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ABSTRACT. In this paper, we characterize the normal­
ity of X x "', where X is a GO-space and", a regular 
uncountable cardinal. 

1. INTRODUCTION 

Gruenhage, Nogura and Purish [GNP] proved that if X is 
a GO-space of countable tightness, then X x WI is normal. 
As was written in the introduction of their paper, the author 
conjectured that X x K+ is normal whenever X is a GO-space 
of tightness ~ K. But this was false, because consider WI x W2. 

Since it contains the non-normal closed subspace WI X (WI + 1), 
it is not normal. But W2 is of tightness ::; WI. In this paper, 
we characterize normality of a product space of a GO-space 
and a regular uncountable cardinal using the minimal linearly 
ordered compactification of a GO-space. 

2. LINEARLY ORDERED COMPACTIFICATIONS 

Let < be a linear order on a set X. A(X) denotes the topol­
ogy on X which is generated by {(+-, a) : a E X} U {(b, ~) 
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: bE X} as a subbase, where (~,a) = {x EX: x < a} 
and (b, ~) similarly. (a, b] denotes the usual half open inter­
val {x EX: a < x ~ b} if a and b are in X. Analogous­
ly we define (a, b), [a, b], etc.. If necessary, we write <x and 
{a, b)x instead of < and (a, b). A "LOTS X" means the triple 
< X, <, A(X) >. A "GO - spaee X" is a triple < X <, T >, 
where < is a linear order on X and T is a topology on X which 
has a base consisting of convex open sets such that A(X) C T. 

For a given GO-space < X, <, T >, X denotes the LOTS with 
the lexicographic order, where X = {< x, -1 >: x E X and 
[x,~) E r-A(X)}UX x {O}U{< x,l >: x E X and 
(f-, xl E T - A(X)}. By identifying X x {O} with X, the 
LOTS X contains the GO-space X as a dense subspace, and 
the restricted order of <x on X coincides with <x (in this 
situation, we say "X contains X densely and linearly"). It is 
known that any LOTS L, which contains a GO-space X dense­
ly and linearly, also contains the LOTS X densely and linearly 
([MK]). So the LOTS X is considered as the smallest LOTS 
which contains X densely and linearly. A linearly ordered com­
pactification (abbreviated as LOC) of a GO-space X is a com­
pact LOTS which contains X densely and linearly. Note that 
a compact GO-space is a LOTS. Kaufman constructed in [Ka] 
the minimal LOC X' of a LOTS X, i.e., for each LOC L of X, 
there is a countinuous map f : L ~ X' such that the restriction 
fiX of f on X is the identity map Ix on X. For a GO-space 
X, LX denotes the compact LOTS (X)'. Then, by these con­
sideration, lX is the minimal LOC{abbreviated as M LOC) of 
X. It is not difficult to show that if there is a continuous map 
f on a LOC eX of X to a LOC e'X with fiX = lx, then f 
must be order preserving in the sense f(a) ~ f(b) if a ~ b. The 
following property P{L, X) for a linearly ordered set < L, <> 
and a subset X of L, is useful in our discussion. 

P(L,X) : (a, b) =t 0 for any a and b in L - X with a < b. 

Lemma 2.1. Let eX be a LOC of a GO-space X. Then eX 
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is minimal if and only if P(eX, X) holds. 

Proof: First assume P(eX, X) does not hold. Then there are 
a and b in eX - X with a < b such that (a, b)cx = o. Then it 
is easy to show that the quotient space obtained by identifying 
a = b is a LOC of X. So eX is not minimal. 

Next assume eX is not minimal. By the minimality of fX, 
there is a continuous map f : cX ---i' fX such that fiX = Ix. 
Then it is easy to show that f is not 1-1. So there are a and b 
in cX with a < b such that f(a) = f(b). By [En, 3.7.14]. we 
have a, band f(a) are not in X. If (a,b)cx i= 0, take a point x 
in (a, b) n X by the density of X. Since f is order preserving, 
f(a) ~ f(x) = x ~ f(b). So we have f(a) = x E X. This is a 
contradiction. 

3. COFINALITY AND NORMAL SEQUENCES 

Let L be a compact LOTS and x E L. Note that each subset 
F of a compact LOTS L has a least upper bound (abbreviated 
as supF or suPLF if necessary), and has a greatest lower bound 
infF, see [En, 3.12.3(a)]. A subset A of (~, X) is said to 
be O-unbounded for x (in L) if, for each y < x, there is a E 
A such that y ~ a. Otherwise, A is said to be 0- bounded 
for x. Analogously, I-unboundedness of A C (x, ---i') for x is 
defined. Note that O-unboundedness and I-unboundedness are 
dual notions, so we only define and prove "0- ... ". Of course, 
we can do for "1-... ". O-cofinality for x in L is defined as 
follows: 

o- cfx = min{IAI: A is 0 - unbounded for x.}. 

If necessary we write O-cfLx instead of O-cfx. Observe that 
O-cfx = 0 if x is the first element of L, O-cfx = 1 if x has 
the immediate predecessor in L, and O-cfx is a regular infinite 
cardinal otherwise. For a fixed cardinal K" a strict increasing 
sequence < x(a) : a < K > in L is said to be a O-unbounded 
sequence for x if {x(a) : a < K} is O-unbounded for x. Further­
more a O-unbounded sequence is said to be a 0- normal sequence 
for x if x(o:) = sup {x(,8) : ,8 < a} for each limit ordinal a < K. 
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Since each subset of a compact LOTS has a least upper bound, 
we can easily show the following lemma by induction: 

Lemma 3.1. Let x be a point in a compact LOTS L, then 
there always exists a O-normal sequence for x of length O-cfx. 

Remark 3.2. Note that if < x(a) : a < K > is a O-normal 
sequence for x, then {x(a) : a < K} is a closed subspace of the 
subspace (+-, x) and it is homeomorphic to the ordinal space 
O-cfx. The proof of 1) in the next lemma is a routine and 2) 
follows form 1), so we left it to the reader. 

Lemma 3.3. Let x be a point in a compact LOTS L with 
O-cfx ~ WI. If < x(a) : a < O-cfx > and < x'(a) : a < 
O-cfx> are O-normal sequences for x, then we have: 

(1)	 {a < O-cfx : x(a) = x'(a)} is closed unbounded in 
O-cfx. 

(2)	 if X C L, then {a < O-clx: x(a) E X} is stationary 
in O-cfx iff so is {a < O-clx : x'(a) EX}. 

From now on, we shall apply the above arguments for L = 
lX, where lX is the MLOC of a GO-space X. In our argument, 
for each x E lX, we always fix a O-normal sequence < x(a) : 
a < O-cf£xx > and put O(X~x) = {a < O-cfx : x(a) E X} 
. Of course, we define 1(X~x) analogously. By the above 
lemma, observe that if O-cfx 2:: WI' then the "stationarity" of 
O(X ~x) does not depend on choices of O-normal sequences for 
x. The following lemma is easy to prove. 

Lemma 3.4. Let x be a point in the M LOe fX of a GO-space 
X.	 Then the following holds. 

(1)	 If x E ex - X, then {x(a) : a E O(X~x)} is a closed 
subset of X and homeomorphic to O(X~x). 

(2)	 If x E X, then {x(a) : a E O(X~x)} U {x} is a closed 
subset of X and homeomorphic to O(X~x) U {O-clx}. 

(3)	 IfO-cfx > WI and O(X~x) is not stationary in O-clx, 
then (+-, X)iX n X is the free union of O-cfx many 0­
bounded for x, closed and open subsets of x. 
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(4) If 0- cfx = w, then (~, X )lX n X is the locally finite 
union of countable many O-bounded for x, closed subsets 
ofX. 

Lemma 3.5. Let x be a point in the M LaC fX of a GO­
space X. If anyone of the following holds, then there is a 
O-unbounded sequence < x(a) : a <O-cfx > for x such that 
x(a) E X for each a < O-cfx. 

(1) O-cfx = O. 
(2) x E fX - X and O-cfx = 1. 
(3) O-cfx ~ w. 

Proof: 1): Since the empty sequence is O-unbounded if O-cfx = 
0, this is evident. 

2): Assume x E fX - X and O-cfx = 1. Let < x(a) : 
Q < 1 > be a (or the fixed) 0-normal sequence for x in fX. 
Since x(O) is the last element of (+-, x )lX, it suffices to show 
x(O) E X. Assume, on the contrary, that x(O) E fX -x. Then 
we have (x(O), X)lX =I 0 by Lemma 2.1. This is a contradiction. 

3): Assume O-cfx ~ w. Let < x(a) : a < O-cfx > be a 
O-normal sequence for x in lX. 

Case 1. O(X ~x) is unbounded in O-cfx. 

In this case, enumerate (X~x) = {a(f3) : f3 < O-cfx.} in 
the increasing order. Put y(f3) = x(a(f3)) for each {3 < O-cfx. 
Then < y({3) : f3 <O-cfx > is the desired sequence. 

Case 2. (X6.x) is bounded in O-cfx. 

In this case, take ao < O-cfx with O(X~x) C ao. Since 
x(oo+a) E fX -X for each a < O-cfx. By Lemma 2.1 and the 
density of X in fX, pick y(a) in (x(ao+a), x(00+0+ l))lxnX. 
Then < y(a) : a < O-cfx > is the desired sequence. 

Remark 3.6. Let X be the GO-space [0,1) U [2, 3] with the 
subspace topology of the reals. By Lemma 2.1, lX = [0,1] U 
[2.3]. Observe that 2 E X and O-cf2 = 1, but there does not 
exist such a O-unbounded sequence for 2 in the above lemma. 
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For a point x in the MLOC lX of a GO-space X, put 
cfx =max{O-cfx, l-cfx}. It is easy to show that the char­
acter and the tightness at x in X is equal to cfx, and cfx ~ w 
holds for x E lX - X. 

4. NORMALITY OF X X K,. 

A space is < K,-paracompact if it is A-paracompact for each 
cardinal A < K,. The proof of the following lemma is analogous 
to that of [Ke, Theorem 4], so we left it to the reader. 

Lemma 4.1. Let X be a GO-space and K, an uncountable car­
dinal. Then X is < K,-paracompact if and only if, for each 
x E fX - X and i E 2, i(X~x) is not stationary in i-cfx when­
ever w < i-cfx < K,. 

Remark 4.2. Note that all GO-spaces are normal and count­
ably paracompact and that countable paracompactness is in­
versely preserved by quasi-perfect maps. So X x K, is countably 
paracompact if X is a GO-space and K, is a regular uncountable 
cardinal. Next we prove our main theorem. 

Theorem 4.3. Let X be a GO-space and K, a regular uncount­
able cardinal. Then X x K, is normal if and only if the following 
two conditions hold: 

a) i-cfx =I K, for each x E X and i E 2, 
b) X is < K,-paracompact. 

Proof: "only if" part: Assume X x K, is normal. For each 
cardinal A < K" X X K, contains X x (A +1) as a closed subspace. 
Therefore, by Kunen's Theorem [Pr, Corollary 3.7], X is < K,­
paracompact. To show a), assume that there are x E X and 
i E 2 such that i-cfx == K,. Without loss of generality, we may 
assume i = o. By Lemma 3.5, take a O-unbounded sequence 
< x(a) : a < K, > for x such that x(a) E X for each 0: < K,. 
Put H(O) =cl{ < x(a), 0: >: 0: < K,} and H(l) = {x} X K" here 
cl denotes the closure. Then it is not difficult to show that 
H(O) and H(l) are disjoint closed sets. So, by the normality 
of X x K, there are disjoint open sets U(O) and U(l) such 
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that H(j) C U(j) for each j E 2. Since U(O) is open and 
< x(a),a >E U(O) for each a < K, there is f(a) < a such 
that {x(o:)} x (f(o:), aJ C U(O). Then, by the Pressing Down 
Lemma (abbreviated as PDL), there are a stationary set S C K 

and aD < K such that f (a) < aD < 0: for each O! E S. Since 
{x{a) : a E S} is O-unbounded for x, we have < X,O!o >E 
cl{< x(a), o!o >: °! E S} c cl U(O). This is a contradiction 
because of < x, ao >E H(l) C U(l). 

"if" part: Assume a) and b) hold, but X x K is not normal. 
We shall obtain a contradiction. Then there are disjoint closed 
sets H(O) and H(l) which can not be separated by disjoint 
open sets in X x K. Put Y(x,y) == [x,y]x x K, for x and y in 
X with x ~ y. For x and y in X define x ~ y by one of the 
following clauses. 

1) x = y, 
2) x < y, moreover H(O) n Y(x,y) and H(l) n Y(x,y) are 

separated by disjoint open sets in Y (x, y), 
3) y < x, moreover H(O) n Y(y,x) and H(l) n Y(y,x) are 

separated by disjoint open sets in Y(y, x). 
Then it is easy to show that ~ is an equivalence relation on X. 

Let XI ~ be the set of all equivalence classes. Observe that 
each equivalence class is convex in X. We shall show that each 
equivalence class E in XI ~ is open in X. To show this, let x 
be a point in E. First we show: 

Claim 1. IfO-cfx =f. 0, then there is a E (~,X)iX such that 
(a,x]ix n X c E. 

Proof: Put A = O-cfx. When A = 1, it is almost clear. So 
assume W ::; A. Note that A =I K by a). Let < x{o:) : a < A > 
be the O-normal sequence for x. Since H(O) and H(l) are 
disjoint closed sets, there are f((3) < A, g((3) < (3 and j({3) E 2 
such that ((x(f(f3)), XliX n X) x (g({3), (3] n H(j((3)) = 0 for 
each f3 < K. Then, by the PDL, there are a stationary set 
S C K, (30 < K and jo E 2 such that 9((3) = (30 and j((3) = jo 
for each (3 E S. 
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Subclaim. There is ao such that ((x(ao), XliX nX) X (,80, K) n 
H(jo) = o. 
Proof: There are two cases. 

Case 1. K, < A. 
In this case, put ao = sup{f(,8) : ,8 E S}. Then it is not 

difficult to show that this 00 works. 
Case 2. w ~ A < K. 

In this case, again applying the PDL to Sand f, there are 
a stationary set 8' c Sand ao < A such that f(,8) = ao for 
each ,8 E 8'. Then this ao is the desired one. 

This completes the proof of subclaim. 
Since X is < K-paracompact and ,80 < K, X X [0, ,80] is normal 

by Kunen's Theorem. So there are disjoint open sets V(O) and 
V(l) in X x [0, ,80] such that H(j) n X x [0, ~o] C V(j) for 
each j E 2. To complete the proof of claim 1, pick a point y in 
(x(ao), XliX nX. Put U(jo) = V(jo) nY(y, x) and U(l- jo) = 
[V(I- jo)U((x(ao), X]iXnX) X ((30, K, )]nY(y, x). Then U(O) and 
U(I) separates H(O) nY(y, x) and H(I) n Y(y, x). Therefore 
we have y ~ x, so Y E E. This completes the proof of claim 1. 

Claim 2. If l-cfx #- 0, then there is b E (x, --+ )iX such that 
[X,b)iX n X c E. 

Furthermore observe that if O-cfx = O(l-cfx = 0), then 
(~, X]iX n X = {x} C E([x, --+ )iX n X = {x} c E, respec­
tively). So E is open in X by this observation and claim 1,2. 
Therefore X is the free union of XI ~, so there is E E XI ~ 

such that H(O) nE x K, and H(l) nE x K, can not be separated 
by disjoint open sets in E x K. Pick a point y E E and put 
F = {x E E : y ~ x} and F' = {x E E : x ~ y}. Since E x K 

is the union of the closed subspaces F x K and F' x K, we may 
assume that 
(*) H(O) n F x K, and H(l) n F x K can not be separated 
by disjoint open sets in F x K. 

Put x =suPixF. If x E F, then we have y, x E E and 
F = [y,x]x. This contradicts (*). Se we have x ~ F and 
F = [y, X )lX n X. Since X is the free union of X\ ~, we also 
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have x E .ex-x. Put A = 0- cfx, then clearly we have w ::; A. 
Assume ,\ = w. Then we easily have a contradiction to (*), 
using 4) of Lemma 3.4. So we have ,\ 2:: WI. Let < x(a) : a < 
A > be a O-normal sequence for x. We may assume that y < 
x(O) by 2) of Lemma 3.3. Assume O(X~x) is not stationary 
in A. Then similarly we also have a contradiction to (*) using 
3) of Lemma 3.4. So O(XLlx) is stationary in A. Therefore 
we have K ~ ,X by < K-paracompactness and Lemma 4.1. For 
each a E O(X~x)n Lim('x) and (3 < K, fix j(a,(3) E 2 with < 
x(a),(3 >~ H(j(a,[3)). Here Lim(,\) denotes all limit ordinals 
less than '\. Furthermore fix f( a, (3) < a and g(a, 13) < 13 such 
that ([x(f(a, (3)), x(a )]lX n X) x (g( a, ,B), ,B] n H(j (a, (3)) = o. 
There are two cases. 

Case 1. A = K. 
In this case, applying the PDL to j(a, a), f(a, a) and g(a, a), 

we have a stationary set S c O(X~x)n Lim('\), ao < ,\ = 
K, f30 < Kand io E 2 such that f( a, a) = ao, g(a, a) = 130 and 
j(a,a) = jo for each a E S. SoZo = ([x(aO),x)lXnX)X(,Bo,K) 
is disjoint from H(jo). Since X is < K-paracompact and F is 
closed in X, ZI = F x [0, ,80] is normal by Kunen's Theo­
rem. Next put Z2 = ([y, x(aO)]lx n X) x K,. Take z E F with 
x(ao) < z. Since Z2 is a closed subspace of [y, z]x x K, and 
y ~ z, H(O) n Z2 and H(l) n Z2 can be separated by disjoint 
open sets. Since F x K, is the union of the closed subspaces 
Zo, ZI and Z2, H(O) n F x K and H(l) n F x K can be sepa­
rated by disjoint open sets in F x K,. This contradicts (*). 

Case 2. K< A. 
In this case, for each f3 < K" applying the PDL we have a 

stationary set 8((3) c O(X~x)n Lim(,\), f({3) < A, 9((3) < (3 
and j(f3) E 2 such that f(o, (3) = !((3), g(a,(3) = g({3) and 
j(o:,(3) = j(f3) for each a E 8((3). Put 00 = sup{f(,B):,8 < K}. 
Then we have ao < ,\ by K < 'x. Again, applying the PDL to 
9 and j, we have a stationary set T C "', (30 < K and jo E 2 
such that g((3) = f30 and j((3) = jo for each f3 E T. Then 
Zo = ([x(aO),x)lX nX) x ({3o,K) is disjoint from H(jo). Then, 
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as in the above case, H(O) n F x /\, and H(l) n F x /\, can be 
separated by disjoint open sets in Fx/\,. So this also contradicts 
(*). 

This completes the proof of the theorem. 

Corollary 4.4. Let X be a GO-space. Then X x WI is normal 
if and only if i - cfx =f WI for each x E X and i E 2. 

Corollary 4.5. ([GNP]) If X is a GO-space of countable tight­
ness, then X x WI is normal. 
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