Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

Topology Proceedings Vol 18, 1993

NORMALITY OF PRODUCTS OF GO-SPACES AND CARDINALS

NOBUYUKI KEMOTO

Dedicated to Professor Akihiro Okuyama on his 60th birthday

ABSTRACT. In this paper, we characterize the normality of $X \times \kappa$, where X is a GO-space and κ a regular uncountable cardinal.

1. INTRODUCTION

Gruenhage, Nogura and Purish [GNP] proved that if X is a GO-space of countable tightness, then $X \times \omega_1$ is normal. As was written in the introduction of their paper, the author conjectured that $X \times \kappa^+$ is normal whenever X is a GO-space of tightness $\leq \kappa$. But this was false, because consider $\omega_1 \times \omega_2$. Since it contains the non-normal closed subspace $\omega_1 \times (\omega_1 + 1)$, it is not normal. But ω_2 is of tightness $\leq \omega_1$. In this paper, we characterize normality of a product space of a GO-space and a regular uncountable cardinal using the minimal linearly ordered compactification of a GO-space.

2. LINEARLY ORDERED COMPACTIFICATIONS

Let < be a linear order on a set X. $\lambda(X)$ denotes the topology on X which is generated by $\{(\leftarrow, a) : a \in X\} \cup \{(b, \rightarrow)$

 $: b \in X$ as a subbase, where $(\leftarrow, a) = \{x \in X : x < a\}$ and (b, \rightarrow) similarly. (a, b] denotes the usual half open interval $\{x \in X : a < x \leq b\}$ if a and b are in X. Analogously we define (a, b), [a, b], etc.. If necessary, we write $<_X$ and $(a, b)_X$ instead of < and (a, b). A "LOTS X" means the triple $< X, <, \lambda(X) >$. A "GO - space X" is a triple $< X <, \tau >,$ where < is a linear order on X and τ is a topology on X which has a base consisting of convex open sets such that $\lambda(X) \subset \tau$. For a given GO-space $\langle X, \langle, \tau \rangle, \tilde{X}$ denotes the LOTS with the lexicographic order, where $\tilde{X} = \{ < x, -1 > : x \in X \text{ and } \}$ $[x, \rightarrow) \in \tau - \lambda(X) \cup X \times \{0\} \cup \{\langle x, 1 \rangle : x \in X \text{ and }$ $(\leftarrow, x] \in \tau - \lambda(X)$. By identifying $X \times \{0\}$ with X, the LOTS \tilde{X} contains the GO-space X as a dense subspace, and the restricted order of $<_{\tilde{X}}$ on X coincides with $<_X$ (in this situation, we say " \tilde{X} contains X densely and linearly"). It is known that any LOTS L, which contains a GO-space X densely and linearly, also contains the LOTS \tilde{X} densely and linearly ([MK]). So the LOTS \tilde{X} is considered as the smallest LOTS which contains X densely and linearly. A linearly ordered compactification (abbreviated as LOC) of a GO-space X is a compact LOTS which contains X densely and linearly. Note that a compact GO-space is a LOTS. Kaufman constructed in [Ka] the minimal LOC X' of a LOTS X, i.e., for each LOC L of X, there is a countinuous map $f: L \to X'$ such that the restriction f|X of f on X is the identity map 1_X on X. For a GO-space X, ℓX denotes the compact LOTS $(\tilde{X})'$. Then, by these consideration, ℓX is the minimal LOC(abbreviated as MLOC) of X. It is not difficult to show that if there is a continuous map f on a LOC cX of X to a LOC c'X with $f|X = 1_X$, then f must be order preserving in the sense $f(a) \leq f(b)$ if $a \leq b$. The following property P(L, X) for a linearly ordered set < L, <>and a subset X of L, is useful in our discussion.

 $P(L,X): (a,b) \neq 0$ for any a and b in L-X with a < b.

Lemma 2.1. Let cX be a LOC of a GO-space X. Then cX

is minimal if and only if P(cX, X) holds.

Proof: First assume P(cX, X) does not hold. Then there are a and b in cX - X with a < b such that $(a, b)_{cX} = 0$. Then it is easy to show that the quotient space obtained by identifying a = b is a LOC of X. So cX is not minimal.

Next assume cX is not minimal. By the minimality of ℓX , there is a continuous map $f: cX \to \ell X$ such that $f|X = 1_X$. Then it is easy to show that f is not 1-1. So there are a and b in cX with a < b such that f(a) = f(b). By [En, 3.7.14]. we have a, b and f(a) are not in X. If $(a, b)_{cX} \neq 0$, take a point x in $(a, b) \cap X$ by the density of X. Since f is order preserving, $f(a) \leq f(x) = x \leq f(b)$. So we have $f(a) = x \in X$. This is a contradiction.

3. COFINALITY AND NORMAL SEQUENCES

Let L be a compact LOTS and $x \in L$. Note that each subset F of a compact LOTS L has a least upper bound (abbreviated as $\sup F$ or $\sup_L F$ if necessary), and has a greatest lower bound $\inf F$, see [En, 3.12.3(a)]. A subset A of (\leftarrow, X) is said to be 0-unbounded for x (in L) if, for each y < x, there is $a \in A$ such that $y \leq a$. Otherwise, A is said to be 0-bounded for x. Analogously, 1-unboundedness of $A \subset (x, \rightarrow)$ for x is defined. Note that 0-unboundedness and 1-unboundedness are dual notions, so we only define and prove "0-...". Of course, we can do for "1-...". 0-cofinality for x in L is defined as follows:

 $0 - cfx = \min\{|A| : A \text{ is } 0 - \text{unbounded for } x.\}.$

If necessary we write $0 - cf_L x$ instead of 0 - cfx. Observe that 0 - cfx = 0 if x is the first element of L, 0 - cfx = 1 if x has the immediate predecessor in L, and 0 - cfx is a regular infinite cardinal otherwise. For a fixed cardinal κ , a strict increasing sequence $\langle x(\alpha) : \alpha < \kappa \rangle$ in L is said to be a 0-unbounded sequence for x if $\{x(\alpha) : \alpha < \kappa\}$ is 0-unbounded for x. Furthermore a 0-unbounded sequence is said to be a 0-normal sequence for x if $x(\alpha) = \sup \{x(\beta) : \beta < \alpha\}$ for each limit ordinal $\alpha < \kappa$. Since each subset of a compact LOTS has a least upper bound, we can easily show the following lemma by induction:

Lemma 3.1. Let x be a point in a compact LOTS L, then there always exists a 0-normal sequence for x of length 0-cfx.

Remark 3.2. Note that if $\langle x(\alpha) : \alpha < \kappa \rangle$ is a 0-normal sequence for x, then $\{x(\alpha) : \alpha < \kappa\}$ is a closed subspace of the subspace (\leftarrow, x) and it is homeomorphic to the ordinal space 0-cfx. The proof of 1) in the next lemma is a routine and 2) follows form 1), so we left it to the reader.

Lemma 3.3. Let x be a point in a compact LOTS L with $0-cfx \ge \omega_1$. If $< x(\alpha) : \alpha < 0-cfx > and < x'(\alpha) : \alpha < 0-cfx > are 0-normal sequences for x, then we have:$

- (1) $\{\alpha < 0-cfx : x(\alpha) = x'(\alpha)\}$ is closed unbounded in 0-cfx.
- (2) if $X \subset L$, then $\{\alpha < 0 cfx : x(\alpha) \in X\}$ is stationary in 0 - cfx iff so is $\{\alpha < 0 - cfx : x'(\alpha) \in X\}$.

From now on, we shall apply the above arguments for $L = \ell X$, where ℓX is the MLOC of a GO-space X. In our argument, for each $x \in \ell X$, we always fix a 0-normal sequence $\langle x(\alpha) : \alpha < 0 \operatorname{-cf}_{\ell X} x \rangle$ and put $0(X \Delta x) = \{\alpha < 0 \operatorname{-cf} x : x(\alpha) \in X\}$. Of course, we define $1(X \Delta x)$ analogously. By the above lemma, observe that if $0 \operatorname{-cf} x \geq \omega_1$, then the "stationarity" of $0(X \Delta x)$ does not depend on choices of 0-normal sequences for x. The following lemma is easy to prove.

Lemma 3.4. Let x be a point in the MLOC ℓX of a GO-space X. Then the following holds.

- (1) If $x \in \ell X X$, then $\{x(\alpha) : \alpha \in 0(X\Delta x)\}$ is a closed subset of X and homeomorphic to $0(X\Delta x)$.
- (2) If $x \in X$, then $\{x(\alpha) : \alpha \in 0(X\Delta x)\} \cup \{x\}$ is a closed subset of X and homeomorphic to $0(X\Delta x) \cup \{0-cfx\}$.
- (3) If $0-cfx \ge \omega_1$ and $0(X\Delta x)$ is not stationary in 0-cfx, then $(\leftarrow, x)_{\ell X} \cap X$ is the free union of 0-cfx many 0bounded for x, closed and open subsets of X.

(4) If $0-cfx = \omega$, then $(\leftarrow, x)_{\ell X} \cap X$ is the locally finite union of countable many 0-bounded for x, closed subsets of X.

Lemma 3.5. Let x be a point in the MLOC ℓX of a GOspace X. If any one of the following holds, then there is a 0-unbounded sequence $\langle x(\alpha) : \alpha \langle 0 - cfx \rangle$ for x such that $x(\alpha) \in X$ for each $\alpha \langle 0 - cfx$.

- (1) 0-cfx=0.
- (2) $x \in \ell X X$ and 0 cfx = 1.
- (3) $0-cfx \geq \omega$.

Proof: 1): Since the empty sequence is 0-unbounded if 0-cfx = 0, this is evident.

2): Assume $x \in \ell X - X$ and 0 - cfx = 1. Let $\langle x(\alpha) : \alpha < 1 \rangle$ be a (or the fixed) 0-normal sequence for x in ℓX . Since x(0) is the last element of $(\leftarrow, x)_{\ell X}$, it suffices to show $x(0) \in X$. Assume, on the contrary, that $x(0) \in \ell X - X$. Then we have $(x(0), x)_{\ell X} \neq 0$ by Lemma 2.1. This is a contradiction.

3): Assume $0 - cfx \ge \omega$. Let $\langle x(\alpha) : \alpha < 0 - cfx \rangle$ be a 0-normal sequence for x in ℓX .

Case 1. $0(X\Delta x)$ is unbounded in 0-cfx.

In this case, enumerate $(X\Delta x) = \{\alpha(\beta) : \beta < 0 - cfx.\}$ in the increasing order. Put $y(\beta) = x(\alpha(\beta))$ for each $\beta < 0 - cfx$. Then $\langle y(\beta) : \beta < 0 - cfx >$ is the desired sequence.

Case 2. $(X\Delta x)$ is bounded in 0-cfx.

In this case, take $\alpha_0 < 0 - cfx$ with $0(X\Delta x) \subset \alpha_0$. Since $x(\alpha_0 + \alpha) \in \ell X - X$ for each $\alpha < 0 - cfx$. By Lemma 2.1 and the density of X in ℓX , pick $y(\alpha)$ in $(x(\alpha_0 + \alpha), x(\alpha_0 + \alpha + 1))_{\ell X} \cap X$. Then $\langle y(\alpha) : \alpha < 0 - cfx \rangle$ is the desired sequence.

Remark 3.6. Let X be the GO-space $[0,1) \cup [2,3]$ with the subspace topology of the reals. By Lemma 2.1, $\ell X = [0,1] \cup [2.3]$. Observe that $2 \in X$ and 0-cf2 = 1, but there does not exist such a 0-unbounded sequence for 2 in the above lemma.

For a point x in the MLOC ℓX of a GO-space X, put $\operatorname{cf} x = \max\{0 - \operatorname{cf} x, 1 - \operatorname{cf} x\}$. It is easy to show that the character and the tightness at x in X is equal to $\operatorname{cf} x$, and $\operatorname{cf} x \ge \omega$ holds for $x \in \ell X - X$.

4. Normality of $X \times \kappa$.

A space is $< \kappa$ -paracompact if it is λ -paracompact for each cardinal $\lambda < \kappa$. The proof of the following lemma is analogous to that of [Ke, Theorem 4], so we left it to the reader.

Lemma 4.1. Let X be a GO-space and κ an uncountable cardinal. Then X is $< \kappa$ -paracompact if and only if, for each $x \in \ell X - X$ and $i \in 2, i(X \Delta x)$ is not stationary in i-cfx whenever $\omega < i - cfx < \kappa$.

Remark 4.2. Note that all GO-spaces are normal and countably paracompact and that countable paracompactness is inversely preserved by quasi-perfect maps. So $X \times \kappa$ is countably paracompact if X is a GO-space and κ is a regular uncountable cardinal. Next we prove our main theorem.

Theorem 4.3. Let X be a GO-space and κ a regular uncountable cardinal. Then $X \times \kappa$ is normal if and only if the following two conditions hold:

a) $i-cfx \neq \kappa$ for each $x \in X$ and $i \in 2$,

b) X is $< \kappa$ -paracompact.

Proof: "only if" part: Assume $X \times \kappa$ is normal. For each cardinal $\lambda < \kappa$, $X \times \kappa$ contains $X \times (\lambda + 1)$ as a closed subspace. Therefore, by Kunen's Theorem [Pr, Corollary 3.7], X is $< \kappa$ -paracompact. To show a), assume that there are $x \in X$ and $i \in 2$ such that $i-cfx = \kappa$. Without loss of generality, we may assume i = 0. By Lemma 3.5, take a 0-unbounded sequence $< x(\alpha) : \alpha < \kappa >$ for x such that $x(\alpha) \in X$ for each $\alpha < \kappa$. Put $H(0) = cl\{< x(\alpha), \alpha >: \alpha < \kappa\}$ and $H(1) = \{x\} \times \kappa$, here cl denotes the closure. Then it is not difficult to show that H(0) and H(1) are disjoint closed sets. So, by the normality of $X \times \kappa$, there are disjoint open sets U(0) and U(1) such

that $H(j) \subset U(j)$ for each $j \in 2$. Since U(0) is open and $\langle x(\alpha), \alpha \rangle \in U(0)$ for each $\alpha < \kappa$, there is $f(\alpha) < \alpha$ such that $\{x(\alpha)\} \times (f(\alpha), \alpha] \subset U(0)$. Then, by the Pressing Down Lemma (abbreviated as PDL), there are a stationary set $S \subset \kappa$ and $\alpha_0 < \kappa$ such that $f(\alpha) < \alpha_0 < \alpha$ for each $\alpha \in S$. Since $\{x(\alpha) : \alpha \in S\}$ is 0-unbounded for x, we have $\langle x, \alpha_0 \rangle \in cl\{\langle x(\alpha), \alpha_0 \rangle : \alpha \in S\} \subset cl U(0)$. This is a contradiction because of $\langle x, \alpha_0 \rangle \in H(1) \subset U(1)$.

"if" part: Assume a) and b) hold, but $X \times \kappa$ is not normal. We shall obtain a contradiction. Then there are disjoint closed sets H(0) and H(1) which can not be separated by disjoint open sets in $X \times \kappa$. Put $Y(x, y) = [x, y]_X \times \kappa$ for x and y in X with $x \leq y$. For x and y in X define $x \simeq y$ by one of the following clauses.

1) x = y,

2) x < y, moreover $H(0) \cap Y(x,y)$ and $H(1) \cap Y(x,y)$ are separated by disjoint open sets in Y(x,y),

3) y < x, moreover $H(0) \cap Y(y,x)$ and $H(1) \cap Y(y,x)$ are separated by disjoint open sets in Y(y,x).

Then it is easy to show that \simeq is an equivalence relation on X.

Let X/\simeq be the set of all equivalence classes. Observe that each equivalence class is convex in X. We shall show that each equivalence class E in X/\simeq is open in X. To show this, let x be a point in E. First we show:

Claim 1. If $0-cfx \neq 0$, then there is $a \in (\leftarrow, x)_{\ell X}$ such that $(a, x]_{\ell X} \cap X \subset E$.

Proof: Put $\lambda = 0$ -cfx. When $\lambda = 1$, it is almost clear. So assume $\omega \leq \lambda$. Note that $\lambda \neq \kappa$ by a). Let $\langle x(\alpha) : \alpha < \lambda \rangle$ be the 0-normal sequence for x. Since H(0) and H(1) are disjoint closed sets, there are $f(\beta) < \lambda$, $g(\beta) < \beta$ and $j(\beta) \in 2$ such that $((x(f(\beta)), x]_{\ell X} \cap X) \times (g(\beta), \beta] \cap H(j(\beta)) = 0$ for each $\beta < \kappa$. Then, by the PDL, there are a stationary set $S \subset \kappa, \beta_0 < \kappa$ and $j_0 \in 2$ such that $g(\beta) = \beta_0$ and $j(\beta) = j_0$ for each $\beta \in S$. **Subclaim.** There is α_0 such that $((x(\alpha_0), x]_{\ell X} \cap X) \times (\beta_0, \kappa) \cap H(j_0) = 0$.

Proof: There are two cases.

Case 1. $\kappa < \lambda$.

In this case, put $\alpha_0 = \sup\{f(\beta) : \beta \in S\}$. Then it is not difficult to show that this α_0 works.

Case 2. $\omega \leq \lambda < \kappa$.

In this case, again applying the PDL to S and f, there are a stationary set $S' \subset S$ and $\alpha_0 < \lambda$ such that $f(\beta) = \alpha_0$ for each $\beta \in S'$. Then this α_0 is the desired one.

This completes the proof of subclaim.

Since X is $< \kappa$ -paracompact and $\beta_0 < \kappa, X \times [0, \beta_0]$ is normal by Kunen's Theorem. So there are disjoint open sets V(0) and V(1) in $X \times [0, \beta_0]$ such that $H(j) \cap X \times [0, \beta_0] \subset V(j)$ for each $j \in 2$. To complete the proof of claim 1, pick a point y in $(x(\alpha_0), x]_{\ell X} \cap X$. Put $U(j_0) = V(j_0) \cap Y(y, x)$ and $U(1 - j_0) =$ $[V(1 - j_0) \cup ((x(\alpha_0), x]_{\ell X} \cap X) \times (\beta_0, \kappa)] \cap Y(y, x)$. Then U(0) and U(1) separates $H(0) \cap Y(y, x)$ and $H(1) \cap Y(y, x)$. Therefore we have $y \simeq x$, so $y \in E$. This completes the proof of claim 1.

Claim 2. If 1-cfx $\neq 0$, then there is $b \in (x, \rightarrow)_{\ell X}$ such that $[x, b)_{\ell X} \cap X \subset E$.

Furthermore observe that if 0-cfx = 0(1-cfx = 0), then $(\leftarrow, x]_{\ell X} \cap X = \{x\} \subset E([x, \rightarrow)_{\ell X} \cap X = \{x\} \subset E$, respectively). So E is open in X by this observation and claim 1,2. Therefore X is the free union of X/\simeq , so there is $E \in X/\simeq$ such that $H(0) \cap E \times \kappa$ and $H(1) \cap E \times \kappa$ can not be separated by disjoint open sets in $E \times \kappa$. Pick a point $y \in E$ and put $F = \{x \in E : y \leq x\}$ and $F' = \{x \in E : x \leq y\}$. Since $E \times \kappa$ is the union of the closed subspaces $F \times \kappa$ and $F' \times \kappa$, we may assume that

(*) $H(0) \cap F \times \kappa$ and $H(1) \cap F \times \kappa$ can not be separated by disjoint open sets in $F \times \kappa$.

Put $x = \sup_{\ell X} F$. If $x \in F$, then we have $y, x \in E$ and $F = [y, x]_X$. This contradicts (*). Se we have $x \notin F$ and $F = [y, x)_{\ell X} \cap X$. Since X is the free union of $X \setminus \simeq$, we also

have $x \in \ell X - X$. Put $\lambda = 0 - \operatorname{cf} x$, then clearly we have $\omega \leq \lambda$. Assume $\lambda = \omega$. Then we easily have a contradiction to (*), using 4) of Lemma 3.4. So we have $\lambda \geq \omega_1$. Let $\langle x(\alpha) : \alpha < \lambda \rangle$ be a 0-normal sequence for x. We may assume that y < x(0) by 2) of Lemma 3.3. Assume $0(X\Delta x)$ is not stationary in λ . Then similarly we also have a contradiction to (*) using 3) of Lemma 3.4. So $0(X\Delta x)$ is stationary in λ . Therefore we have $\kappa \leq \lambda$ by $\langle \kappa$ -paracompactness and Lemma 4.1. For each $\alpha \in 0(X\Delta x) \cap \operatorname{Lim}(\lambda)$ and $\beta < \kappa$, fix $j(\alpha, \beta) \in 2$ with $\langle x(\alpha), \beta \rangle \notin H(j(\alpha, \beta))$. Here $\operatorname{Lim}(\lambda)$ denotes all limit ordinals less than λ . Furthermore fix $f(\alpha, \beta) < \alpha$ and $g(\alpha, \beta) < \beta$ such that $([x(f(\alpha, \beta)), x(\alpha)]_{\ell X} \cap X) \times (g(\alpha, \beta), \beta] \cap H(j(\alpha, \beta)) = 0$. There are two cases.

Case 1. $\lambda = \kappa$.

In this case, applying the PDL to $j(\alpha, \alpha)$, $f(\alpha, \alpha)$ and $g(\alpha, \alpha)$, we have a stationary set $S \subset 0(X\Delta x) \cap \operatorname{Lim}(\lambda)$, $\alpha_0 < \lambda = \kappa$, $\beta_0 < \kappa$ and $j_0 \in 2$ such that $f(\alpha, \alpha) = \alpha_0$, $g(\alpha, \alpha) = \beta_0$ and $j(\alpha, \alpha) = j_0$ for each $\alpha \in S$. So $Z_0 = ([x(\alpha_0), x)_{\ell X} \cap X) \times (\beta_0, \kappa)$ is disjoint from $H(j_0)$. Since X is $< \kappa$ -paracompact and F is closed in X, $Z_1 = F \times [0, \beta_0]$ is normal by Kunen's Theorem. Next put $Z_2 = ([y, x(\alpha_0)]_{\ell X} \cap X) \times \kappa$. Take $z \in F$ with $x(\alpha_0) < z$. Since Z_2 is a closed subspace of $[y, z]_X \times \kappa$ and $y \simeq z$, $H(0) \cap Z_2$ and $H(1) \cap Z_2$ can be separated by disjoint open sets. Since $F \times \kappa$ is the union of the closed subspaces Z_0 , Z_1 and Z_2 , $H(0) \cap F \times \kappa$ and $H(1) \cap F \times \kappa$ can be separated by disjoint open sets in $F \times \kappa$. This contradicts (*).

Case 2. $\kappa < \lambda$.

In this case, for each $\beta < \kappa$, applying the PDL we have a stationary set $S(\beta) \subset 0(X\Delta x) \cap \operatorname{Lim}(\lambda)$, $f(\beta) < \lambda$, $g(\beta) < \beta$ and $j(\beta) \in 2$ such that $f(\alpha, \beta) = f(\beta)$, $g(\alpha, \beta) = g(\beta)$ and $j(\alpha, \beta) = j(\beta)$ for each $\alpha \in S(\beta)$. Put $\alpha_0 = \sup\{f(\beta) : \beta < \kappa\}$. Then we have $\alpha_0 < \lambda$ by $\kappa < \lambda$. Again, applying the PDL to g and j, we have a stationary set $T \subset \kappa$, $\beta_0 < \kappa$ and $j_0 \in 2$ such that $g(\beta) = \beta_0$ and $j(\beta) = j_0$ for each $\beta \in T$. Then $Z_0 = ([x(\alpha_0), x)_{\ell X} \cap X) \times (\beta_0, \kappa)$ is disjoint from $H(j_0)$. Then,

as in the above case, $H(0) \cap F \times \kappa$ and $H(1) \cap F \times \kappa$ can be separated by disjoint open sets in $F \times \kappa$. So this also contradicts (*).

This completes the proof of the theorem.

Corollary 4.4. Let X be a GO-space. Then $X \times \omega_1$ is normal if and only if $i - cfx \neq \omega_1$ for each $x \in X$ and $i \in 2$.

Corollary 4.5. ([GNP]) If X is a GO-space of countable tightness, then $X \times \omega_1$ is normal.

References

- [En] R. Engelking, General Topology, (1977) Polish Scientific Publishers, Warszaw.
- [GNP] G. Gruenhage, T. Nogura and S. Purisch, Normality of $X \times \omega_1$, Top. Appl. **39** (1991), 263-275.
- [Ka] R. Kaufman, Ordered sets and compact spaces, Coll. Math. 17 (1967), 35-39.
- [Ke] N. Kemoto Stationary subspaces in ordered spaces, Bull. Austral. Math. Soc. 40 (1989), 381-387.
- [MK] T. Miwa and N. Kemoto, Linearly ordered extensions of GO-space, Top. Appl. 54 (1993), 133-140.
- [Pr] T. C. Przymusiński, Products of normal spaces, in: Handbook of set theoretic topology (ed. by K. Kunen and J. E. Vaughan), North-Holland (1984) 781-826.

Faculty of Education

Oita University

Oita 870-11 Japan

e-mail : nkemoto@cc.oita-u.ac.jp