Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

Topology Proceedings Vol 18, 1993

SPACES WITH A σ -HEREDITARILY CLOSURE-PRESERVING *k*-NETWORK*

CHUAN LIU

ABSTRACT. In this paper, we will survey some results of spaces with a σ -HCP k-network and pose some related problems.

 σ -hereditarily closure-preserving (abbr. σ -HCP) k-network was first introduced by Guthrie for characterizing metrizable spaces. Afterwards, L. Foged Fo₁] characterized a Lašnev space as a Fréchet space with a σ -HCP k-network. In recent years, Junnila and Ziqiu Yun [JY] gave the relationship between \aleph -spaces and spaces with a σ -HCP k-network; Y. Tanaka characterized a g-metrizable spaces as a g-first countable space with a σ -HCP k-network, Hence, spaces with a σ -HCP k-network play an important role in studying generalized metric spaces.

Definitions: A collection \mathcal{P} of subsets of topological space Xis said to be a k-network for X, if, given any open set U and any compact set $K \subset U$, there is a finite subcollection \mathcal{P}^* of \mathcal{P} such that $K \subset \cup \mathcal{P}^* \subset U$. A family $\{A_\alpha : \alpha \in I\}$ of subsets of a space X is said to be hereditarily closure-preserving (abbr. HCP) if $\bigcup_{\alpha \in J} \overline{B_\alpha} = \bigcup_{\alpha \in J} \overline{B_\alpha}$, whenever $J \subset I$ and $B_\alpha \subset A_\alpha$, for each $\alpha \in J$. If κ is a cardinal number, let S_κ be the space obtained from the disjoint union of κ many convergent sequences by identifying all the limit points to a single point x_0 . S_2 denotes Aren's space.

^{*} Partially supported by National Science Foundation of China.

All the spaces in this paper are regular and T_1 . All mappings are continuous and surjective.

1. Lašnev spaces, &-spaces, g-metrizable spaces and spaces with a σ -HCP k-network

First, Guthrie proved the following unpublished theorem

Theorem 1.1. X is metrizable iff X is first countable and has a σ -HCP k-network.

In 1985, L. Foged $[Fo_2]$ gave a beautiful characterization of Lašnev space

Theorem 1.2. X is a closed image of a metric space iff X is a Fréchet space and has a σ -HCP k-network.

With this powerful result, H. Hung, Mizokami obtained some interesting characterizations of Lašnev space.

In 1988, S. Lin $[L_1]$ showed that the following

Theorem 1.3. Lašnev space X is not an \aleph -space iff X contains closed copy of S_{ω_1} .

In 1992, he improved his result $[L_2]$

Theorem 1.4. A k-space with a σ -HCP k-network is an \aleph -space iff it contains no closed copy of S_{ω_1} .

But the most interesting result on σ -HCP k-network was obtained by Junnila and Ziqiu Yun, they pointed out the difference between \aleph -spaces and spaces with a σ -HCP k-network.

Theorem 1.5. [JY] Let X have a σ -HCP k-network. Then X is an \aleph -space iff X contains no closed copy of S_{ω_1} .

Theorem 1.5 has some corollaries

Corollary 1.1. A space X is an \aleph -space iff X has a σ -HCP k-network and a point-countable closed k-network.

Corollary 1.2. If X is a space with a σ -HCP k-network and $\chi(X) \leq \omega_1$, then X is an \aleph -space.

In 1991, Y. Tanaka $[T_1]$ and in 1992, S. Lin $[L_2]$ independently got the following result on *g*-metrizable space.

Theorem 1.6. The following are equivalent for a space X

- (a) X is g-metrizable.
- (b) X is a k-space with a σ -HCP weak base.
- (c) X is a weakly first countable space with a σ -HCP k-network.

Recently, we improved Tanaka and S. Lin's Theorem.

Theorem 1.7. [LD] A k-space with a σ -HCP k-network is g-metrizable iff it contains no closed copy of S_{ω} .

Now we will discuss some special spaces with a σ -HCP k-network.

Recall that a space X is said to satisfy DCCC, if every discrete open collection in X is countable.

Theorem 1.8. For a space X, the following are equivalent

- (1) $2^{\omega} \leq 2^{\omega_1}$
- (2) Every normal, character $\leq 2^{\omega}$, DCCC space with a σ -HCP k-network is an \aleph_0 -space.

Proof: (1) \rightarrow (2) By Theorem 2.2 in [Ta], character $\leq 2^{\omega}$, normal space is ω_1 -weakly collectionwise Hausdorff. It is easy to prove that a normal, ω_1 -weakly collectionwise Hausdorff, DCCC space is \aleph_1 -compact. Hence it is an \aleph_0 -space [L₃].

 $(2) \to (1)$ If $2^{\omega} = 2^{\omega_1}$. We will modify Tall's example (Example D in [Ta]). Let $\{A_{\alpha} : \alpha \in 2^{\omega_1} = 2^{\omega}\}$ be a maximal family of independent subsets of ω . Let $\{H_{\alpha} : \alpha \in 2^{\omega_1} = 2^{\omega}\}$ enumerate $\mathcal{P}(\omega_1)$. Define $U'_{\zeta} \subset \mathcal{P}(\omega), \zeta \in \omega_1$, by $A_{\alpha} \in U'_{\zeta}$ if $\zeta \in H_{\alpha}; \omega - A_{\alpha} \in U'_{\zeta}$ if $\zeta \in H_{\alpha}$. Then U'_{ζ} is a filter subbase. Let U'_{ζ} generate a filter on ω and extend it to an ultrafilter U_{ζ} . Consider the U_{ζ} 's as points in $\beta \omega - \omega$. We endow $X = \omega \cup \{U_{\zeta} : \zeta < \omega_1\}$ with subspace topology of $\beta \omega$. Then X is normal, separable but it is not \aleph_1 -compact. Since any convergent sequence in $\beta \omega$ is trivial sequence. Then so is X. Let $\mathcal{P}_0 = \{\{U_{\zeta}\} : \zeta < \omega_1\} \cup \{\{0\}\}, \mathcal{P}_n = \{\{n\}\}\}$ for each $n \in N$. Then $\mathcal{P} = \bigcup_{n \in \omega} \mathcal{P}_n$

is a σ -HCP network of X. By Proposition 1.2 in [T₆], \mathcal{P} is a σ -HCP k-network. Thus X is a normal, character $\leq 2^{\omega}$, DCCC space with a σ -HCP k-network, but it is not an \aleph_0 -space, a contradiction. Hence $2^{\omega} < 2^{\omega_1}$.

Corollary 1.3. The following are equivalent

- (1) $2^{\omega} < 2^{\omega_1}$
- (2) Every normal, separable space with a σ -HCP k-network is an \aleph_0 -space.

From Corollary 1.2, we can get

Theorem 1.9. (CH) Every separable space with a σ -HCP k-network is an \aleph -space.

Remark Under $MA + \neg CH$, Z. Yun [Y₂] showed that there is a separable, normal space with a σ -HCP k-network which is not an \aleph -space, so whether every separable space with a σ -HCP k-network is an \aleph -space is independent of the axioms of set theory.

Theorem 1.10. [Lc₂] Every normal, DCCC, k-space with a σ -HCP k-network is an \aleph_0 -space.

Also we showed that the space with a σ -HCP k-network has a σ -compact finite k-network and pointed out that space with a σ -compact finite k-network need not have a σ -HCP k-network [Lc₁].

2. The product of spaces with a σ -HCP k-network

It is well known that product of countable many \aleph -spaces is an \aleph -space. But the product of two spaces with a σ -HCP *k*-network need not have a σ -HCP *k*-network [L₄].

Junnila and Ziqiu Yun [JY] showed the following interesting theorem:

Theorem 2.1. If X and Y have a σ -HCP k-network, then $X \times Y$ has a σ -HCP k-network iff either both X and Y are \aleph -space or in one of them every compact subset is finite.

182

183

The following corollaries are from Theorem 2.1.

Corollary 2.1. If $X \times Y$ has a σ -HCP k-network, then either X or Y is an \aleph -space.

Corollary 2.2. If X^2 has a σ -HCP k-network, then X is an \aleph -space.

Corollary 2.3. For each $n \in N$, let X_n have at least two points. If $\prod_{n \in N} X_n$ has a σ -HCP k-network, then it is an \aleph -space.

Let S be the subspace $\{1/n : n \in N\} \cup \{0\}$ of R in usual topology.

Corollary 2.4. If $S \times X$ has a σ -HCP k-network, then X is an \aleph -space.

Corollary 2.5. If both X and Y are k-spaces and $X \times Y$ has a σ -HCP k-network, then both X and Y are \aleph -spaces or one of them is discrete.

Now we consider when the product of spaces with a σ -HCP k-network is a k-space.

First, we need a Lemma. Combining with Gruenhage's Lemma [Gr] and the fact that S_{ω} is a perfect mapping image of Aren's space S_2 . We have the following Lemma.

Lemma. The following are equivalent

- (1) $\neg BF(\omega_2)$
- (2) $S_{\omega} \times S_{\omega_1}$ is not a k-space
- (3) $S_2 \times S_{\omega_1}$ is not a k-space.

A space X is said to belong to class \mathcal{T} if it is the union of countably many closed and locally compact subset X_n such that $A \subset X$ is closed whenever $A \cap X_n$ is closed in X_n for all $n = 1, 2, 3, \ldots$

Theorem 2.2. Let \mathcal{A} be the class which contains all k-spaces with a σ -HCP k-network. Then the following are equivalent

(a) $\neg BF(\omega_2)$

- (b) For any $X, Y \in A$, $X \times Y$ is a k-space iff one of the following holds
 - (1) Both X and Y are metrizable.
 - (2) X or Y is a locally compact, metrizable space.
 - (3) X and Y are \aleph -spaces and in the class \mathcal{T} .

Proof: (b) \rightarrow (a) $S_{\omega}, S_{\omega_1} \in \mathcal{A}$. But S_{ω} and S_{ω_1} don't satisfy (1), (2) and (3), thus $S_{\omega} \times S_{\omega_1}$ is not a k-space. Then (a) holds by Lemma.

(a) \rightarrow (b) It is easy to prove that if X and Y satisfy one of (1), (2) and (3), then $X \times Y$ is a k-space.

Let $X, Y \in \mathcal{A}$ and $X \times Y$ be a k-space. If X and Y are \aleph -spaces, then one of (1), (2) and (3) holds [T₂]. If both X and Y are not \aleph -spaces, then X and Y contain a closed copy of S_{ω_1} by Theorem 1.5, thus $S_{\omega_1} \times S_{\omega_1}$ is a k-space. This contradicts with Lemma 5 in [Gr]. If one of them is an \aleph -space, without loss of generality, let Y be an \aleph -space. Then X contains a closed copy of S_{ω_1} . Y contains no clos ed copy of S_2 and no closed copy of S_{ω} . Otherwise $S_{\omega_1} \times S_2$ or $S_{\omega_1} \times S_{\omega}$ is a k-space, a contradiction. Since Y is a space in which every point is a G_{δ} . Then Y is a sequential space, hence Y is a strong Fréchet space [T₃]. Thus Y is metrizable [T₂]. Since $S_{\omega_1} \times Y$ is a k-space and S_{ω_1} is not a strong Fréchet. Then Y is locally compact by Theorem 4.5 [T₂]. \Box

Comparing with Corollary 2.1, we have the following

Theorem 2.3. Let X and Y have a σ -HCP k-network. If $X \times Y$ is a k-space, then either X or Y is an \aleph -space.

Proof: If neither X nor Y is an \aleph -space, then both X and Y contain a closed copy of S_{ω_1} , hence $S_{\omega_1} \times S_{\omega_1}$ is a k-space. This is a contradiction [Gr]. \Box

Remark: The referee informed the author that Theorem 2.3 also was shown by S. Lin in his 1988's preprint.

Corollary 2.6. Let X have a σ -HCP k-network. If X^2 is a k-space, then X is an \aleph -space.

Also, Tanaka $[T_4]$ showed the following

Theorem 2.4. Let X and Y have a σ -HCP. Then $X \times Y$ is weakly first countable iff one of the following holds

- (a) X and Y are metrizable
- (b) X or Y is a locally compact, metrizable space and both X and Y are weakly first countable
- (c) X and Y have a σ -locally finite weak base consisting of compact subsets

3. Some mapping theorems

First, Tanaka $[T_1]$ showed the following

Theorem 3.1. Let $f : X \to Y$ be a closed mapping. If X has a σ -HCP k-network. Then so does Y.

Comparing with Theorem 3.4 in $[L_5]$, we have the following

Theorem 3.2. There is a space X with no σ -HCP k-network which has a G_{δ} -diagonal, a space Y which has a σ -HCP k-network, and a perfect mapping $f : X \to Y$.

Proof: Let I denote the unit closed interval. By Theorem 2.1, $S_{\omega_1} \times I$ has not σ -HCP k-network. But it is a σ -space. Let $f: S_{\omega_1} \times I \to S_{\omega_1}$ be a project mapping. Then f is a perfect mapping. \Box

Theorem 3.3 Let $f: X \to Y$ be a closed mapping of a paracompact \aleph -space X onto a space Y. If Y^2 is a k-space, then $\partial f^{-1}(y)$ is Lindelöf for each $y \in Y$.

Proof: By Theorem 3.1 and Corollary 2.6, Y is an \aleph -space, hence Y has a point-countable closed k-network. Thus $\partial f^{-1}(y)$ is Lindelöf for each $y \in Y$ by Proposition 6.4 in [GMT]. \Box

Remark: Theorem 3.3 gives an affirmative answer to Tanaka's question $[T_6]$: "Let Y be a closed image, under a map f, of a metric space, then, is each $\partial f^{-1}(y)$ a Lindelöf space when

CHUAN LIU

 Y^2 is a k-space" G. Gruenhage [Gr] answers this question in another way.

Zimin Gao [Ga] and S. Lin $[L_5]$ proved independently the following:

Theorem 3.4. Let $f : X \to Y$ be a closed Lindelöf mapping. If X is an \aleph -space; then so is Y.

We could prove this theorem in another way.

Proof: By Theorem 3.1, Y has a σ -HCP k-network. If Y has a closed copy of S_{ω_1} , then $f|_{f^{-1}(S_{\omega_1})} : f^{-1}(S_{\omega_1}) \to S_{\omega_1}$ also is a closed Lindelöf mapping. So $f^{-1}(S_{\omega_1})$ is a paracompact \aleph -space (Note: S_{ω_1} is a paracompact space). By Proposition 6.4 in [GMT], S_{ω_1} contains a point-countable closed k-network. This contradicts with Example 9.2 in [GMT]. Hence Y is an \aleph -space by Theorem 1.5. \Box

Theorem 3.5. \aleph -spaces are preserved by open and closed mappings.

Proof: Let $f: X \to Y$ be an open and closed mapping, X be an \aleph -space. By Theorem 3.1, Y has a σ -HCP k-network. If Y contains a closed copy of S_{ω_1} , then for each $\alpha < \omega_1$, let $S^{\alpha} = \{x_n^{\alpha} : n \in N\}$ be one of the spines of $S_{\omega_1} \cdot x_n^{\alpha} \to x_0$. Pick $y \in f^{-1}(x_0)$. Since X is perfect. There exists $\{G_k : k \in N\}$ with G_k open such that $\{y\} = \bigcap_{k \in N} \overline{G}_k = \bigcap_{k \in N} G_k$ and $\overline{G}_{k+1} \subset G_k$. then $f(G_k)$ is open in Y. For each $\alpha < \omega_1$, we choose a subsequence $\{x_{n,k}^{\alpha} : k \in N\}$ of $\{x_n^{\alpha} : n \in N\}$ such that $x_{n,k}^{\alpha} \in f(G_k)$. Pick $y_k^{\alpha} \in G_k \cap f^{-1}(x_{n,k}^{\alpha})$. It is easy to show that $y_k^{\alpha} \to y$. Put $X_1 = \{y\} \cup \{y_k^{\alpha} : \alpha < \omega_1, k \in N\}$. Obviously, X_1 is homemorphic to S_{ω_1} , a contradiction. Hence Y is an \aleph -space by Theorem 1.5. \Box

Remark: Theorem 3.5 also was proved by Z. Yun in another way $[Y_1]$

186

4. Some Problems

Problem 4.1. Is a separable k-space with a σ -HCP k-network an \aleph_0 -space? (Yes, if (CH))

Problem 4.2. Are k-spaces with a σ -HCP k-network hereditarily meta-Lindelöf?

Remark: An affirmative answer to problem 4.2 implies an affirmative answer to the problem 4.1.

Problem 4.3. [L₆] Is every space with a σ -HCP k-network a closed image of an \aleph -space?

Problem 4.4. Is a k-space with a σ -HCP k-network a closed image of a g-metrizable space?

Remark: A negative answer to problem 4.2 implies a negative answer to problem 4.4.

Problem 4.5. Is a stratifiable Fréchet space a Lašnev space if the space has a point-countable k-network?

References

- [Fo1] L. Foged, On g-metrizability, Pacific J. Math., 98 (1982), 327-332.
- [Fo₂] —, A characterization of closed images of metric spaces, Proc. Amer. Math. Soc., 95 (1985), 487-490.
- [Ga] Z. min Gao, ℵ-spaces is invariant under perfect mapping, Q. & A. in General Topology, 5 (1987), 271-279.
- [Gr] G. Gruenhage, k-spaces and products of closed images of metric space, Proc. Amer. Math. Soc., 80 (1980), 478-482
- [GMT] —, E. Michael and Y. Tanaka, Spaces determined by pointcountable covers, Pacific J. Math., 113 (1984), 303-332.
- [JY] H. Junnila and Yun Ziqiu, ℵ-spaces and spaces with a σ-hereditarily closure preserving k-network, Top. Appl., 44 (1992), 209-215.
- [Lc₁] C. Liu, Spaces with a σ-compact finite k-network, Q & A. in General Topology, 10 (1992), 81-87.
- [Lc₂] —, Notes on spaces with a σ -HCP k-network, to appear.
- [LD] C. Liu and M. Dai, G-metrizability and S_{ω} , to appear.
- [L₁] S. Lin, On Lašnev spaces, Acta. Math. Sinica, (PRC) 34 (1991), 222-225.
- [L₂] —, On g-metrizable spaces, Chinese Ann. of Math., 13A: 3 (1992), 403-409.

CHUAN LIU

- [L₃] —, A study of pseudobases, Q. & A. in General Topology, 6 (1988), 81-97.
- [l4] , On a problem of K. Tamano, Q. & A. in General Topology,
 6 (1988), 99-102.
- [L₅] —, Mapping theorems on ℵ-spaces, Top. Appl., **30** (1988), 159-164.
- [L₆] —, A survey of the theory of ℵ-spaces, Q. & A. in General Topology, 8 (1990), 405-419.
- [T₁] Y. Tanaka, σ-hereditarily closure-preserving k-networks and g-metrizability, Proc. Amer. Math. Soc., 112 (1991), 283-290.
- [T₂] —, A characterization for the products of k- and ℵ₀-spaces and related results, Proc. Amer. Math. Soc., 59 (1976), 149-155.
- [T₃] —, Metrization II, Topics in General Topology, Eds. M. Morita and J. Nagata, Amsterdam, 1989, 275-314.
- [T₄] —, Symmetric spaces, g-developable spaces and g-metrizable spaces, Math. Japonica, **36** (1991), 71-84.
- [T₅] —, On the k-ness for the products and closed images of metric spaces, General Top. Appl., 9 (1978), 175-183.
- [T₆] —, *Point-countable covers and k-networks*, Top. Proc., **12** (1987), 327-349.
- [Ta] F. Tall, Normality versus collectionwise normality, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 685-732.
- [Y₁] Z. Yun, A new characterization of ℵ-spaces, Top. Proc., 16 (1991), 253-256.
- [Y₂] —, Separability and ℵ-spaces, Q. & A. in General Topology, 11 (1993), 109-111.

Guangxi University Nanning, Guangxi 530004 P. R. China

188