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THE PRODUCTS OF METALINDELOF SPACES 

ZHU PEIYONG 

In 1991, T. Hui and K. Chiba investigated the various cov­
ering properties of a-products. They obtained the following 
results: 

A. ([1]) Let X == a{Xo: : Q E A}. If every finite subproduct 
of X is metacompact, then X is metacompact. 

B.	 ([1]) Let X == {Xo: : Q E A}. If every finite subproduct 
of X is subparacompact and X is subnormal, then X is 
subparacompact. 

C.	 ([2]) Let X == a{Xo: : Q E A} and X is normal. If every 
finite subproduct of X is submetacompact, then X is 
submetacompact. 

In this paper, we first prove that a-product of metalindelof 
spaces has the result which is similar to (A). Secondly, we 
discuss Tychonoff product of two metalindelof spaces on the 
basis of ([3], Theorem 6.25). The following two results are 
obtained: 

(i) Suppose X is a P-space and Y is a strong ~-space. If X 
and Yare both metalindelof space then X x Y is also metalin­
delaf. 

(ii) Let X be metalindelof P-space, Y has a point count­
ablebase, then X x Y is metalindelof. 
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1. DEFINITION AND PRELIMINARIES 

In this paper, N(I() denotes neighbourhood system of a 
set K; (U)x, UIA and N(x) denote respectively {U E U : 
x E U},{A n u : U E U} and N({x});N and I A I de­
note respectively the set of all natural numbers and the car­
dinal numbers of A. An denotes {a : a C A and I a 1= n}. 
A<w = U{An : nEw}. And all the spaces do not add the 
axioms of separation if without special statement. 

Definition 1.1. ([1]) Let S = (Sa)aEA be fixed point in Ty­
chonoff product IT{Xa : Q E A}. For each x = (xa ) E IT{Xa : 

a E A}, put Q(x) = {a E A : X a -I sa} and define u{Xa : a E 
A} = {x = (Xa)aEA E IT{Xa : a E A} : IQ(x)1 < w}. We call 
u{Xa : a E A} the u-product of {Xa : a E A} and s the base 
point of it. And for every a E A<w , IT{Xa : a E A} is called a 
finite subproduct of u{Xa : a E A}. 

Definition 1.2. A space X is metalindelof if its every open 
cover has a point countable open refinement. 

Definition 1.3. ([4]) A space X is a P-space if for any index 
set n and for any collection {U(a1' ,an) : (0'1' ... ,an) E 
nn} of open sets in X such that U(a1' , an) C U(Q'l' ... , an, 
an +1) for each (aI, ... , an, an +1) E nn+1, there exists a collec­
tion {F(a1' ... ,an): (a1' ... ,an) E on} of closed sets in X 
such that 

(i)	 F(a1' ... ,an) C U(a1' ... ,an) for each (0'1' ... ,an) E 
nne 

(ii)	 U{F(aI, ... , an) : n E N} = X for any sequence {an} 
such that X = U{U(a1' ... , an) : n EN}. 

Definition 1.4. ([5]) Let {Fi}iEN be a sequence of locally 
finite closed coverings satisfying the following condition: 

If !{1 :J !{2 :J ... is a sequence of non-empty closed sets of 
X such that / 

!{i C n{F : x E FEn} 
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for some point x in X and for each i EN, then 

We set 

then it is to be noted that every C(x) is closed and countable 
compact. Particularly, if C(x) is compact for each x EX, then 
X is called a strong ~-space. 

Lemma 1.1. ([5]) If X is a strong ~-space, then there exists 
a sequence {Fi}iEN of locally finite closed covers of X and an 
index set ni , satisfying 

(a)	 J=i = {F(al' ... ,ai): (al' ,ai) E nil 
(b)	 F(al' ... ,ai) = U{F(al, ,ai,an+I): ai+1 E n} for 

each (aI, . .. ,ai) E ni 

(c)	 for each x E X there is (aI, . .. ,ai, ... ) E nw such that 
(i) x E n{F(al' ... ,ai) : i E N} 

(ii)	 C(x) = n{F E J=i : x E F and i E N} is compact 
and if U is open in X, C(x) c U, then there is 
i E N such that C(x) C F(al' ,ai,) C U. 

We say that the sequence < J=i = {F(al, , ai) : (al, ... , ai) 
E nil >iEN of closed covers of X is a strong ~-net of x. 

Definition 1.5. Let AF = {UB: B E A<W}, the collection A 
is said to be directed if AF refined A. 

The following is easily proved by Definition 1.2 and Defini­
tion 1.5: 

Lemma 1.2. X is metalindeZof iff every directed open cover 
of X has a point countable open refinement. 
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2.	 MAIN RESULTS AND PROOFS 

Theorem 2.1. Let {Xa : a E A} be a family of T 1 spaces 
and X == u{Xa : a E A}. If every finite subproduct of X is 
metalindelo/, then X is metalindelof. 

Proof: For each a E A<w and nEw denote ~ == II{Xa : a E 
a} x {sa: a E A - a} and Zn == {x EX: IQ(x)1 < n + I}. 
Define the mapping Pa : X ---+ ~ such that Pa (x) == (x~ )aEa for 
each x == (Xa)aEA E X, where 

aEA 
Q E A-a. 

Let U be an open cover of X. By induction we construct 
a sequence < Vn >nEw of the collections of open subsets of X 
such that 

(1)	 For each nEw, Vn is a point countable partial_ refine­
ment of U. 

(2)	 U{Vi : i < n + I} covers Zn for each nEw. 
(3)	 UVn C X - Zn-I. 

When n = 0, put Uo E U such that s E Uo. Let Vo == {Uo}.­
Assume that VI has been constructed for i < n +1 such that 

it satisfies (1)-(3). 
We set La = ~ -U{UVi : i < n+ I} for each a E An+l. 

Then La is a closed subspace of Ya. U\Ya has a point countable 
open refinement W; since it is an open cover of ~. 

Let Wa = {w* - Zn : w* E W;}, then Wa is an open cover of 
La and refines partly U, i.e., for each w E W a there is U(w) E U 
such that w C U(w) n ~ and Pa-1 (w) is open in X. Define 
Va == {p;l(w)nU(w) : w E W a} and Vn+1 == U{Va : a E 
An+l }. 

(i)	 Vn +1 is a point countable collection of open subset 
ofX. 

For x E UVn+1 , let ~ == {a E An+1 : x E UVa}, then 
\~\ ~ w. Otherwise, U ~ is noncountable and for each a E ~ 



THE PRODUCTS OF METALINDELOF SPACES 225 

there is W a E Wa such that x E P;l(wa)nU(wa), Pa(x) E 
W a C Ya - Zn, then X a =f Sa for each a Ea. i.e., X a =f So: 

for each a E U~, IQ(x)1 ~ IU~I > w. This is contrary to 
x EX. 

1For each a E ~, let W a ( x) == {w E W a : X E pa- ( W ) nu(w)}, 
then Wa(x) is countable. 

In fact, for each W E Wa and x E Pa-1(w) nU(w), then 
Pa(x) EwE Wa. Therefore 1(Vn+1 )x I::; w. 

(ii) Zn+l - U{UVi : i < n + I} C UVn+1 

For each x E Zn+l - U{U Vi : i < n + I} C Zn+l - Zn, then 
IQ(x)1 == n + 1. There is a E An+l such that Xo: =f So: for each 
a E a ,then x E ~ - Zn C UWa • There is W E W a, such that 
x Ewe p~l(W) nU(w) E Va C Vn+1. 

(iii) UVn+1 C X - Zn 

For each x E UVn+1 , there is a E An+l such that x E UVa. 
And there is w E Wa such that x E Pa- 1(w)nU(w), then 
Pa(x) E w = w* - Zn. Hence x fj. Zn. The induction is 
completed. 

By (2), U{U Vn : nEw} is an open cover of X and refines 
u. 

Now we discuss Tychonoff products of two metalinde16f 
spaces. 

Lemma 2.2. If X is metalindeloJ, then every locally finite 
family of closed sets ofX has a point countable open expansion. 

Proof: Let {Fa: a E A} is a locally finite family of closed 
sets of metalindelof space X. For each sEA<W, put G(s) == 
X-U{Fa : Q' E A-s}, then 9 == {G(s): s E A<W} is an 
open cover of X it has a point countable open refinement. Let 
Ua = U{V E V : VnFa =f 0} for each Q' E A. It is easy to 
check that {UOl : a E A} is a point countable open expansion 
of {Fa: a E A}. 
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Theorem 2.3. Let X be a P-space and Y a strong E-space. 
If X and Yare both metalindelof then X x Y is metalindelof. 

Proof: Let U be a directed open cover of X x Y and < J=i = 
{F(01, ... ,Oi) : (01, ... Oi) E nil >iEn is a strong E-net of Y. 
It has a point countable open expansion Hi = {H (01, ... ,Oi) : 
(01, ... Oi) E ni}. Since Fi is a locally finite closed cover of Y 
then for (01' ... ,Oi) E ni, let 9(al' ... ,Oi) = {V,x x W,x : A E 
A(01, ... ,Oi)} be a maximal collection satisfying the following 
(1 )-(3) 

(1) VA is open in X 

(2)W,xisopeninYandF(a1, ... ,ai) C WA C H(Ol' ... ,ai) 

(3) 9(aI, . .. , ai) is a partial refinement of U. 

For each i E Nand (a1'... , ai) E ni
, let V (0'1, . .. ,ai), = 

U{VA : A E A(a1' ... ,ai)} 

(4) V(Ol' ... ,ai) C V(Ol' ... ,ai,Oi+1) for each (0'1' ... ,Oi,
i+lOi+1) En. 

Infact,foreacht E V(Ol' ,ai) there is At E A(a1' ,Oi) 
such that t E VAt and F(a1' ,ai) C WAt C HAt(al, ,ai). 
ThenF(al' ... ,ai) C WAt C H(al, ... ,O'i). F(a1' ... ,O'i,ai+l) 
C W,\nH(Ol, ... ,Oi,Oi+1) c H(Ol' ... ,0i,Oi+l) since 
F(al, ,ai,ai+l) C F(al' ... ,ai). Let W WAtn 
H(a1' , ai, ai+1), then VAt xW satisfies (1)-(3). There is A E 
A(Ol' ,ai) such that VA = VAt and WA= W. Then t E VAt C 
V(Ol' ,ai,oi+l), i.e., V(ol, ... a1) C V(Ol' ... ,ai,ai+1). 

Since X is a P -space, it has a collection {C(aI, . . . , ai) 
(al, ... , ai) E ni and i E w} of closed sets of X such that 

(5) C(a1' ... ,ai) C V(al' ... ,ai) 

(6) U{C(al' ... ,ai) : i E N} = X if U{Val, ... ,ai) : i E 
N}=X. 

Put V(al' ... ,ai) = {VA: ,,\ E A(a1' ... ,ai)}, then 
V(OI' ... , Oi) U{X - C(Ol' ... , Oi)} is an open cover of X and 
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it has a point countable open refinement {OA : A E 
A(al' ... ,ai)}U{O'} such that 0' c X - C(al' ... ,ai) and 
OA C VA for each A E A(al, ... ,ai). 

By the above, the following is obvious 

(7) C(al' ,ai) C {OA : A E A(al' ... ,ai)} 

Let ((0'1, ,ai) == {OA X WA : A E A(al' ... ,ai)},(i == 
U{((al, ... ,ai): (0'1, ... ,ai) E nil, then 

(8) (i is point countable collection of X x Y and refines partly 
u. 

In fact, for each (x,y) E U(i, put ~ == {(al, ,ai) E 
ni : y E H(al' ... ,ai)}, then I~I ~ w since {H(al' ,ai): 
(0'1, ... ,ai) E nil is a point countable open cover of Y. For 
each(al' ... ,ai) E ~,letAO(al' ... ,ai) == {A E A(al' ... ,ai): 
x EGA}' then IAO(al, ... ,ai)1 ~ w. Since {G A : A E 
A(al' ... ,ai)} is point countable. (((0'1, ... ,ai))(x,y) C {OA X 

WA : A E AO(al' ... ,ai)},((i)(x,y) C U{(((al, ... ,ai)) : 
(0'1, ... , ai) E ~}, then I((i)(x,y) I ~ w. And it is easy to check 
that (i refines partly U by (3). 

(9) U{(i : i E N} is a cover of X x Y 
wFor (x, y) E X x Y, there is (0'1,... ,ai, . .. ) E n such 

that for each WEN (C(y )), then there is i E N such that 
C(y) C F(al' ... ,ai) C W. 

Now we assert U{V(a1' ... , Q'i) : i E N} == X. 
For each x' E X there is U E U such that {x'} X C(y) c 

U since {x'} x C(y) is compact. There are V E N(x') and 
W' E N(C(y)) such that {x'} x C(y) C V X W' C U. Then 
there is i E N such that C(y) C F(al' ... , ai) C W' since 
C(y) C W'. Put W == w' nH(Q'I' ... ,Q'i), VxW satisfies (1)­
(3) there is A E A(al' ... ,ai) such that VA == V and WA == W 
by the maximun of 9(0'1, . • . , ai). Therefore x' E V == VA C 
V(al' ... ,ai), i.e., U{V(al' ... ,ai) : i E N} == X. 

By (6), U{C(al' ,an) : n E N} == X. There is n E N 
such that x E C(al, ,an) C U{OA : A E A(al' ... ,an)}. 
And there is A E A(al' ... ,an) such that x EGA. (x,y) E 
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OA X W E ((al, ... ,an) since y E C(al' ... ,an) C WA c 
H(al' ... , an). 

( is a point countable open refinement of U by (8) and 
(9). D 

Theorem 2.4. If X is a metalindelof P-space and Y has a 
point countable base then X x Y is metalindelof. 

Proof: Let B == {Ba : a En} a point countable base of Y and 
U ~ {UA : A E A} an open cover of X x Y. 

For each n E N, (al, ... , an) E on and A E A, put 
H(al' ... ,an: A) == U{U: U x ni=1 Bai C UA and U is open 
in X},G(al' ... ,an) == U{H(al' ... ,an;A): A E A}. 

It is easy to check that for each (al, ... , an, ... ) E nw 
, 

{G(al, . .. , an) : n E N} is a monotone increasing collection 
of open sets of X. Since X is a P -space there is a collection 
{F(aI, ... , an) : n E N} of closed sets of X such that 

(i) F(al' ... ,an) C G(al' ... ,an) for each n E N. 

(ii) U{F(al, ... ,an) : n E N} == X if U{G(al' ... ,an) 
n E N} == X. 

9(al' ... ,an) {H(al' ... ,an;A) : A E A} is an open 
cover of F(aI, ... , an). There is a point countable collection 
V(al' ... ,an) == {V(al' ... ,an;A): A E A} of open sets satis­
fying. 

(iii) F(aI, ,an) C UV(al' ,an) 

(iv) V(al, ,an) C H(al, ,an;A) for each A E A. 

Define W(al' ... , an) == {V(al' , an; A) X n?:1 Bai : A E 
A}, W == U{W(al' ... , an) : (at, , an) E on and n EN}. 

(v) W is point countable. 

In fact, for each (x,y) E UW, ~ == {a EO: y E Ba } is 
countable and (W)(x,y) U{(W(at, ,an))(x,y) 
(al, ... ,an) E ~n and n EN}. Since (W(al, ,an))(x,y) C 
{V(al, ... , an; A) xni=1 Bai : X E V(at, ... , an; A) and AE A} 
and V(aI, ... , an) is point countable then I(W)(x,y) I < w. 
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(vi) W is an open cover of X x Y and refines U. 

For each y E Y, we prove that W covers X X {y}. Put 
~(y) = {Oi En: y E B a }. Then 1~(y)1 ~ w. Without loss of 
generality, we assume ~(y) = {Oi : i EN}. 

First, we prove U{G(al' ... , an) : n E N} = X. 
For each x E X there is A E A such that (x, y) E UA• 

Then there are n E Nand U E N(x) such that (x,y) E 
U x ni=l Bai C UA• Hence x E U c H(al' ... , an; A) C 
G(al' ... ,an), i.e., U{G(al' ... ,an): n E N} = X 

By (ii), U{F(al, ,an) : n E N} = X, there is n E N 
such that x E F( al, ,an). And there is A E A such that x E 
V(al' ... ,an;A).Hence(x,y) E V(al' ... ,an;A)xni=lBai C 
Ui , i.e., W is a ·point countable open refinement of U. 
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