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ABSTRACT. In this paper, we characterize the normal-
ity of X x k, where X is a GO-space and k a regular
uncountable cardinal.

1. INTRODUCTION

Gruenhage, Nogura and Purish [GNP] proved that if X is
a GO-space of countable tightness, then X X w; is normal.
As was written in the introduction of their paper, the author
conjectured that X X «%* is normal whenever X is a GO-space
of tightness < k. But this was false, because consider w; X w.
Since it contains the non-normal closed subspace wy X (w; +1),
it is not normal. But w, is of tightness < w;. In this paper,
we characterize normality of a product space of a GO-space
and a regular uncountable cardinal using the minimal linearly
ordered compactification of a GO-space.

2. LINEARLY ORDERED COMPACTIFICATIONS

Let < be a linear order on a set X. A(X) denotes the topol-
ogy on X which is generated by {(«,a) : a € X} U {(b,—)
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: b € X} as a subbase, where («,a) = {z € X : z < a}
and (b, —) similarly. (a,b] denotes the usual half open inter-
val {x € X : a < 2 < b} if a and b are in X. Analogous-
ly we define (a,b),[a,b], etc.. If necessary, we write <x and
(a,b)x instead of < and (a,b). A “LOTS X” means the triple
< X, <, MX) >. A “GO — space X” is a triple < X <,7 >,
where < is a linear order on X and 7 is a topology on X which
has a base consisting of convex open sets such that A(X) C 7.
For a given GO-space < X, <,7 >, X denotes the LOTS with
the lexicographic order, where X = {< z,—1 >: z € X and
[z,—») € T AMX)}UX x {0} U {< z,1 > z € X and
(<,z] € 7 — AX)}. By identifying X x {0} with X, the
LOTS X contains the GO-space X as a dense subspace, and
the restricted order of <3 on X coincides with <x (in this
situation, we say “X contains X densely and linearly”). It is
known that any LOTS L, which contains a GO-space X dense-
ly and linearly, also contains the LOTS X densely and linearly
([MK]). So the LOTS X is considered as the smallest LOTS
which contains X densely and linearly. A linearly ordered com-
pactification (abbreviated as LOC) of a GO-space X is a com-
pact LOTS which contains X densely and linearly. Note that
a compact GO-space is a LOTS. Kaufman constructed in [Ka)
the minimal LOC X’ of a LOTS X, i.e., for each LOC L of X,
there is a countinuous map f : L — X' such that the restriction
f|X of f on X is the identity map 1x on X. For a GO-space
X, £X denotes the compact LOTS (X)'. Then, by these con-
sideration, £X is the minimal LOC(abbreviated as M LOC') of
X. It is not difficult to show that if there is a continuous map
f on aLOC cX of X to a LOC X with f|X = 1x, then f
must be order preserving in the sense f(a) < f(b)ifa < b. The
following property P(L, X) for a linearly ordered set < L, <>
and a subset X of L, is useful in our discussion.

P(L,X):(a,b) # 0 for any a and bin L — X with a <b.
Lemma 2.1. Let ¢X be a LOC of a GO-space X. Then cX
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is minimal if and only if P(cX,X) holds.

Proof: First assume P(cX, X) does not hold. Then there are
a and b in X — X with a < b such that (a,b).x = 0. Then it
is easy to show that the quotient space obtained by identifying
a=>bis a LOC of X. So ¢X is not minimal.

Next assume cX is not minimal. By the minimality of £X,
there is a continuous map f : ¢X — £X such that f|X = 1.
Then it is easy to show that f is not 1-1. So there are a and b
in ¢cX with a < b such that f(a) = f(b). By [En, 3.7.14]. we
have a,b and f(a) are not in X. If (a,b).x # 0, take a point z
in (a,b) N X by the density of X. Since f is order preserving,
f(a) £ f(z) =z < f(b). So we have f(a) =z € X. Thisis a

contradiction.

3. COFINALITY AND NORMAL SEQUENCES

Let L be a compact LOTS and z € L. Note that each subset
F of a compact LOTS L has a least upper bound (abbreviated
as supF or supy F if necessary), and has a greatest lower bound
infF', see [En, 3.12.3(a)]. A subset A of («,X) is said to
be 0-unbounded for = (in L) if, for each y < z, there is a €
A such that y < a. Otherwise, A is said to be 0-bounded
for z. Analogously, 1-unboundedness of A C (z,—) for z is
defined. Note that 0-unboundedness and 1-unboundedness are
dual notions, so we only define and prove “0- ...”. Of course,
we can do for “1-... ”. 0O-cofinality for =z in L is defined as
follows:

0 — ¢fz = min{|A]|: A is 0 — unbounded for z.}.

If necessary we write 0-cfrz instead of 0-cfx. Observe that
0-cfz = 0 if = is the first element of L, O-cfz = 1 if z has
the immediate predecessor in L, and 0-cfz is a regular infinite
cardinal otherwise. For a fixed cardinal &, a strict increasing
sequence < z(a) : a < £ > in L is said to be a 0-unbounded
sequence for z if {z(a) : @ < &} is 0-unbounded for z. Further-
more a 0-unbounded sequence is said to be a 0-normal sequence
for z if z(a) = sup {z(B) : B < a} for each limit ordinal a < .
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Since each subset of a compact LOTS has a least upper bound,
we can easily show the following lemma by induction:

Lemma 3.1. Let = be a point in a compact LOTS L, then
there always ezists a 0-normal sequence for x of length 0-cfr.

Remark 3.2. Note that if < z(a) : @ < £ > is a 0-normal
sequence for z, then {z(a) : a < k} is a closed subspace of the
subspace («,z) and it is homeomorphic to the ordinal space
0-cfz. The proof of 1) in the next lemma is a routine and 2)
follows form 1), so we left it to the reader.

Lemma 3.3. Let = be a point in a compact LOTS L with
O—cfz > w. If < z(a) :a < 0—cfr > and < 2'(a) : a <
0—cfr > are 0-normal sequences for z, then we have:
(1) {a < 0—cfz : z(a) = z'(a)} is closed unbounded in
0—cfz.
(2) if X C L, then {a < 0—cfz : z(a) € X} is stationary
in 0—cfz iff so is {a < 0—cfzr : 2'(a) € X}.

From now on, we shall apply the above arguments for L =
£X, where £X is the MLOC of a GO-space X. In our argument,
for each z € £X, we always fix a 0-normal sequence < z(«a) :
a < 0-cfyxz > and put 0(XAz) = {a < 0-cfz : z(a) € X}

Of course, we define 1(XAxz) analogously. By the above
lemma, observe that if 0-cfx > w;, then the “stationarity” of
0(X Az) does not depend on choices of 0-normal sequences for
z. The following lemma is easy to prove.

Lemma 3.4. Let z be a point in the MLOC £X of a GO-space
X. Then the following holds.
(1) Ifz € X — X, then {z(a) : a € 0(XAz)} is a closed
subset of X and homeomorphic to 0(X Az).
(2) If £ € X, then {z(a) : a € 0(XAz)} U {z} is a closed
subset of X and homeomorphic to 0(XAz) U {0—cfr}.
(3) If 0—cfr > wy and (X Az) is not stationary in 0—cfz,
then (—,z)ex N X is the free union of 0—cfr many 0-
bounded for x, closed and open subsets of X .
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(4) If 0—cfz = w, then («—,z)x N X is the locally finite
union of countable many 0-bounded for z, closed subsets

of X.

Lemma 3.5. Let ¢ be a point in the MLOC (X of a GO-
space X. If any one of the following holds, then there is a
O-unbounded sequence < z(a) : o <0-¢fx > for z such that
z(a) € X for each a < 0-cfz.

(1) O—cfr = 0.

(2) z€4X — X and 0—cfr =1.

(3) O—cfz 2 w.

Proof: 1): Since the empty sequence is 0-unbounded if 0—cfr =
0, this is evident.

2): Assume ¢ € (X — X and 0—cfz = 1. Let < z(a) :
a < 1 > be a (or the fixed) 0-normal sequence for = in £X.
Since z(0) is the last element of («,z),x, it suffices to show
z(0) € X. Assume, on the contrary, that z(0) € £X —X. Then
we have (z(0), z),x # 0 by Lemma 2.1. This is a contradiction.

3): Assume 0-cfz > w. Let < z(a) : @ < 0—cfz > be a
0-normal sequence for z in £X.

Case 1. 0(XAz) is unbounded in 0-cfz.

In this case, enumerate (XAz) = {a(f) : 8 < 0—cfz.} in
the increasing order. Put y(8) = z(a(fB)) for each f < 0-cfz.
Then < y(B) : B <0-cfz > is the desired sequence.

Case 2. (XAz) is bounded in 0-cfz.

In this case, take ap < O0—cfr with 0(XAz) C ae. Since
z(ap+a) € £X —X for each a < 0—cfz. By Lemma 2.1 and the
density of X in £X, pick y() in (z(ao+ ), z(ac+a+1))exNX.
Then < y(a) : @ < 0—cfz > is the desired sequence.

Remark 3.6. Let X be the GO-space [0,1) U [2,3] with the
subspace topology of the reals. By Lemma 2.1, /X = [0,1] U
[2.3]. Observe that 2 € X and 0—cf2 = 1, but there does not
exist such a 0-unbounded sequence for 2 in the above lemma.
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For a point z in the MLOC £X of a GO-space X, put
cfz =max{0—cfr,1—cfz}. It is easy to show that the char-

acter and the tightness at z in X is equal to cfz, and cfz > w
holds for z € /X — X.

4. NORMALITY OF X X k.

A space is < k-paracompact if it is A-paracompact for each
cardinal A < k. The proof of the following lemma is analogous
to that of [Ke, Theorem 4], so we left it to the reader.

Lemma 4.1. Let X be a GO-space and & an uncountable car-
dinal. Then X is < k-paracompact if and only if, for each
z € LX —X andi € 2,i(X Az) is not stationary in t-cfr when-
ever w < t—cfr < K.

Remark 4.2. Note that all GO-spaces are normal and count-
ably paracompact and that countable paracompactness is in-
versely preserved by quasi-perfect maps. So X X « is countably
paracompact if X is a GO-space and « is a regular uncountable
cardinal. Next we prove our main theorem.

Theorem 4.3. Let X be a GO-space and k a regular uncount-
able cardinal. Then X X k is normal if and only if the following
two conditions hold:

a) i—cfr # K for eachx € X and i € 2,

b) X is < k-paracompact.

Proof: “only if” part: Assume X X & is normal. For each
cardinal A < k, X X« contains X x (A+1) as a closed subspace.
Therefore, by Kunen’s Theorem [Pr, Corollary 3.7], X is < «-
paracompact. To show a), assume that there are £ € X and
t € 2 such that :—cfr = k. Without loss of generality, we may
assume 7 = 0. By Lemma 3.5, take a 0-unbounded sequence
< z(a) : a < k > for z such that z(a) € X for each a < &.
Put H(0) =cl{< z(a),a >: a < £} and H(1) = {z} X «, here
cl denotes the closure. Then it is not difficult to show that
H(0) and H(1) are disjoint closed sets. So, by the normality
of X X k&, there are disjoint open sets U(0) and U(1) such
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that H(j) C U(j) for each j € 2. Since U(0) is open and
< z(a),a >€ U(0) for each o < «, there is f(a) < a such
that {z(a)} x (f(e),a] C U(0). Then, by the Pressing Down
Lemma (abbreviated as PDL), there are a stationary set S C &
and ap < & such that f(a) < ap < a for each o € S. Since
{z(e) : « € S} is 0-unbounded for z, we have < z,0p >€
c{< z(a),ap >: @ € S} C cl U(0). This is a contradiction
because of < z,a9 >€ H(1) C U(1).

“if” part: Assume a) and b) hold, but X X « is not normal.
We shall obtain a contradiction. Then there are disjoint closed
sets H(0) and H(1) which can not be separated by disjoint
open sets in X X k. Put Y(z,y) = [z,y]x X « for z and y in
X with ¢ < y. For z and y in X define z ~ y by one of the
following clauses.

1)z =y,

2) ¢ < y, moreover H(0) N Y(z,y) and H(1) N Y(z,y) are
separated by disjoint open sets in Y(z,y),

3) y < z, moreover H(0) NY(y,z) and H(1) N Y(y,z) are
separated by disjoint open sets in Y (y, ).

Then it is easy to show that ~ is an equivalence relation on X.

Let X/ ~ be the set of all equivalence classes. Observe that
each equivalence class is convex in X. We shall show that each
equivalence class FE in X/ ~ is open in X. To show this, let z
be a point in E. First we show:

Claim 1. If 0—cfr # 0, then there is a € («,z),x such that
(a,a:]gx NXCE.

Proof: Put A = 0-cfx. When A = 1, it is almost clear. So
assume w < A. Note that A # £ by a). Let < z(a):a < A >
be the 0-normal sequence for z. Since H(0) and H(1) are
disjoint closed sets, there are f(8) < A, g(8) < B and j(B) € 2
such that ((z(f(8)),zlex N X) x (¢(B),8] N H(j(B8)) = 0 for
each § < k. Then, by the PDL, there are a stationary set
S C k,B0 < £ and jo € 2 such that g(8) = B and j(B) = jo
for each g € S.
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Subclaim. There is ap such that ((z(ao), zlex N X) X (Bo, £) N
H(jo) = 0.

Proof: There are two cases.

Case 1. k < A

In this case, put ag = sup{f(B) : B € S}. Then it is not
difficult to show that this oy works.

Case 2. w< A< k.

In this case, again applying the PDL to S and f, there are
a stationary set S’ C S and ap < A such that f(8) = «p for
each B € S’. Then this ¢y is the desired one.

This completes the proof of subclaim.

Since X is < k-paracompact and Sy < &, X X [0, Bo] is normal
by Kunen’s Theorem. So there are disjoint open sets V(0) and
V(1) in X x [0, Bg] such that H(j) N X x [0,8,] C V(j) for
each j € 2. To complete the proof of claim 1, pick a point y in
(z(0),z]ex NX. Put U(jo) = V(Jo)NY (y,z) and U(1 —j0) =
[V(1—70)U((z(cx), z]ex NX) % (Bo, £)])NY (y, z). Then U(0) and
U(1) separates H(0)NY(y,z) and H(1) N Y(y,z). Therefore
we have y ~ z, so y € F. This completes the proof of claim 1.

Claim 2. If I-cfr # 0, then there is b € (z,—);x such that
(2,b)ex N X C E.

Furthermore observe that if 0—cfz = 0(1—cfz = 0), then
(= zlex N X = {2} C E([z,—)ex N X = {z} C E, respec-
tively). So E is open in X by this observation and claim 1,2.
Therefore X is the free union of X/ ~, so there is E € X/ ~
such that H(0)NE x « and H(1)N E x « can not be separated
by disjoint open sets in F X k. Pick a point y € F and put
F={z€eE:y<z}and FF={ze€ E:z<y}. Since E Xk
is the union of the closed subspaces F' x k¥ and F’ X &, we may
assume that
(*) H(O)NF x « and H(1) N F X £ can not be separated
by disjoint open sets in F' X .

Put z =supexF. If z € F, then we have y, z € F and
F = [y,z]x. This contradicts (*). Se we have z ¢ F and
F =[y,z)ex N X. Since X is the free union of X\ ~, we also
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have z € X — X. Put A = 0— cfz, then clearly we have w < \.
Assume A = w. Then we easily have a contradiction to (%),
using 4) of Lemma 3.4. So we have A > w;. Let < z(a) : a <
A > be a 0-normal sequence for z. We may assume that y <
z(0) by 2) of Lemma 3.3. Assume 0(XAxz) is not stationary
in A. Then similarly we also have a contradiction to (*) using
3) of Lemma 3.4. So 0(XAxz) is stationary in A. Therefore
we have K < )\ by < k-paracompactness and Lemma 4.1. For
each o € 0(XAz)N Lim()) and B < &, fix j(a,8) € 2 with <
z(a),B >¢ H(j(a,B)). Here Lim()) denotes all limit ordinals
less than A. Furthermore fix f(e,8) < @ and g(a, 8) < f such
that ([:c(f(a, ﬂ))’x(a)]lX n X) X (g(a, ﬂ)) ﬂ] n H(j(a’ ﬂ)) = 0.

There are two cases.

Case 1. A = k.

In this case, applying the PDL to j(e, @), f(a, ) and g(a, a),
we have a stationary set S C 0(XAz)N Lim(A), ap < A =
k, Bo < & and jg € 2 such that f(a, @) = ag, g(a,a) = By and
j(a,a) = joforeach a € S. So Zy = ([z(0), 2)exNX) X (o, &)
is disjoint from H(jo). Since X is < k-paracompact and F is
closed in X, Z; = F x [0,f) is normal by Kunen’s Theo-
rem. Next put Z; = ([y,z(co)lex N X) x k. Take z € F with
z(ap) < z. Since Z; is a closed subspace of [y,z]x X k& and
y ~ z, H(0)N Z; and H(1) N Z; can be separated by disjoint
open sets. Since F' X k is the union of the closed subspaces
Zo, Zy and Zy, H(0)N F x £ and H(1) N F X k can be sepa-
rated by disjoint open sets in F' X k. This contradicts (x).

Case 2. k < A

In this case, for each 8 < k, applying the PDL we have a
stationary set S(8) C 0(XAz)N Lim(A), f(B) < A, g9(8) < B
and j(8) € 2 such that f(a, B) = £(8), g(a,B) = g() and
j(a, B) = j(B) for each a € S(B). Put oy =sup{f(B) : B < «}.
Then we have ap < A by £ < A. Again, applying the PDL to
g and j, we have a stationary set T' C &, By < k£ and jo € 2
such that g(8) = Bo and j(B) = jo for each § € T. Then
Zo = ([z(a0), )ex N X) X (Po, &) is disjoint from H(jo). Then,
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as in the above case, H(0) N F' X x and H(1) N F X & can be
separated by disjoint open sets in F'x k. So this also contradicts
(%)

This completes the proof of the theorem.

Corollary 4.4. Let X be a GO-space. Then X X w; is normal
if and only if i — cfr # w, for each z € X and i € 2.

Corollary 4.5. ([GNP]) If X is a GO-space of countable tight-

ness, then X X w; is normal.
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