Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT ${}_{\bigodot}$ by Topology Proceedings. All rights reserved.

THE PRODUCTS OF METALINDELOF SPACES

ZHU PEIYONG

In 1991, T. Hui and K. Chiba investigated the various covering properties of σ -products. They obtained the following results:

- A. ([1]) Let $X = \sigma\{X_{\alpha} : \alpha \in A\}$. If every finite subproduct of X is metacompact, then X is metacompact.
- B. ([1]) Let $X = \{X_{\alpha} : \alpha \in A\}$. If every finite subproduct of X is subparacompact and X is subnormal, then X is subparacompact.
- C. ([2]) Let $X = \sigma\{X_{\alpha} : \alpha \in A\}$ and X is normal. If every finite subproduct of X is submetacompact, then X is submetacompact.

In this paper, we first prove that σ -product of metalindelöf spaces has the result which is similar to (A). Secondly, we discuss Tychonoff product of two metalindelöf spaces on the basis of ([3], Theorem 6.25). The following two results are obtained:

- (i) Suppose X is a P-space and Y is a strong Σ -space. If X and Y are both metalindelöf space then $X \times Y$ is also metalindelöf.
- (ii) Let X be metalindelöf P-space, Y has a point countablebase, then $X \times Y$ is metalindelöf.

1. DEFINITION AND PRELIMINARIES

In this paper, N(K) denotes neighbourhood system of a set $K; (\mathcal{U})_x$, $\mathcal{U}|_A$ and N(x) denote respectively $\{U \in \mathcal{U} : x \in U\}, \{A \cap U : U \in \mathcal{U}\}$ and $N(\{x\}); \mathbf{N}$ and |A| denote respectively the set of all natural numbers and the cardinal numbers of A. A^n denotes $\{a : a \subset A \text{ and } |a| = n\}$. $A^{<\omega} = \bigcup \{A^n : n \in \omega\}$. And all the spaces do not add the axioms of separation if without special statement.

Definition 1.1. ([1]) Let $s = (s_{\alpha})_{\alpha \in A}$ be fixed point in Tychonoff product $\prod \{X_{\alpha} : \alpha \in A\}$. For each $x = (x_{\alpha}) \in \prod \{X_{\alpha} : \alpha \in A\}$, put $Q(x) = \{\alpha \in A : x_{\alpha} \neq s_{\alpha}\}$ and define $\sigma\{X_{\alpha} : \alpha \in A\} = \{x = (x_{\alpha})_{\alpha \in A} \in \prod \{X_{\alpha} : \alpha \in A\} : |Q(x)| < \omega\}$. We call $\sigma\{X_{\alpha} : \alpha \in A\}$ the σ -product of $\{X_{\alpha} : \alpha \in A\}$ and s the base point of it. And for every $a \in A^{<\omega}, \prod \{X_{\alpha} : \alpha \in A\}$ is called a finite subproduct of $\sigma\{X_{\alpha} : \alpha \in A\}$.

Definition 1.2. A space X is metalindelöf if its every open cover has a point countable open refinement.

Definition 1.3. ([4]) A space X is a P-space if for any index set Ω and for any collection $\{U(\alpha_1,\ldots,\alpha_n):(\alpha_1,\ldots,\alpha_n)\in\Omega^n\}$ of open sets in X such that $U(\alpha_1,\ldots,\alpha_n)\subset U(\alpha_1,\ldots,\alpha_n,\alpha_{n+1})$ for each $(\alpha_1,\ldots,\alpha_n,\alpha_{n+1})\in\Omega^{n+1}$, there exists a collection $\{F(\alpha_1,\ldots,\alpha_n):(\alpha_1,\ldots,\alpha_n)\in\Omega^n\}$ of closed sets in X such that

- (i) $F(\alpha_1, \ldots, \alpha_n) \subset U(\alpha_1, \ldots, \alpha_n)$ for each $(\alpha_1, \ldots, \alpha_n) \in \Omega^n$.
- (ii) $\bigcup \{F(\alpha_1,\ldots,\alpha_n): n\in N\} = X \text{ for any sequence } \{\alpha_n\}$ such that $X=\bigcup \{\cup (\alpha_1,\ldots,\alpha_n): n\in N\}.$

Definition 1.4. ([5]) Let $\{\mathcal{F}_i\}_{i\in N}$ be a sequence of locally finite closed coverings satisfying the following condition:

If $K_1 \supset K_2 \supset \dots$ is a sequence of non-empty closed sets of X such that

$$K_i \subset \bigcap \{F : x \in F \in \mathcal{F}_i\}$$

for some point x in X and for each $i \in \mathbb{N}$, then

$$\bigcap \{K_i : i \in N\} \neq \emptyset$$

We set

$$C(x) = \bigcap \{ \bigcap \{ F : x \in F \in \mathcal{F}_i \} : i \in N \}$$

then it is to be noted that every C(x) is closed and countable compact. Particularly, if C(x) is compact for each $x \in X$, then X is called a strong Σ -space.

Lemma 1.1. ([5]) If X is a strong Σ -space, then there exists a sequence $\{F_i\}_{i\in N}$ of locally finite closed covers of X and an index set Ω^i , satisfying

- (a) $\mathcal{F}_i = \{F(\alpha_1, \ldots, \alpha_i) : (\alpha_1, \ldots, \alpha_i) \in \Omega_i\}$
- (b) $F(\alpha_1, \ldots, \alpha_i) = \bigcup \{F(\alpha_1, \ldots, \alpha_i, \alpha_{n+1}) : \alpha_{i+1} \in \Omega\}$ for each $(\alpha_1, \ldots, \alpha_i) \in \Omega^i$
- (c) for each $x \in X$ there is $(\alpha_1, \ldots, \alpha_i, \ldots) \in \Omega^{\omega}$ such that
 - (i) $x \in \bigcap \{F(\alpha_1, \ldots, \alpha_i) : i \in N\}$
 - (ii) $C(x) = \bigcap \{ F \in \mathcal{F}_i : x \in F \text{ and } i \in N \}$ is compact and if U is open in X, $C(x) \subset U$, then there is $i \in N$ such that $C(x) \subset F(\alpha_1, \ldots, \alpha_i,) \subset U$.

We say that the sequence $\langle \mathcal{F}_i = \{ F(\alpha_1, \ldots, \alpha_i) : (\alpha_1, \ldots, \alpha_i) \in \Omega^i \} \rangle_{i \in \mathbb{N}}$ of closed covers of X is a strong Σ -net of X.

Definition 1.5. Let $\mathcal{A}^F = \{ \bigcup B : B \in \mathcal{A}^{<\omega} \}$, the collection \mathcal{A} is said to be directed if \mathcal{A}^F refined \mathcal{A} .

The following is easily proved by Definition 1.2 and Definition 1.5:

Lemma 1.2. X is metalindelöf iff every directed open cover of X has a point countable open refinement.

2. Main results and Proofs

Theorem 2.1. Let $\{X_{\alpha} : \alpha \in A\}$ be a family of T_1 spaces and $X = \sigma\{X_{\alpha} : \alpha \in A\}$. If every finite subproduct of X is metalindelöf, then X is metalindelöf.

Proof: For each $a \in A^{<\omega}$ and $n \in \omega$ denote $Y_a = \Pi\{X_\alpha : \alpha \in a\} \times \{s_\alpha : \alpha \in A - a\}$ and $Z_n = \{x \in X : |Q(x)| < n + 1\}$. Define the mapping $p_a : X \to Y_a$ such that $p_a(x) = (x_\alpha^*)_{\alpha \in a}$ for each $x = (x_\alpha)_{a \in A} \in X$, where

$$x_{\alpha}^* = \begin{cases} x_{\alpha} & \alpha \in A \\ s_{\alpha} & \alpha \in A - a. \end{cases}$$

Let \mathcal{U} be an open cover of X. By induction we construct a sequence $\langle \mathcal{V}_n \rangle_{n \in \omega}$ of the collections of open subsets of X such that

- (1) For each $n \in \omega, \mathcal{V}_n$ is a point countable partial refinement of \mathcal{U} .
- (2) $\bigcup \{\mathcal{V}_i : i < n+1\}$ covers Z_n for each $n \in \omega$.
- $(3) \cup \mathcal{V}_n \subset X Z_{n-1}.$

When n = 0, put $U_0 \in \mathcal{U}$ such that $s \in U_0$. Let $\mathcal{V}_0 = \{U_0\}$.

Assume that V_1 has been constructed for i < n+1 such that it satisfies (1)-(3).

We set $L_a = Y_a - \bigcup \{ \bigcup \mathcal{V}_i : i < n+1 \}$ for each $a \in A^{n+1}$. Then L_a is a closed subspace of Y_a . $\mathcal{U}|_{Y_a}$ has a point countable open refinement \mathcal{W}_a^* since it is an open cover of Y_a .

Let $\mathcal{W}_a = \{w^* - Z_n : w^* \in \mathcal{W}_a^*\}$, then \mathcal{W}_a is an open cover of L_a and refines partly \mathcal{U} , i.e., for each $w \in \mathcal{W}_a$ there is $U(w) \in \mathcal{U}$ such that $w \subset U(w) \cap Y_a$ and $P_a^{-1}(w)$ is open in X. Define $\mathcal{V}_a = \{P_a^{-1}(w) \cap U(w) : w \in \mathcal{W}_a\}$ and $\mathcal{V}_{n+1} = \bigcup \{\mathcal{V}_a : a \in A^{n+1}\}$.

(i) \mathcal{V}_{n+1} is a point countable collection of open subset of X.

For $x \in \bigcup \mathcal{V}_{n+1}$, let $\Delta = \{a \in A^{n+1} : x \in \bigcup \mathcal{V}_a\}$, then $|\Delta| \leq \omega$. Otherwise, $\bigcup \Delta$ is noncountable and for each $a \in \Delta$

there is $w_a \in \mathcal{W}_a$ such that $x \in P_a^{-1}(w_a) \cap U(w_a)$, $P_a(x) \in w_a \subset Y_a - Z_n$, then $x_\alpha \neq s_\alpha$ for each $\alpha \in a$. i.e., $x_\alpha \neq s_\alpha$ for each $\alpha \in \bigcup \Delta$, $|Q(x)| \geq |\bigcup \Delta| > \omega$. This is contrary to $x \in X$.

For each $a \in \Delta$, let $W_a(x) = \{w \in W_a : x \in P_a^{-1}(w) \cap U(w)\}$, then $W_a(x)$ is countable.

In fact, for each $w \in \mathcal{W}_a$ and $x \in P_a^{-1}(w) \cap U(w)$, then $P_a(x) \in w \in \mathcal{W}_a$. Therefore $|(\mathcal{V}_{n+1})_x| \leq \omega$.

(ii)
$$Z_{n+1} - \bigcup \{ \bigcup \mathcal{V}_i : i < n+1 \} \subset \bigcup \mathcal{V}_{n+1}$$

For each $x \in Z_{n+1} - \bigcup \{ \bigcup \mathcal{V}_i : i < n+1 \} \subset Z_{n+1} - Z_n$, then |Q(x)| = n+1. There is $a \in A^{n+1}$ such that $x_{\alpha} \neq s_{\alpha}$ for each $\alpha \in a$, then $x \in Y_a - Z_n \subset \bigcup \mathcal{W}_a$. There is $w \in \mathcal{W}_a$, such that $x \in w \subset p_{\alpha}^{-1}(w) \cap U(w) \in \mathcal{V}_a \subset \mathcal{V}_{n+1}$.

(iii)
$$\bigcup \mathcal{V}_{n+1} \subset X - Z_n$$

For each $x \in \bigcup \mathcal{V}_{n+1}$, there is $a \in A^{n+1}$ such that $x \in \bigcup \mathcal{V}_a$. And there is $w \in \mathcal{W}_a$ such that $x \in P_a^{-1}(w) \cap U(w)$, then $P_a(x) \in w = w^* - Z_n$. Hence $x \notin Z_n$. The induction is completed.

By (2), $\bigcup \{ \bigcup \mathcal{V}_n : n \in \omega \}$ is an open cover of X and refines \mathcal{U} .

Now we discuss Tychonoff products of two metalindelof spaces.

Lemma 2.2. If X is metalindelöf, then every locally finite family of closed sets of X has a point countable open expansion.

Proof: Let $\{F_{\alpha}: \alpha \in A\}$ is a locally finite family of closed sets of metalindelöf space X. For each $s \in A^{<\omega}$, put $G(s) = X - \bigcup \{F_{\alpha}: \alpha \in A - s\}$, then $\mathcal{G} = \{G(s): s \in A^{<\omega}\}$ is an open cover of X it has a point countable open refinement. Let $U_{\alpha} = \bigcup \{V \in \mathcal{V}: V \cap F_{\alpha} \neq \emptyset\}$ for each $\alpha \in A$. It is easy to check that $\{U_{\alpha}: \alpha \in A\}$ is a point countable open expansion of $\{F_{\alpha}: \alpha \in A\}$.

Theorem 2.3. Let X be a P-space and Y a strong Σ -space. If X and Y are both metalindelöf then $X \times Y$ is metalindelöf.

Proof: Let \mathcal{U} be a directed open cover of $X \times Y$ and $\langle \mathcal{F}_i = \{F(\alpha_1, \ldots, \alpha_i) : (\alpha_1, \ldots, \alpha_i) \in \Omega^i\} >_{i \in n}$ is a strong Σ -net of Y. It has a point countable open expansion $\mathcal{H}_i = \{H(\alpha_1, \ldots, \alpha_i) : (\alpha_1, \ldots, \alpha_i) \in \Omega^i\}$. Since \mathcal{F}_i is a locally finite closed cover of Y then for $(\alpha_1, \ldots, \alpha_i) \in \Omega^i$, let $\mathcal{G}(\alpha_1, \ldots, \alpha_i) = \{V_\lambda \times W_\lambda : \lambda \in \Lambda(\alpha_1, \ldots, \alpha_i)\}$ be a maximal collection satisfying the following (1)-(3)

- (1) V_{λ} is open in X
- (2) W_{λ} is open in Y and $F(\alpha_1, \ldots, \alpha_i) \subset W_{\lambda} \subset H(\alpha_1, \ldots, \alpha_i)$
- (3) $\mathcal{G}(\alpha_1,\ldots,\alpha_i)$ is a partial refinement of \mathcal{U} .

For each $i \in N$ and $(\alpha_1, \ldots, \alpha_i) \in \Omega^i$, let $V(\alpha_1, \ldots, \alpha_i) = \bigcup \{V_{\lambda} : \lambda \in \Lambda(\alpha_1, \ldots, \alpha_i)\}$

(4) $V(\alpha_1, \ldots, \alpha_i) \subset V(\alpha_1, \ldots, \alpha_i, \alpha_{i+1})$ for each $(\alpha_1, \ldots, \alpha_i, \alpha_{i+1}) \in \Omega^{i+1}$.

In fact, for each $t \in V(\alpha_1, \ldots, \alpha_i)$ there is $\lambda_t \in \Lambda(\alpha_1, \ldots, \alpha_i)$ such that $t \in V_{\lambda t}$ and $F(\alpha_1, \ldots, \alpha_i) \subset W_{\lambda t} \subset H_{\lambda t}(\alpha_1, \ldots, \alpha_i)$. Then $F(\alpha_1, \ldots, \alpha_i) \subset W_{\lambda t} \subset H(\alpha_1, \ldots, \alpha_i)$. $F(\alpha_1, \ldots, \alpha_i, \alpha_{i+1}) \subset W_{\lambda} \cap H(\alpha_1, \ldots, \alpha_i, \alpha_{i+1}) \subset H(\alpha_1, \ldots, \alpha_i, \alpha_{i+1})$ since $F(\alpha_1, \ldots, \alpha_i, \alpha_{i+1}) \subset F(\alpha_1, \ldots, \alpha_i)$. Let $W = W_{\lambda t} \cap H(\alpha_1, \ldots, \alpha_i, \alpha_{i+1})$, then $V_{\lambda t} \times W$ satisfies (1)-(3). There is $\lambda \in \Lambda(\alpha_1, \ldots, \alpha_i)$ such that $V_{\lambda} = V_{\lambda t}$ and $W_{\lambda} = W$. Then $t \in V_{\lambda t} \subset V(\alpha_1, \ldots, \alpha_i, \alpha_{i+1})$, i.e., $V(\alpha_1, \ldots, \alpha_i) \subset V(\alpha_1, \ldots, \alpha_i, \alpha_{i+1})$.

Since X is a P-space, it has a collection $\{C(\alpha_1, \ldots, \alpha_i) : (\alpha_1, \ldots, \alpha_i) \in \Omega^i \text{ and } i \in \omega\}$ of closed sets of X such that

- $(5) C(\alpha_1,\ldots,\alpha_i) \subset V(\alpha_1,\ldots,\alpha_i)$
- (6) $\bigcup \{C(\alpha_1,\ldots,\alpha_i): i \in N\} = X \text{ if } \bigcup \{V\alpha_1,\ldots,\alpha_i\}: i \in N\} = X.$

Put $V(\alpha_1, \ldots, \alpha_i) = \{V_{\lambda} : \lambda \in \Lambda(\alpha_1, \ldots, \alpha_i)\}$, then $V(\alpha_1, \ldots, \alpha_i) \cup \{X - C(\alpha_1, \ldots, \alpha_i)\}$ is an open cover of X and

it has a point countable open refinement $\{O_{\lambda} : \lambda \in \Lambda(\alpha_1, \ldots, \alpha_i)\} \bigcup \{O'\}$ such that $O' \subset X - C(\alpha_1, \ldots, \alpha_i)$ and $O_{\lambda} \subset V_{\lambda}$ for each $\lambda \in \Lambda(\alpha_1, \ldots, \alpha_i)$.

By the above, the following is obvious

(7)
$$C(\alpha_1, \ldots, \alpha_i) \subset \{O_{\lambda} : \lambda \in \Lambda(\alpha_1, \ldots, \alpha_i)\}$$

Let $\zeta(\alpha_1,\ldots,\alpha_i) = \{O_{\lambda} \times W_{\lambda} : \lambda \in \Lambda(\alpha_1,\ldots,\alpha_i)\}, \zeta_i = \bigcup \{\zeta(\alpha_1,\ldots,\alpha_i) : (\alpha_1,\ldots,\alpha_i) \in \Omega^i\}, \text{ then}$

(8) ζ_i is point countable collection of $X \times Y$ and refines partly \mathcal{U} .

In fact, for each $(x,y) \in \bigcup \zeta_i$, put $\Delta = \{(\alpha_1,\ldots,\alpha_i) \in \Omega^i : y \in H(\alpha_1,\ldots,\alpha_i)\}$, then $|\Delta| \leq \omega$ since $\{H(\alpha_1,\ldots,\alpha_i) : (\alpha_1,\ldots,\alpha_i) \in \Omega^i\}$ is a point countable open cover of Y. For each $(\alpha_1,\ldots,\alpha_i) \in \Delta$, let $\Lambda^0(\alpha_1,\ldots,\alpha_i) = \{\lambda \in \Lambda(\alpha_1,\ldots,\alpha_i) : x \in O_\lambda\}$, then $|\Lambda^0(\alpha_1,\ldots,\alpha_i)| \leq \omega$. Since $\{O_\lambda : \lambda \in \Lambda(\alpha_1,\ldots,\alpha_i)\}$ is point countable. $(\zeta(\alpha_1,\ldots,\alpha_i))_{(x,y)} \subset \{O_\lambda \times W_\lambda : \lambda \in \Lambda^0(\alpha_1,\ldots,\alpha_i)\}, (\zeta_i)_{(x,y)} \subset \bigcup \{(\zeta(\alpha_1,\ldots,\alpha_i)) : (\alpha_1,\ldots,\alpha_i) \in \Delta\}$, then $|(\zeta_i)_{(x,y)}| \leq \omega$. And it is easy to check that ζ_i refines partly $\mathcal U$ by (3).

(9) $\bigcup \{\zeta_i : i \in N\}$ is a cover of $X \times Y$

For $(x,y) \in X \times Y$, there is $(\alpha_1,\ldots,\alpha_i,\ldots) \in \Omega^{\omega}$ such that for each $W \in N(C(y))$, then there is $i \in N$ such that $C(y) \subset F(\alpha_1,\ldots,\alpha_i) \subset W$.

Now we assert $\bigcup \{V(\alpha_1, \ldots, \alpha_i) : i \in \mathbb{N}\} = X$.

For each $x' \in X$ there is $U \in \mathcal{U}$ such that $\{x'\} \times C(y) \subset U$ since $\{x'\} \times C(y)$ is compact. There are $V \in N(x')$ and $W' \in N(C(y))$ such that $\{x'\} \times C(y) \subset V \times W' \subset U$. Then there is $i \in N$ such that $C(y) \subset F(\alpha_1, \ldots, \alpha_i) \subset W'$ since $C(y) \subset W'$. Put $W = W' \cap H(\alpha_1, \ldots, \alpha_i)$, $V \times W$ satisfies (1)-(3) there is $\lambda \in \Lambda(\alpha_1, \ldots, \alpha_i)$ such that $V_{\lambda} = V$ and $W_{\lambda} = W$ by the maximum of $\mathcal{G}(\alpha_1, \ldots, \alpha_i)$. Therefore $x' \in V = V_{\lambda} \subset V(\alpha_1, \ldots, \alpha_i)$, i.e., $\bigcup \{V(\alpha_1, \ldots, \alpha_i) : i \in N\} = X$.

By (6), $\bigcup \{C(\alpha_1, \ldots, \alpha_n) : n \in N\} = X$. There is $n \in \mathbb{N}$ such that $x \in C(\alpha_1, \ldots, \alpha_n) \subset \bigcup \{O_{\lambda} : \lambda \in \Lambda(\alpha_1, \ldots, \alpha_n)\}$. And there is $\lambda \in \Lambda(\alpha_1, \ldots, \alpha_n)$ such that $x \in O_{\lambda}$. $(x, y) \in A$

 $O_{\lambda} \times W \in \zeta(\alpha_1, \ldots, \alpha_n)$ since $y \in C(\alpha_1, \ldots, \alpha_n) \subset W_{\lambda} \subset H(\alpha_1, \ldots, \alpha_n)$.

 ζ is a point countable open refinement of \mathcal{U} by (8) and (9). \square

Theorem 2.4. If X is a metalindelöf P-space and Y has a point countable base then $X \times Y$ is metalindelöf.

Proof: Let $\mathcal{B} = \{B_{\alpha} : \alpha \in \Omega\}$ a point countable base of Y and $\mathcal{U} = \{U_{\lambda} : \lambda \in \Lambda\}$ an open cover of $X \times Y$.

For each $n \in N, (\alpha_1, \ldots, \alpha_n) \in \Omega^n$ and $\lambda \in \Lambda$, put $H(\alpha_1, \ldots, \alpha_n : \lambda) = \bigcup \{U : U \times \bigcap_{i=1}^n B_{\alpha_i} \subset U_\lambda \text{ and } U \text{ is open in } X\}, G(\alpha_1, \ldots, \alpha_n) = \bigcup \{H(\alpha_1, \ldots, \alpha_n; \lambda) : \lambda \in \Lambda\}.$

It is easy to check that for each $(\alpha_1, \ldots, \alpha_n, \ldots) \in \Omega^{\omega}$, $\{G(\alpha_1, \ldots, \alpha_n) : n \in N\}$ is a monotone increasing collection of open sets of X. Since X is a P-space there is a collection $\{F(\alpha_1, \ldots, \alpha_n) : n \in N\}$ of closed sets of X such that

- (i) $F(\alpha_1, \ldots, \alpha_n) \subset G(\alpha_1, \ldots, \alpha_n)$ for each $n \in N$.
- (ii) $\bigcup \{F(\alpha_1,\ldots,\alpha_n): n \in N\} = X \text{ if } \bigcup \{G(\alpha_1,\ldots,\alpha_n): n \in N\} = X.$

 $\mathcal{G}(\alpha_1,\ldots,\alpha_n)=\{H(\alpha_1,\ldots,\alpha_n;\lambda):\lambda\in\Lambda\}$ is an open cover of $F(\alpha_1,\ldots,\alpha_n)$. There is a point countable collection $\mathcal{V}(\alpha_1,\ldots,\alpha_n)=\{V(\alpha_1,\ldots,\alpha_n;\lambda):\lambda\in\Lambda\}$ of open sets satisfying.

- (iii) $F(\alpha_1,\ldots,\alpha_n)\subset\bigcup\mathcal{V}(\alpha_1,\ldots,\alpha_n)$
- (iv) $V(\alpha_1, \ldots, \alpha_n) \subset H(\alpha_1, \ldots, \alpha_n; \lambda)$ for each $\lambda \in \Lambda$.

Define $W(\alpha_1, \ldots, \alpha_n) = \{V(\alpha_1, \ldots, \alpha_n; \lambda) \times \bigcap_{i=1}^n B_{\alpha_i} : \lambda \in \Lambda\}, W = \bigcup \{W(\alpha_1, \ldots, \alpha_n) : (\alpha_1, \ldots, \alpha_n) \in \Omega^n \text{ and } n \in N\}.$

(v) W is point countable.

In fact, for each $(x,y) \in \bigcup \mathcal{W}$, $\Delta = \{\alpha \in \Omega : y \in B_{\alpha}\}$ is countable and $(\mathcal{W})_{(x,y)} = \bigcup \{(\mathcal{W}(\alpha_1,\ldots,\alpha_n))_{(x,y)} : (\alpha_1,\ldots,\alpha_n) \in \Delta^n \text{ and } n \in N\}$. Since $(\mathcal{W}(\alpha_1,\ldots,\alpha_n))_{(x,y)} \subset \{V(\alpha_1,\ldots,\alpha_n;\lambda) \times \bigcap_{i=1}^n B_{\alpha i} : x \in V(\alpha_1,\ldots,\alpha_n;\lambda) \text{ and } \lambda \in \Lambda\}$ and $\mathcal{V}(\alpha_1,\ldots,\alpha_n)$ is point countable then $|(\mathcal{W})_{(x,y)}| \leq \omega$.

(vi) W is an open cover of $X \times Y$ and refines U.

For each $y \in Y$, we prove that \mathcal{W} covers $X \times \{y\}$. Put $\Delta(y) = \{\alpha_i \in \Omega : y \in B_\alpha\}$. Then $|\Delta(y)| \leq \omega$. Without loss of generality, we assume $\Delta(y) = \{\alpha_i : i \in N\}$.

First, we prove $\bigcup \{G(\alpha_1, \ldots, \alpha_n) : n \in N\} = X$.

For each $x \in X$ there is $\lambda \in \Lambda$ such that $(x,y) \in U_{\lambda}$. Then there are $n \in N$ and $U \in N(x)$ such that $(x,y) \in U \times \bigcap_{i=1}^{n} B_{\alpha i} \subset U_{\lambda}$. Hence $x \in U \subset H(\alpha_{1}, \ldots, \alpha_{n}; \lambda) \subset G(\alpha_{1}, \ldots, \alpha_{n})$, i.e., $\bigcup \{G(\alpha_{1}, \ldots, \alpha_{n}) : n \in N\} = X$

By (ii), $\bigcup \{F(\alpha_1, \ldots, \alpha_n) : n \in N\} = X$, there is $n \in N$ such that $x \in F(\alpha_1, \ldots, \alpha_n)$. And there is $\lambda \in \Lambda$ such that $x \in V(\alpha_1, \ldots, \alpha_n; \lambda)$. Hence $(x, y) \in V(\alpha_1, \ldots, \alpha_n; \lambda) \times \bigcap_{i=1}^n B_{\alpha_i} \subset U_i$, i.e., \mathcal{W} is a point countable open refinement of \mathcal{U} .

REFERENCES

- T. Hui, On σ-product spaces I, Math. Japonic 36, No 3 (1991), 515-522.
- [2] K. Chiba, The submetacompactnes of σ -products, Math. Japonic 36, No. 4 (1991), 711-715.
- [3] D. K. Burker, Covering properties, in Handbook of Set Theortic Topology (K. Kunen and J. Vaughan Eds.), (North-Holland, Amsterdam, 1984).
- [4] K. Morita, Products of normal space with metric spaces, Math. Annalen 154 (1964), 365-382.
- [5] K. Nagami, Σ-space, Found. Math., 65 (1969), 169-192.
- [6] A. Miscenko, Space with a point-countable base, Soviet Math. Dokl., 3 (1962), 855-858.
- [7] Z. Peiyong, The product theorem on three kinds of spaces, Northeastern Math. J., 9(3) (1993), 395-402.

Zigong Education College Zigong, Sichuan 643000 China