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QUASI-UNIFORM SPACES - ELEVEN YEARS
 
LATER
 

HANS-PETER A. KUNZI 

ABSTRACT. We discuss results obtained in the last ten 
years that are related to problems posed in the book "[17] 
P. Fletcher and W.F. Lindgren, Quasi-uniform Spaces, 
Dekker, 1982". 1 The selection of the material has main­
ly been influenced by the interests of the author. In the 
appendix a recent question of G.e.L. Brummer about 
functorial quasi-uniformities is answered. 

In this paper no attempt is made to survey the work 
done in the area of quasi-uniform spaces during the past 
decade. We refer the reader to [2,24,26,33,38,40,41,51] 
for some further contributions to problems contained in 
"Quasi-uniform Spaces" which are not mentioned in this 
article because of lack of space. 

1. PRELIMINARIES 

In order to make this article accessible to the nonspecialist 
we begin by recalling some basic concepts of the theory of 
quasi-uniform spaces. 

1 The present survey article is partially based on talks given by the 
author at the "Workshop di Topologia 1992", held at Vietri suI Mare, 
Salerno, Italy. Some further results on quasi-uniformities that we have 
presented at this meeting are dealt with in [42]. 

Partly this paper was written while the author was supported by the 
Swiss National Science Foundation under grant 21-30585.91. 
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Definition: Let X be a (nonempty) set. A filter U on X x X 
is called a quasi-uniformity on X provided that: 
(i) Each member of U is a reflexive relation. 
(ii) For each V E U there exists U E U such that U2 ~ v: 

(Here U2 = {(x,y) E X x X : There exists z E X such that 
(x, z) E U and (z, y) E U}.) 

A quasi-uniformity U is called a uniformity if 
(iii) U E U implies U-1 E U, where U- 1 = {(x,y) E X x X : 
(y,x) E U}. 

If U and V are quasi-uniformities on a set X and U ~ V, 
then U is called coarser than V. A map f from a quasi-uniform 
space (X,U) to a quasi-uniform space (Y, V) is called quasi­
uniformly continuous if (f x f) -1 (V) E U whenever V E V. 

The topology T(U) induced by a quasi-uniformity U on X 
is {G ~ X : For each x E G there exists V E U such that 
V(x) ~ G}. (Here V(x) = {y EX: (x,y) E V} whenever 
V E U and x E X.) 

Observations: The filter U- 1 = {U- 1 : U E U} is a quasi­
uniformity on X provided that U is a quasi-uniformity on X. 
Each collection of quasi-uniformities on a set X has a supre­
mum and, thus, an infimum. 

Given a quasi-uniformity U on X, U* will denote the coarsest 
uniformity on X which is finer than U. (Obviously, U* is the 
filter on X x X generated by the filterbase {UnU-1 : U E U}.) 

The topology induced by the supremum of a family of quasi­
uniformities on a set X is equal to the supremum of the topolo­
gies induced by the members of the family on X. 

Each quasi-uniformly continuous map between quasi-uniform 
spaces is continuous with respect to the induced topologies. 

Definition: Let X be a (nonempty) set. A function d from 
X x X into the nonnegative reals is called a quasi-pseudo-metric 
if 
(i) d(x, x) = 0 whenever x E X, and 
(ii) d(x,y) ~ d(x,z) + d(z,y) whenever x,y,z E X. 
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The filter generated by {U(. : f > O} on X x X is called 
the quasi-pseudo-metric quasi-uniformity Ud on X. (Here U(. = 
{(x,y) E X x X : d(x,y) < f} whenever f > 0.) 

The topology T(Ud) is called the topology induced by d on 
X. 

A quasi-pseudo-metric d is called a (T1)-quasi-metric provid­
ed that for each x, y E X, d(x, y) = 0 implies x = y. 

A quasi-pseudo-metric d is called non-archimedean if it sat­
isfies d(x,y) ~ max{d(x,z),d(z,y)} whenever x,y,z E X. 

Remarks: Let d be a quasi-pseudo-metric on a set X. Then 
d-1 (defined by d-1(x,y) = d(y,x) whenever x,y E X) is also 
a quasi-pseudo-metric on X. Little is known about connect­
ions between T(Ud) and T(Ud-l). It is shown in [25] that both 
topologies have the same weight and that the height of T(Ud) 

is equal to the width of T(Ud-l ).2 

Example 1. (aJ On the set X = R of reals let d(x, y) = 1 if 
y < x, and d(x,y) = y - x ify ~ x. Then (X,d) is a quasi­
metric space. It is called the Sorgenfrey line. 

(bJ Let (X, T) be a topological space and let B be the col­
lection of all reflexive transitive relations V on X for which 
V(x) E T for all x E X. Then B is a (filter)base for the 
so-called fine transitive quasi-uniformity U of X. (This quasi­
uniformity is compatible with the topology of X, i.e. T(U) = 
T.J 

(c) Let X be a topological space. The filter generated by 
{[G x G] U [(X \ G) x X] : G is open in X} on X X X is the so­
called Pervin quasi-uniformity of X. It is also compatible with 
the topology of X. 

(d) Let £ be the quasi-uniformity on the set R of real num­
bers generated by the base {Qt; : f > O} where Qt; = {(x,y) E 
R x R : x - y < f} whenever f > o. By definition, the 

2The height of a topological space (X, T) is equal to sup{L(TIA) : 
A ~ X} and the width is equal to sup{d(TIA) : A ~ X}. Here L(TIA) 
(d(TIA), respectively) denotes the Lindelof degree (the density) of the 
subspace A of X. 
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semi-continuous quasi-uniformity sa of a topological space X 
is the coarsest quasi-uniformity on X for which each contin­
uous function f : X ~ (R, £) is quasi-uniformly continu­
ous. It is established in [17} that sa is finer than the Per­
vin quasi-uniformity, but coarser than the fine transitive quasi­
uniformity of X. 

The constructions (b), (c) and (d) show that each topological 
space is quasi-uniformizable, i. e. it admits a compatible quasi­
uniformity. 

It seems hard to find an elegant (topological) characteriza­
tion of those topologies that admit a compatible quasi-pseudo­
metric. It is known that these topologies are exactly those that 
can be induced by a local quasi-uniforrnity3 U with a countable 
base having the property that U-1 is a local quasi-uniformity, 
too (see e.g. (17,25]). For a recent study of that problem we 
refer the interested reader to [24]. 

2. BASIC RESULTS 

The results mentioned in this section answer some natural 
questions that have been left open in [1 7] . By N we shall 
denote the set of positive integers. 

Proposition 1. [31,35] (positive solution to Problem B (b) in 
[17]): A topological space X admits a unique quasi-uniformity 
if and only if (1) it does not have any strictly increasing se­
quence (Gn)nEN of open sets (i.e. it is hereditarily compact) 
and (2) there does not exist any strictly decreasing sequence 
(Gn)nEN of open sets such that nnEN Gn is open. (Equivalent­
ly, such a space X is characterized by the property that each 
open collection B of X such that nB' is open for any subcol­
lection B' of B is finite.) 

3 A filter U of reflexive binary relations on a (nonempty) set X is called 
a local quasi-uniformity provided that for any x E X and U E U there is 
V E U such that V 2 (x) ~ U(x). 
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In [35] it is shown that this property of topological spaces 
is finitely productive. Typical examples of topological spaces 
admitting a unique quasi-uniformity are the cofinite topologies 
on uncountable sets and the hereditarily compact quasi-sober 
(in particular, the finite) topologies.4 

Definition: [17] A quasi-uniformity U on a set X is called 
totally bounded provided that for each U E U there exists a 
finite cover A of X such that A x A ~ U whenever A E A 
(equivalently, if the (quasi)-uniformity U* is precompact, i.e. 
for each U E U* there is a finite subset F of X such that 
U(F) == X). 

Observations: The Pervin quasi-uniformity of any topologi­
cal space X is totally bounded. In fact [17,p.28], it is the finest 
compatible totally bounded quasi-uniformity on X. 

A quasi-uniformity U is totally bounded if and only if both 
U and U-l are hereditarily precompact [37, Lemma 1.1]. 

Examples: [43,46] (a) Let X = N and for x, y E X, set 
d(x,y) = 0 if x == y, d(x,y) == ~ if x is even and x < y, 
d(x, y) = ; if y is odd and x > y, and d(x, y) = 1 otherwise. 
Then both the quasi-metric quasi-uniformities Ud and Ud-l are 
precompact, but max{d, d-l } is the discrete metric on X. 

(b) Let X == N U {oo} equipped with its usual order. For 
x,y E X, set d(x,y) == 0 if x == y, d(x,y) == ~ if x == n,n E N 
and x < y, and d(x,y) = 1 otherwise. The metric max{d,d-1 } 

is discrete, although Ud is hereditarily precompact. 

Hereditarily precompact quasi-uniformities have been stud­
ied in [43]. Among other things it is shown that a (nonempty) 
product of quasi-uniform spaces is hereditarily precompact if 
and only if each factor space is hereditarily precompact and 

4A nonempty topological space X is called irreducible if each pair of 
nonempty open sets of X has a nonempty intersection. A topological 
space is called quasi-sober if the only irreducible closed subspaces are the 
closures of singletons. A quasi-sober To-space is called sober. 
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that each regular hereditarily precompact quasi-pseudo-metric 
space is second countable. 

Proposition 2. [27] (negative solution to Problem B (a) in 
[17]): A topological space X admits a unique totally bounded 
quasi-uniformity if and only if its topology T is the unique base 
of open sets for T that is closed under finite unions and finite 
intersections. (Here we use the convention that n0 = X.) 

Typical examples of topological spaces admitting a unique 
totally bounded quasi-uniformity are the hereditarily compact 
spaces and tl;1e set Wo equipped with the lower topology {[a, n] : 
n E wo} U {0,wo}. 

The space with carrier set Wo + 2 and topology {[a, n] : n E 
wo} U {(wo + 2) \ {wo +I}, Wo +2, (wo +2) \ {wo}, Wo, 0} admits a 
unique totally bounded quasi-uniformity, while this is not true 
for its subspace (wo + 2) \ {wa}. 

It is known that a topological space is hereditarily compact if 
and only if it admits a unique totally bounded quasi-uniformity 
and each of its ultrafilters has an irreducible limit set [5, Propo­
sition 4]. The following elementary problem however remains 
open: 

Problem 1 [35] Is each topological T1-space X whose topology 
is the unique base of open sets that is closed under finite unions 
and finite intersections hereditarily compact? 

It is shown in [35, Proposition 2.4] that Problem 1 has a 
positive answer provided that each point of X is a Gs-set. 

A basic result ([17, Theorem 1.33]): Each compatible quasi­
uniformity U on a topological space contains a coarser compat­
ible totally bounded quasi-uniformity. In fact there is a finest 
quasi-uniformity of this kind, namely the supremum of the fam­
ily of totally bounded quasi-uniformities coarser than U. (The 
supremum of a family of totally bounded quasi-uniformities is 
totally bounded.) 
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Question [17, p. 19]: Which topological spaces admit a 
coarsest compatible quasi-uniformity? The following charac­
terization of these spaces has been obtained. 

Definition 1. [32] Let (X, T) be a topological space and let 
Gl , G2 E T. We write Gl < G2 if for each ultrafilter g on X 
containing Gl there exists a finite collection M of open sets 
of X such that each element of M contains a limit point of g 
and nM ~ G2 • {Conventions: n0 = X. If Gl < G 2 , then we 
say that Gl is handy in G2 (with respect to X).) 

Remark: [32] A topological space admits a unique totally 
bounded quasi-uniformity if and only if each of its open sets is 
handy in itself. 

Proposition 3. [29,32] A topological space X admits a coars­
est quasi-uniformity if and only if its handy-relation is approx­
imating (i.e. for each open set G of X we have G = U{G' : 
G' < G and G' is open in X}). 

Remark: [32] It is known that this property is closed­
hereditary, but not open-hereditary and that each core-compact 
spaces satisfies the condition. If a quasi-uniformity is mini­
mal among the compatible quasi-uniformities on a topological 
space X, then it is necessarily the coarsest compatible quasi­
uniformity on X. 

A sober Tl-space that is not core-compact, but has an open 
base consisting of sets that are handy in themselves (and thus 
admits a coarsest quasi-uniformity) is constructed in [32]. 

A topological space that admits a coarsest quasi-uniformity 
and in which each convergent ultrafilter has an irreducible limit 
set is core-compact (compare [32, Corollary 3]). 

In particular, each locally compact space6 X admits a coars­

5A topological space is called core-compact if each open set is the union 
of open sets that are relatively compact in it. An open set G is called 
relatively compact in an open set B if each open cover of B contains a 
finite subcollection covering G. 

6A topological space is called locally compact provided that each point 
has a neighborhood base consisting of compact sets. 
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est quasi-uniformity U. It is generated by the subbase {[(X \ 
K) x X] U [X x G] : !{ ~ G, K is compact and G is open 
in X}. The topology T(U- 1 ) is generated by the sets X \ !{ 
where !{ is compact and saturated7 in X [29]. The coarsest 
quasi-uniformity of a locally compact Hausdorff space X is a 
uniformity if and only if X is compact [17, Proposition 1.47]. 

Some well-known results on locally compact spaces can be 
generalized to the class of topological spaces admitting a coars­
est quasi-uniformity. For instance it is shown in [32] that a 
(nonempty) product of topological spaces admits a coarsest 
quasi-uniformity if and only if each factor space admits a coars­
est quasi-uniformity and all but finitely many factor spaces are 
compact. 

3. TRANSITIVITY 

Definition: [17] A quasi-uniformity is called transitive if it 
has a base consisting of transitive relations. A topological 
space X is called transitive if the finest compatible quasi­
uniformity on X is transitive (i.e. the fine quasi-uniformity 
of X is the fine transitive quasi-uniformity of X). 

It is known that the semi-continuous quasi-uniformity of any 
topological space is transitive [17, Corollary 2.13]. 

Example 2. (The /(ofner plane) [17] Let X == R 2• For each 
x E X and f > 0 let C(x, f) be the (closed) disk of radius flying 
above the horizontal line through x and tangent to this line at 
x. For x,y E X define d(x,y) as follows: Set d(x,y) = 1 
if y ~ C(x,l), set d(x, y) = r if r ~ 1, y E C(x, r) and 
y ft C(x,s) for all s < r, and set d(x,y) == 0 if x == y. 

An application of the Baire Category Theorem shows that 
the quasi-metric space (X, d) is not non-archimedeanly quasi­
metrizable. Hence it cannot be transitive, since this would im­
ply that it admits a quasi-uniformity with a countable base of 
transitive relations. 

7A set in a topological space is called saturated if it is equal to the 
intersection of its open neighborhoods. 
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Essentially, Kofner's approach is the only method known to 
construct nontransitive spaces [35]. 

Problem 2. (a) Characterize the nontransitive subspaces of 
the Kofner plane. 

(b) Is there in ZFC a nontransitive T1-space of cardinality 
~l. (It is known that a countable union of closed transitive 
spaces is transitive [17, Theorem 6.15].) 

Example 3. [28] (partial solution to Problem M in [17]): There 
exists a transitive space that is the union of two subspaces 
homeomorphic to the (nontransitive) [<ofner plane. Let X = 
(R2 

X {I} ) U(R2 
X { -1 }). For each r E R 2 and each n E N let 

Sn (r) be the open disk of radius 2-n lying above the horizontal 
line through r and tangent to this line at r. Similarly, S~l(r) 

will denote the open disk of radius 2-n lying below the hori­
zontal line through r and tangent to this line at r. Construct a 
base for a topology on X by defining for each r E R 2 , n E N 
and i E {I, -I} basic open neighborhoods !(n(r, i) at the point 
(r, i), where 

!(n(r, 1) = [(Sn(r) U {r}) x {I}] U [Sn(r) X {-I}l 

and 

Kn(r,-l) = [S;l(r) x {I}] U [(S~l(r) U {r}) x {-I}]. 

Obviously, the subspaces R 2 x {I} and R 2 x {-I} of X are 
homeomorphic to the [(olner plane. However X can be shown 
to be transitive. 

Results [17]: (a) Every subspace of a transitive space that is 
the intersection of an open set and a closed set is transitive. 
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(b) (Junnila) Orthocompact8 semi-stratifiable9 spaces are 
transitive. (In particular each metric space is transitive.) 

(c) (Kofner) Each generalized ordered space10 is transitive. 
(d) (Kofner) Each T1-space with an ortho-base11 is transi­

tive. 

Example 4. [28] (solution to Problem N in [17]): Define a 
topology 1\:,' on R 2 with basic neighborhoods K~(r) = S;l(r) U 
{r} U Sn(r) (n E N) at the point r E R 2 

• Then the space 
(R2

, K') is a semi-stratifiable orthocompact space, and hence 
transitive. Let S denote the Sorgenfrey topology on R. Since 
generalized ordered spaces are transitive, (R, S) is transitive. 
The space (R3

, S X /(,') is not transitive: The plane P = 
{(x,y,z) E R 3 

: x = z} is closed in (R3 ,S X K'). However 
as a subspace of (R3

, S x K/), P is homeomorphic to the [(ofn­
er plane. Since transitivity is a closed-hereditary property, we 
conclude that (R3 

, S X K') is not transitive. 

Many questions about transitive spaces that are easy to state 
remaIn open. 

Problem 3. [17, Problem M] Are compact Hausdorff spaces 
transitive? 

8Let X be a topological space. A relation V ~ X x X is called a 
neighbornet on X if for each x E X the set V(x) = {y EX: (x, y) E V} is 
a neighborhood at x. A neighbornet is called transitive if it is a transitive 
relation. A topological space X is called (countably) orthocompact provid­
ed that each (countable) open cover of X has a refinement {T(x) : x E X} 
where T is a transitive neighbornet of X. 

9A topological space X is called semi-stratifiable provided that to each 
closed set E of X one can assign a sequence (En)neN of open subsets of 
X so that nneN En = E and for each n E N, En ~ Fn whenever E ~ F. 

10A generalized ordered space is a triple (X, T, $) in which ~ is a linear 
order on X and T is a topology on X such that the open-interval topology 
of ~ is coarser than T and for each x E X the T-neighborhood filter of x 
has a base consisting of (possibly degenerate) intervals. 

11A base 8 of a topological space is called an ortho-base if whenever 
8' is a subset of B, x E n8' and x fI. int nB', then 8' is a neighborhood 
base at x. 
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Remark: [28] (van Douwen) There exists a counterexample 
under b = c, in particular under CR. 

[35] Hereditarily compact spaces are transitive. 

Problem 4. [17, Problem P] Are non-archimedeanly quasz­
(pseudo}-metrizable spaces transitive? 

Remark: It seems not to be known whether each topological 
space with a u-disjoint base is transitive. However, it is shown 
in [35] that each non-archimedeanly quasi-pseudo-metrizable 
space with a u-Iocally finite network12 is transitive. Moreover, 
topological spaces with a countable network are transitive [35]. 

Problem 5. (a) [17, Problem R] Are quasi-metrizable Moore13 

spaces non-archimedeanly quasi-metrizable? 
(b) [17, Problem R] Are Moore spaces transitive? 
(c) Are monotonically norma[l4 spaces transitive? 
(d) [23] Is the compact open (continuous) image of any tran­

sitive space transitive? 

15Problem 6. [31] Is each locally compact ,-space (non­
archimedeanly) quasi-metrizable? 

12A collection B of subsets of a topological space X is a network if 
for each open set G of X and each point x E G there is B E B with 
x E BeG. 

13A T1-space X is called developable if there is a sequence (Qn)neN of 
open covers of X such that if x E X and G is an open set containing x 
then there is an n E N such that st(x, gn) ~ G. A regular developable 
space is called a Moore space. 

14A T1-space X is said to be monotonically normal if to each pair 
(H, Ii) of disjoint closed subsets of X, one can assign an open set D(H, Ii) 
such that 

(i) H ~ D(H, Ii) ~ D(H, Ii) ~ X \ Ii; 
(ii) if H ~ H' and !( ;2 !(', then D(H, !() ~ D(H', !('). 
15A topological T1-space is called a r-space if it possesses a compatible 

local quasi-uniformity with a countable base. Each quasi-metrizable space 
is a r-space. The converse does not hold (see e.g. [18]). 
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Results: [31] Each regular submetalindelof16 locally compact 
,-space is a non-archimedeanly quasi-metrizable Moore space. 

[31] Each locally compact zero-dimensional ,-space is non­
archimedeanly quasi-metrizable. 

Problems about (non-archimedeanly) quasi-metrizable spaces 
often have more or less obvious generalizations to higher cardi­
nals. Sometimes those questions also lead to important prob­
lems in the theory of bispaces. We are going to give a few 
examples next. 

Definition 2. [6] For a quasi-uniformity U call w(U) == 
min{card(B) : B is a filterbase of U} + Wo the weight of U. 
Given an arbitrary topological space X define the transitivity 
degree of X as tq(X) == miniw(U) : U is a compatible transi­
tive quasi-uniformity on X} and the quasi-uniform weight of 
X as q(X) == min{w(U) : U is a compatible quasi-uniformity 
on X}. 

Remarks: [6] For any compact T1-space X, the weight of 
X is equal to q(X). A T1-space X is quasi-metrizable if and 
only if q(X) == WOe A T1-space X is non-archimedeanly quasi­
metrizable if and only if tq(X) = WOe Each transitive space X 
satisfies q(X) == tq(X). 

Proposition 4. [6] For each infinite cardinal {3 the exists a 
quasi-metrizable space X{3 such that tq(X{3) > {3. 

Remark: [6,19] We note that it is an open problem whether 
for any infinite cardinal m each completely regular topological 
space that admits a local uniformity with a base of cardinality 
m also admits a uniformity with a base of cardinality m. In 
[6] a corresponding problem for (local) quasi-uniformities has 
been dealt with. 

16A topological space X is called submetalindelof provided that each 
open cover of X has a sequence (gn)neN of open refinements such that 
for each x E X there is an n E N with ord(z,gn) $ woo 
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Definition: (e.g.[39]) A bispace (X, T, S) consists of a (non­
empty) set X equipped with two topologies T and S. It is called 
completely regular if there exists a quasi-uniformity U on X 
such that T(U) = T and T{U- 1 ) = S. (One says that U is com­
patible with the topologies of X.) A completely regular bispace 
is called strongly zero-dimensional if its finest compatible total­
ly bounded quasi-uniformity is transitive. It is observed in [39, 
Proposition 4] that the finest compatible quasi-uniformity on 
a non-archimedeanly quasi-pseudo-metrizable bispace is tran­
sitive. 

Problem 7. [39] (a) Characterize those strongly zero­
dimensional bispaces whose finest compatible quasi-uniformity 
is transitive. 

(b) Let X be a strongly zero-dimensional quasi-pseudo­
metrizable bispace such that both its topologies are non­
archimedeanly quasi-pseudo-metrizable. Is X non-archimedeanly 
quasi-pseudo-metrizable? 

By [39, Proposition 3], the finest compatible quasi-uniformity 
on a strongly zero-dimensional bispace (X, 'P, Q) is transitive 
if each locally finite collection of open sets in the topological 
space (X, PV Q) is countable. In the light of the next example, 
part (a) of Problem 7 is not expected to have a simple solution. 

Example 5. (e.g. [39]) Let X be a topological space and let P 
be the Pervin quasi-uniformity of X. Then the finest compat­
ible quasi-uniformity on the strongly zero-dimensional bispace 
(X, T(P), T(P-l)) is transitive if and only if X is transitive. 

The answer to part (b) of Problem 7 is known to be positive 
provided that both topologies of X have a a-point-finite base 
[39, Proposition 5]. 

Some open questions on transitive quasi-uniformities are re­
lated to basic problems in the theory of open coverings of topo­
logical spaces. The following problem is well known. 
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Problem 8. [17, Problem I, p. 102] Is each countably ortho­
compact u-orthocompact17 topological space orthocompact? 

Some partial results: [17, Propositions 5.9 and 5.13] Each 
countably metacompact u-orthocompact space is orthocom­
pact. Hence every separable countably orthocompact u­
orthocompact T1-space is orthocompact. 

[34] Each regular weakly Lindelof 18 countably point-star 
preorthocompact19 space is countably metacompact. 

[34] The subspace X' of the non-isolated points of an almost 
preorthocompact20 space X with a Gs-diagonal is countably 
metacompact . 

[34] A normal almost preorthocompact space with a Gs­
diagonal is countably paracompact. 

Each u-orthocompact P-space21 is orthocompact. 

4. COMPLETENESS 

At present there does not exist a generally accepted notion 
of completeness for quasi-uniform spaces. 

Maybe the most appealing [1,22,49] definition of the concept 
of a Cauchy sequence in a quasi-pseudo-metric space is the 
following: A sequence (Xn)nEN in a quasi-pseudo-metric space 
(X, d) is called left ]<-Cauchy if for each f > 0 there is kEN 

17A topological space X is called u-orthocompact provided that for 
any open cover C of X there exists a sequence (Tn)neN of transitive 
neighbornets of X such that for each z E X there are an n E N and a 
C E C with Tn(z) ~ C. 

18A topological space X is called weakly Lindelof provided that each 
open cover C of X has a countable subfamily whose union is dense in X. 

19A topological space X is called countably point-star preorthocompact 
provided that for each countable open cover C of X there is an open 
neighbornet V of X such that V 2(z) ~ st(z, C) whenever z E X. 

20A topological space X is called almost preorthocompact (== almost 
2-fully preorthocompact [30]) if for each open cover C of X there is a 
neighbornet V of X such that if z E X, a E V 2 (z) and b E V(z), then 
{a,b} ~ C for some C E C. 

21 A topological space is called a P-space provided that the intersection 
of any countable collection of open sets is open. 
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such that d(xm , x n ) < f for all m, n E N with k ::; m ::; n. 
(The corresponding concept for nets has been studied, too (see 
e.g. [54]; for filters also compare [49,42]).) 

Unfortunately there are convergent sequences in quasi-pseudo­
metric spaces that do not satisfy the stated condition. In fact, 
a regular quasi-metric space in which each convergent sequence 
has a left K-Cauchy subsequence is metrizable [43, Proposition 
4]. Nevertheless with the help of that notion of a Cauchy se­
quence some classical theorems about complete metric spaces 
generalize satisfactorily to the quasi-metric setting. For in­
stance, in [14] a Baire category theorem is derived and in [43, 
Theorem 2] it is shown that a quasi-pseudo-metric space is 
compact if and only if it is precompact and each left !<-Cauchy 
sequence converges. Note also that by [43, Theorem 3] a quasi­
pseudo-metric space is hereditarily precompact if and only if 
each of its sequences has a left [<-Cauchy subsequence. 

We restrict our attention in the following to some com­
pleteness properties considered in [17]. But we would like 
to stress' that several very interesting completion theories for 
quasi-uniform spaces have been developed in the last years 
[7,8,9,10,11,52,53] none of which is discussed in this paper. 

Definition: [17] A filter F on a quasi-uniform space (X,U) 
is called a (U-) Cauchy filter provided that for each U E U 
there exists x E X such that U(x) E F. A quasi-uniform space 
(X, U) is called complete if each Cauchy filter has a cluster 
point in X. 

A sequence (Xn)nEN in a quasi-pseudo-metric space (X,p) is 
said to be a (left p-)Cauchy sequence if its elementary filter is a 
Up-Cauchy filter. A quasi-pseudo-metric space (X,p) is called 
sequentially complete if every Cauchy sequence has a cluster 
point in X. It is said to be complete if the quasi-uniformity Up 
is complete. 

Remarks: These definitions are compatible with the usual 
ones in uniform and metric spaces. 
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By [38, Proposition 4 and Lemma 5] each Tychonoff sequen­
tially complete quasi-metric space is Cech complete and has a 
base of countable order. 22 

There are (zero-dimensional) sequentially complete quasi­
metric spaces that are not complete [38, Example 4], but such 
examples cannot have property wD 23 [38, Proposition 2]. On 
the other hand, by [38, Proposition 1], each Cauchy filter con­
verges in a Hausdorff quasi-metric space all Cauchy sequences 
of which are convergent. 

In [16] it is observed that the topological property of admit­
ting a complete quasi-uniformity is closed-hereditary, produc­
tive and preserved under perfect continuous surjections. The 
fine (transitive) quasi-uniformity of each (weakly) orthocom­
pact and each regular almost realcompact24 space is known to 
be complete [15,16]. 

Question [17, Problem C): Is the finest compatible quasi­
uniformity on a topological space always complete? The an­
swer to this question has turned out to be negative. 

22A T1-space X has a base of countable order if and only if there is a 
sequence (Bn)neN of bases for X that satisfies the following condition: 
Whenever x E X and (bn)neN is a decreasing sequence of subsets of 
X such that x E bn E Bn for each n E N, then {bn : n E N} is a 
neighborhood base at x. 

A Tychonoff space X is tech complete if there exists a countable family 
{gn : n E N} of open covers of X such that whenever F is a family of 
closed subsets of X that has the finite intersection property and that 
contains for each n E N a member Fn with Fn ~ Gn for some Gn E gn, 
then F has a nonempty intersection. 

23A subset B of a topological space X is called a discrete set in X if 
the family {{b} : b E B} is discrete. A topological space X is said to have 
property wD if for each countably infinite discrete set B in X there are a 
countably infinite subset C of B and a discrete collection {Gc : c E C} of 
open subsets of X such that Gc n C ={c} for each c E C. 

24A topological space is called almost realcompact (closed complete) if 
each open (closed) maximal filter :F without cluster point has a countable 
subcollection :F' such that n{F : F E :F'} = 0. 
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Proposition 5. [16, Corolla.,·y 4.1] An w-boundetP5 weakly Lin­
delof regular space that admits a complete quasi-uniformity is 
compact. 

Example 6. [16] Let D = {O,1} equipped with the discrete 
topology. Set P = DR and So = {(Xi)iER E P : Xi f:. 0 for 
at most countably many i E ~Il}. It is known that ~o is weakly 
Lindelof and w-bounded. Sir.~ ce f3~o = P, ~o is not compact. 
Hence ~o does not admit a c, )mplete quasi-uniformity. 

Another useful criterion to show that certain spaces do not 
admit complete quasi-uniforI11 Lities is established in (34, Propo­
sition 3.2]. The following problem however remains still open. 

Problem 9. [13] Is the fine Ir'uasi-uniformity of each (regular) 
quasi-pseudo-metrizable spaCi~ complete? 

Definition: [17] A quasi-u liform space (X, U) is called bi­
complete provided that the U liformity U* is complete. 

Example: [13, Example 4] Let '" be an uncountable regular 
cardinal (equipped with its <>rder topology) and let U be the 
supremum quasi-uniformity l)f all quasi-pseudo-metric quasi­
uniformities Up on K such tha"~ T(Up) is coarser than the topol­
ogy of K, and such that the I~ seudo-metric max{p, p-l} gener­
ates on K, a topology of densit y strictly smaller than K. Then U 
is a compatible quasi-uniforn:dty on K that is not bicomplete. 

Proposition 6. [13] A topo.~ogical space admits a bicomplete 
quasi-uniformity if and only if its fine quasi-uniformity is bi­
complete. 

[5,20] The Pervin quasi-ur.l~iformityof a topological space X 
is bicomplete if and only ifX is hereditarily compact and quasi­
sober. 

[13] The fine transitive qU\lsi-uniformity of any quasi-sober, 
any countable or any first-countable T1 -space is bicomplete. 

25A topological space X is called w-bounded provided that each count­
able subset of X has a compact closure in X. 
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The fine quasi-uniformity of any quasi-pseudo-metrizable space 
is bicomplete. 

[44] A quasi-pseudo-metric space that admits only bicomplete 
quasi-pseudo-metrics is hereditarily compact and quasi-sober 
(and thus admits a unique quasi-uniformity and has a countable 
topology). 

Remarks: [13, Proposition 7] The fine quasi-uniformity of 
the cofinite topology on an uncountable set is not bicomplete. 

Those topological spaces that have a bicomplete semi­
continuous quasi-uniformity are characterized in [13, Propo­
sition 8]. Among other things it is proved in [13] that the 
semicontinuous quasi-uniformity of a quasi-sober hereditari­
ly countably metacompact space X is bicomplete if and only 
if X is hereditarily closed-complete. Furthermore the semi­
continuous quasi-uniformity of any hereditarily realcompact 
completely regular space is shown to be bicomplete. 

Problem 10. (a) [13,16] Is the fine quasi-uniformity of a topo­
logical space complete (bicomplete) if and only if its fine tran­
sitive quasi-uniformity is complete (bicomplete)? 

(b) [50] Which quasi-pseudo-metrizable spaces admit bicom­
plete quasi-pseudo-metrics? 

Example: [44] The Euclidean topology on the rationals Q 
admits a bicomplete quasi-pseudo-metric, while this is not true 
for the lower topology on Q. 

The concept of a bicomplete quasi-uniform space is quite 
important, because the corresponding well-developed comple­
tion theory extends the known theory for uniform spaces in a 
straightforward way. Furthermore the generalized theory has 
applications in various areas of mathematics. It also plays a 
decisive role in the completion theory of the so-called topolog­
ical quasi-uniform spaces introduced recently by M.B. Smyth 
and Ph. Siinderhauf [53,54]. 
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5. BICOMPLETION AND TOPOLOGICALLY ORDERED SPACES 

All topological and quasi-uniform spaces considered in this 
section are To-spaces. 

A basic result: [17] Each quasi-uniform space (X, U) has an 
(up to quasi-uniform isomorphism) unique bicompletion (X,U) 
in the sense that the space (X, U) is a bicomplete extension of 
(X, U) in which (X, U) is T(U*)-dense. (The uniformities (f!)* 
and U* coincide; see below.) 

If D is a T(U*)-dense subspace of a quasi-uniform space 
(X,U) and f : (D,UID) --+ (~V) is quasi-uniformly contin­
uous where (~ V) is a bicomplete quasi-uniform space, then 
there exists a (unique) quasi-uniformly continuous extension 
of f to X. 

Construction of the bicompletion (X, U) of a quasi-uniform 
space (X,U): [17] Let (X,U) be a quasi-uniform space. By 
X we denote the set of all minimal U*-Cauchy filters on X. 
Moreover let Ube the quasi-uniformity on X that is generated 
by all sets fj where U belongs to U. Here fj = {(F, g) E 

X x X : there exist F E :F and G E 9 such that F x G ~ U}. 
Often a T(U*)-convergent minimal U*-Cauchy filter 7J*(x) E 

X is identified with its limit point in (X,U*) and using this 
identification (X,U) is considered a subspace of (X,U). 

Remark: (e.g. [5]) Suppose that U is totally bounded. Then 
the topological space (X, T (U)) is a locally compact space in 
which the limit set of any ultrafilter is the closure of some 
(unique) singleton. Furthermore U is the coarsest quasi-
uniformity that the topological space (X, T(U)) admits and 
the uniform topology T(U*) is compact. 

Next we construct both the sobrification of a topological and 
the Fell-compactification of a locally compact space with the 
help of the bicompletion. 

Definition: [20] The Skula topology or b-topology of a topo­
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logical space X is the topology T(P*) where P is the Pervin 
quasi-uniformity of X. Let sX be the set of all closed irre­
ducible subsets of X. Define a topology ~ on sx as follows: 
!¥J' = {[G] : G is open in X} where [G] = {F E sX : FnG # 0} 
whenever G is open in X. The sober space (SX,ST) is called the 
sobrification of X. If X is a To-space, then i : X ~ sX defined 
by i(x) = cl{x} whenever x E X is a topological embedding of 
X onto a b-dense subspace of SX. 

[21] A family of subsets H of a topological space X is called 
well-monotone provided that the partial order ~ of set inclu­
sion is a well-order on H. The compatible quasi-uniformity M 
on a topological space X which has as a subbase the set of all 
binary relations of the form T = U{ {x} x (n{G : x E G E 
1i}) : x E X} where 1i is a well-monotone open cover of X is 
called the well-monotone open covering quasi-uniformity ofX. 
It coincides with the Pervin quasi-uniformity of X if and only 
if X is hereditarily compact [13, Remark 1]. 

Proposition 7. [13] Let X be a topological space and let M x 
be the J!!.,ell-m!!!!.otone open covering quasi-uniforrr:i!:JI of X. 
Then (X, T(M x )) is the sobrification of X and M x is the 

well-monotone open covering quasi-uniformity of{X , T(M x )). 
(Here we identify each minimal M'X-Cauchy filter with its 
T(M)-limit set.) In particular, M x is bicomplete if and only 
if X is quasi-sober. 

Definition: [12] Let X be a locally compact topological space 
and let £, be the set of limit sets of ultrafilters on X. Consid­
er the topology T on £, which is generated by the subbase 
{< X,G >: G is open in X} U {< X\[{>: [{ is com­
pact in X} where < X, G >= {F E £, : G n F # 0} and 
< X\I{ >= {F E £': [{n F = 0}. It is known that (£', T,~) 
is a compact (partially) ordered Hausdorff space, the so-called 
Fell-compactijication of X. 

Proposition 8. [32,29] Let U be the coarsest quasi-uniformity 

on a locally compact space X. Then (X,T(U*), nU) is the Fell 
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compactijication of x. (Again, minimal U* -Cauchy filters are 
identified with their T(U)-limit sets.) The quasi-uniformity U 
is bicomplete if and only if the limit set of each ultrafilter on 
X is the closure of some (unique) singleton. If X is a locally 
compact noncompact Hausdorff space, then (X, T(U*)) is the 
one-point-compactijication of X with 0 added as the point-at­
infinity. (If X is a compact Hausdorff space, then U = U* and 
U is complete.) 

In the light of the last proposition we are going to finish this 
section with some remarks on topological ordered spaces. 

A topological ordered space (X, T,:::;) is a topological space 
(X, T) equipped with a TxT-closed partial order:::; . For 
any quasi-uniform To-space (X, U), the triple (X, T(U*), nU) 
is a topological ordered space. The class of topological ordered 
spaces determined by this construction is exactly the class of 
completely regular ordered spaces (introduced by L. Nachbin; 
see [48]).26 

Any compact topological ordered space (X, T,~) is deter­
mined by a unique quasi-uniformity U [17, Theorem 1.20]. It 
consists of the set of all TxT-neighborhoods of ~ in the 
product space X x X. Of course, U is totally bounded and 
bicomplete. Furthermore T(U) is the upper and T(U- 1

) the 
lower topology 27 of X. 

Remarks: In [40] those topological ordered spaces (X, T, ~) 

for which the set N of all neighborhoods of ::; forms a quasi­

26A topological ordered space (X, T,~) is called completely regular 
ordered provided that the following two conditions are satisfied: 

(i) If a, b E X such that I(a) ~ I(b) whenever I : X ~ [0,1] is 
continuous and increasing, then a ::; b. 

(ii) For any point a E X and neighborhood V of a there are two 
continuous maps!, 9 : X ~ [0,1] such that I is continuous and increasing, 
9 is continuous and decreasing, I(a) =g(a) =1 and min{/(x),g(x)} =0 
for any x E X \ v. 

27As before, we suppose that the upper topology consists of the open 
increasing sets; recall that G ~ X is called increasing if lEG and x ~ I 
imply that x E G. 
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uniformity are studied. (Note that by [40, Corollary 1], N 
necessarily determines X in this case.) It is shown for in­
stance [40, Lemma 4 and Example 4] that a topological ordered 
space with a countably compact sequential topology satisfies 
the stated condition if and only if the set of all neighborhoods 
of its diagonal forms a uniformity. While each GO space has 
the discussed property [40, Corollary 4], R 2 equipped with its 
usual topology and order does not possess it [40, Example 2]. 

Question due to J. Lawson [47]: Let (X, T,~) be a com­
pletely regular ordered topological space, let F be a closed 
increasing set in X and let a E X \ F. Is there a continuous 
increasing function f : X ~ [0,1] such that f(F) = 1 and 
f(a) = O? 

In [36, Proposition 1] it is observed that a completely regu­
lar ordered space X satisfies both Lawson's condition and its 
order dual if and only if the bispace given by the upper and 
lower topology of X is completely regular. In general, Lawson's 
question has a negative answer. 

Example 7. [36, Example 6] On the set X = [0, WI] x [0, wo] 
equipped with the product topology T of the interval topolo­
gies on the factor sets define a partial order by (a, b) ::; (c, d) 
if and only if a ~ c and b ~ d whenever (a, b), (c, d) E X. 
Let V be the unique quasi-uniformity on the compact space X 
such that T(V*) = T and nV =~, i.e. V is the coarsest quasi­
uniformity compatible with the upper topology of X. For each 
V E V set Hv = V \ {(x, y) E X x X : x = (WI, wo) and 
y =I (WI,WO)}. Let U be the quasi-uniformity on X generated 
by {Hv : V E V}. For the completely regular ordered space 
Z = (X, T(U*), nU) there does not exist a continuous increas­
ing function f: X ~ [0,1] such that f([O,wJx{wo}) = 1 and 
f((WI,WO)) = 0, although the set [O,Wl[X{WO} is closed and . .
IncreasIng. 

We observe that the subspace Y = X \ ([O,Wl[ x{2n : n E 
wo}) of the space Z defined above is a non-pseudo-compact 
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completely regular ordered space which is determined by a 
unique quasi-uniformity [41, Example 3] (compare [33]). 

Under additional conditions some positive answers to Law­
son's question are known. 

Proposition 9. [36] Each completely regular ordered topolog­
ical lattice and each locally compact completely regular ordered 
I -space28 has the separation property formulated above. 

Problem 11. (compare [36, Problem]) Does there exist a com­
pletely regular ordered I -space with a normal topology that does 
not have Lawson's separation property?29 

6. CANONICAL QUASI-UNIFORMITIES 

At the end of this survey we would like to pose a problem 
about the so-called canonical quasi-uniformities. 

Definition: (e.g. [3,37]) Let T denote the forgetful functor 
from the category Quu of quasi-uniform spaces and quasi­
uniformly continuous maps to the category Top of topological 
spaces and continuous maps. A functorial admissible quasi­
uniformity on the topological spaces is a functor F : Top ~ 

Quu such that TF = 1, i.e. F is a right inverse or section of 
T, briefly a T-section. (Consider e.g. the functor that endows 
each X E Top with its semi-continuous quasi-uniformity.) 
Functorial admissible quasi-uniformities on subcategories of 
Top are defined similarly. For T-sections F and G we say 
that F is coarser than G (written F ::; G) provided that the 
quasi-uniformity of FX is coarser than the quasi-uniformity of 
GX whenever X E Top. 

28A topologically ordered space (X, T, $) is called an I-space provided 
that d(E) and i(E) are open for any open subset E of X. Here deE) (i(E), 
respectively) denotes the intersection of the decreasing sets (increasing 
sets) containing E. 

29Remark added during revision: The answer to this question is posi­
tive (see [45]). 
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Examples: [37] (a) Given X E Top let Ux be the finest 
uniformity on X such that T (Ux ) is coarser than the topolo­
gy of X. Denote the supremum of Ux and the Pervin quasi­
uniformity Px of X by S(X). The functor S : Top ~ Quu 
that equips each topological space X with the quasi-uniformity 
S(X) is a T-section. In [37, Proposition 2.4] it is noted that 
for a paracompact T2-space X, the quasi-uniformity S(X) is 
transitive if and only if X is boundedly paracompact30• 

(b) Let X be the subset {k +f : kEN and s E {O, ... ,k­
1}} of the set Q of rationals. Define a quasi-pseudo-metric d 
on X as follows: d(x, y) == 0 if x :::; y and d(x, y) == x - y if 
x > y. Then M == {V : there is aT-section S : Top ~ Quu 
such that V is the quasi-uniformity of the space SX} consists 
of the Pervin quasi-uniformity and the fine quasi-uniformity of 
X. In particular Ud tt M. 

Remarks: It is well-known [3] that the Pervin functor is the 
coarsest T-section on Top and it is readily checked [37] that 
the Cech functor C* : Greg --+ Unif is the coarsest functorial 
admissible quasi-uniformity on the completely regular topolog­
ical spaces and continuous maps.31 Furthermore it is shown in 
[37, Proposition 3.1] that the Pervin quasi-uniformity is the 
coarsest admissible functorial quasi-uniformity on the catego­
ry of Hausdorff spaces and continuous maps. The answer to 
the following question however is unknown. 

Problem 12. [37] Is the Pervin quasi-uniformity the coarsest 
admissible functorial quasi-uniformity on the category of regu­
lar topological spaces and continuous maps? 

Example 8. Let X be a regular topological space and let Rx 
be the quasi-uniformity on X that is generated by the subbase 

30A regular topological space X is boundedly paracompact if each open 
cover C of X has an open refinement that is the union of finitely many 
discrete families. 

31For each X E Greg the uniform space C* X carries the uniformity 
initial for the continuous maps from X to [0,1] where [0, 1] is equipped 
with its unique compatible uniformity. 
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{[G X G] U [(X \ G) X X] : G is regular open32 in X}. Clearly 
R x is a compatible quasi-uniformity on X. However this con­
struction is not functorial on the category of regular spaces and 
continuous maps. 

7. ApPENDIX 

In this final section we would like to answer a question put to the 
author by G.C.L. Brummer at the International Conference in Memory 
of F. Hausdorff, Berlin, 1992. Subsequently the result was used in the 
proof of [4, Proposition 4.2]. Proposition 10 nicely illustrates some of the 
theory presented in this paper. The terminology is the same as in the last 
two sections. We work in the category of To-spaces and M : Top --i> Quu 
denotes the functor which assigns the well-monotone open covering quasi­
uniformity. By 1< : Quu Quu we shall denote the bicompletion--i> 

functor. 

Proposition 10. For any T-section F, the inequality !{F ~ FTI{F im­
plies that F ~ M. 

Proof Let F be a T-section satisfying !{F ~ FTI{F. For any (infinite) 
regular cardinal a define a topological space X a by endowing the set a 
with the lower topology {a} U {[a, ,B[ : (3 EO'}. We wish to show first that 
FXa ~ MXa for all a. Note that MXa is the fine quasi-uniformity of 
X a . 

Assume that there is a regular cardinal, such that FX~ < MX~. The 
quasi-uniformity of F X'Y will be denoted by U in the following. We want 
to prove that the property of F X~ implies that for each entourage W E U 
there exists a E , such that ([a, --i> Dx , ~ w. 

Let W E U and let V E U be such that V 2 ~ W where we as­
sume without loss of generality that for each 6 E " V( 6) is open in X~ 
([17, p. 3]). Note that it suffices to show that there is f3 E 1 such 
that V(f3) = " since then for any {3' with {3 ~ {3' < , we have that 
/3 E [0, ,8'] ~ V(f3') and, thus, 1 =V(,B) ~ W(,B') and ([{3, --i> [) x 1 ~ W. 

Therefore, in order to reach a contradiction we assume that V(6) f:. , 
whenever 6 E ,. Inductively define a strictly increasing transfinite se­
quence (x{J){J<'Y of points in , such that x{J ~ V(x a ) whenever a < {3. 
Note that the construction is possible, because for any,' < , there is 
," < I such that U,8<'Y' V(xp) ~ [0,,"], since each V(x,B) is open and 
distinct from, and , is regular. 

32An open set G of a topological space is called regular open if G is 
equal to the interior of its closure. 
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The map j : X"Y --+- X"Y defined by j({3) = xp whenever {3 < "y is contin­
uous and we have (j x j)-l(V) =UaE"Y({a} X [0, a]). Hence FX"Y carries 
the fine quasi-uniformity of X"Y - a contradiction. We have verified that 
each entourage W of U has the property stated above. 

It follows that the filter F generated by {]{3, --+- [: {3 E "y} on "y is a 
U*-Cauchy filter. Denote the minimal U*-Cauchy filter contained in Y 
by g [17, Proposition 3.30]. We now observe that the singleton {Q} is 
closed in T 1<FX"Y : By the property of the entourages of U established 
above, for any W E U there is (3 < "y such that W- 1(]{3, ~ Dx "y ~ W 2 . 

Hence (g, 1l) E rii whenever 1l E=;. The assertion follows, since T K F X"Y 
is a To-space. Because F is finer than the Pervin functor, U = [{g} x 
1] u fey \ {Q}) x (=; \ {Q})] belongs to the quasi-uniformity of FT1<F X"Y. 
However by the obvious density argument it does not belong to ii, the 
quasi-uniformity of the space I<FX"Y' since U- 1(g) = {g} and g belongs 
to the remainder of 1<FX"Y' for :F does not converge in X"Y. On the other 
hand by our original assumption, FT1<F X"Y ~ 1<F X"Y. We have reached 
a contradiction and finally conclude that FX a ~ M X a for any regular 
cardinal a. 

Let X be an arbitrary topological space and let {G{3 : (3 < 6} be any 
well-monotone open cover of X. Define a continuous map f : X --+- X"Y 
where "y is some regular cardinal larger than 6, by setting for each x E X, 
I(x) equal to the minimal{3 < 6 such that x E Gp. Since FX"Y ~ MX"Y' we 
see that UaE"Y({a} X [0, a]) is a member of the quasi-uniformity of FX"Y. 
Therefore (I x !)-l(UaE"Y{a} x [O,a]) =UXEX({x} x GJ(x)) belongs to 
the quasi-uniformity of FX. It follows that FX ~ MX. We have shown 
that F ~ M. 
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