 
first countable. Hence X is discrete. This is a contradiction. 
Then X has no u-Iocally countable networks. We note that 
X is not locally Lindelof, because X is a countable compact 
space which is not locally compact. 

(4) Let A be an uncountable set, and X == A U {p}. Let any 
point of X except the point p be isolated, and for the point 
p, let {p} U B, where B C A with A - B at most countable, 
be a basic nbd base of p in X. Then X is Lindelof, but it is 
not locally separable. While, since each compact subset of X 
is finite, X has a star-finite compact k-network {{x}; x E X}. 

(5) Let X = P U (Q x {n: n E N}), where P is the set of 
irrational numbers and Q is the set of rational numbers. Let 
each point of X - P be isolated in X and for each x E P, let 
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{x} U (U{((an,x,bx,n) n Q) X n; n ~ m}) be a basic nbd of x 
in X, where x - lin < an,x < x < bx,n < x + lin, n E N. 
Then X is a separable space, but it is not Lindelof. Since any 
compact subset of X is finite, X has a locally countable, and 
u-locally finite compact k-network {{x}; x EX}. 

For the parenthetic part, let X* = {p} U (U{X x {n}; n E 
N}). Let {p} U (U{X x in}; n ~ m}) be a basic nbd of p 
in X* , and let each X x n be open in X*. Then X* has a 
u-Iocally finite k-network {{x} X n; x E X, n E N} U {{p} U 
(U{X x {n}; n ~ m}); mEN}), hence X* is an N-space. X* 
is a separable space, but it is not locally Lindelof. 

(6) Let X be the quotient space obtained from the topolog
ical sum of Wl many closed unit intervals [0,1] by identifying 
all the zero points to a single point. Then X is a Frechet 
CW-complex, and it has a star-countable separable, Lindelof 
k-network. But X is not locally separable nor locally Lindelof, 
and X has no point-countable closed k-networks in view of [21; 
Proposition 1]. 

(7) We show that the space X in [27; Example 1.6(2)] is 
the required space. Indeed, let S = {lin; n E N} U {OJ, and 
let I = [0, 1] be a subspace of the Euclidean space R. Let 
C = {I x 1In; n E N} U {I X {O}} U {{t} X S; tEl}. Let 
X = I X S be the space determined by the point-finite cover 
C of compact metric subsets of R2 • Then X is a separable, 
Lindelof space. Every compact subset of X is contained in a 
finite union of elements of C by Lemma 2.3(2). Then X has a 
point-countable compact k-network. To show that X has no 
star-countable k-networks, let P be a k-network for X. For 
each a E I, let Vo: = {(x, y) EX; Y > Ix - a I} U {I x {O}}, 
and Co: = {(a, lin); n E N} U {(a,O)}. Then each Vo: is an 
open subset of X, and contains the compact set Co:. Then for 
each a E [0,1], there exists Po: E 'P such that Po: C Vo:, and 
Po: contains a subsequence Ao: of Co:. We note that Po: =f P{3 if 
a =f {3. There exists n E N such that Ln = {(x, lin); x E I} 
meets WI many Aa • But, since Ln is an open and compact 
subset of X, there exists a finitely many Pi E P( i :5 m) such 
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that Ln = U{Pi; i ~ m}. Thus some Pi meets Wl many Aa , so 
Pi meets Wl many Ca. This shows that P is not star-countable. 
Thus X has no star-countable k-networks. Next, suppose that 
X has a u-Iocally countable k-network. Since X is Lindelof, X 
has a countable k-network, hence a star-countable k-network. 
This is a contradiction. Hence X has no u-Iocally countable 
k-networks. 

(8) Let X be the space in [3; Example 6.4]. As is seen there, 
X is a Lindelof space with a point-countable base, but X has 
a closed subset which is not a Gs-set. Obviously, ~y" has a 
u-disjoint (hence, point-countable) closed (hence, Lindelof) k
network. Since X is a first countable space which is not metric, 
X has no star-countable k-networks by Theorem 1.3(4). 

In Example 4.2 below, (1) shows that, in (d) of Theorem 
3.3, it is impossible to replace" strongly Lindelof image (re
sp. strong s-image)" by "Lindelof image (resp. s-image)" and 
shows that, in Proposition 3.5, it is also impossible to replace 
"pseudo-open" by "quotient". (2) and (3) show that, in Propo
sition 3.5, the separability of the metric space is essential. 

Example 4.2. (1) A separable, Lindelof space X which is 
the quotient finite-to-one image of a locally compact metric 
space, but X is not the quotient strongly Lindelof nor quotient 
strong s-image of a metric space, and X has no star-countable 
k-networks. 

(2) A Lindelof space X which is the open Lindelof, s-image 
of a metric space, but X is not the closed, quotient strongly 
Lindelaf, nor quotient strong s-image of a metric space, and X 
has no star-countable k-networks. 

(3) A space X which is the open finite-to-one, strongly Lin
delaf image of a metric space, but X is not the closed image 
of a metric space. 

Proof: (1) Let L be the topological sum of the cover C of the 
space X in Example 4.1(7), and f : L ~ X be the obvi
ous map. Then L is locally compact metric, and f is quotient 
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finite-to-one. Suppose that X is the quotient strongly Lindelof 
image of a metric space. Since X is Lindelof, it is the quotient 
strongly Lindelof image of a separable metric space. Thus X 
has a locally countable k-network by Proposition 3.1. This is 
a contradiction to Example 4.1(7). Then X is not the quo
tient strongly Lindelof image of a metric space, hence not the 
quotient strong s-image of a metric space by Lemma 3.2(2). 

(2) Let X be the Lindelof space in Example 4.1(8). Since X 
has a point-countable base, X is the open Lindelof, s-image of 
a metric space by [18]. Since X has a closed subset which is 
not a Gs-set, X is not a closed image of a metric space. Also, 
since X does not have a star-countable k-network, X is not 
the quotient strongly Lindelof or quotient strong s-image of a 
metric space as in the proof of (1). 

(3) For each r E R, let X r = {(x,y); Y = Ix - rl}. Define a 
topology on X, as follows: 

Each point (x,y) with y > °is isolated, and for (r,O) E X r , 

let {(x, y); y = Ix - rl < lin}, where n E N. be a basic nbd 
of (r, 0) in X r • 

Let M be the topological sum of {Xr ; r E R}. Let X be an 
upper half plane and f : M ~ X be the obvious function, 
and let X be the quotient space by f. Then M is metric, and 
f is open finite-to-one. Since the map f is finite-to-one and 
any Lindelof subset of X is countable, f is strongly Lindelof. 
But, X is not normal. Then X is not the closed image of a 
metric space. 

We conclude this paper with Question 4.3 below. (I) is pro
posed in view of Theorem 1.4 and Example 4.1(1) & (3). (2), 
(3), and (4) are respectively proposed in view of Proposition 
1.6, Proposition 1.7, and Theorem 2.1. 

In view of results in this paper, (1) is affirmative if X is a 
k-space, meta-Lindelof, or {}-refinable (here, every {}-refinable 
(= submetacompact) space with a locally countable network is 
a u-space by [20]), (2) and (3) are affirmative if the k-network 
is closed, and (4) is affirmative if X is a k-space, paracompact, 
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or each point of X is a Gc5-set, etc. 

Question 4.3. (1) Is every space X with a locally countable 
k-network a o--space, or space in which every closed subset is 
a Gc5-set? 

(2) Is every separable k-space X with a star-countable k
network a Lindelof space? 

(3) Does every Frechet space X with a point-countable sep
arable k-network have a star-countable k-network ? 

(4) Does every closed image of a space X with a star-countable 
k-network have a star-countable k-network, or a point-countable 
k-network? 

Comment: Quite recently, Masami Sakai pointed out that 
(1)	 and (4) are negative if X is a Hausdorffspace. 
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