
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



Topology Proceedings 

Vol 18, 1993 

NONCONTRACTIBLE HYPERSPACE WITHOUT 
Ri-CONTINUA 

CHOON JAI RHEEI AND KUL HUR 

ABSTRACT. We resolve the following question of Chara
tonik in [1,Question 21, p.214] affirmatively: Does there 
exist a metric continuum X such that its hyperspace 
C(X) of subcontinua is not contractible and C(X) con
tains no Ri-continuum? 

1. PRELIMINARY. 

Let X be a metric continuum with metric d. Denoted by 
C(X) the hyperspace of all nonempty subcontinua of X en
dowed with the Hausdorff metric H induced by d which is 
defined by H(A,B) = inf{f > 0 : A C N(f,B) and B C 
N(f,A)}, where N(f, A) == {x EX: d(x,a) < f for some a E 
A}. And if A = {x} then we agree that N(f,{X}) = N(€,x). 
We shall also be considering the hyperspace C(C(X)) == C2 (X) 
with the Hausdorff metric H 2 induced by Hand C3(X) with 
its metric H 3 induced by H 2

• 

For each point x E X, let T(x) == {A E C(X) : x E A}. 
T(x) is called the total fiber of X at x. T(x) is always closed 
and arcwise connected subset of C(X). An element A E T(x) 
is said to be admissible at x in X if, for each f > 0, there is a 
6 > 0 such that each point y in the 6-neighborhood of x has an 
element B E T(y) such that H (A, B) < f. Let A(x) be the set 
of all elements of T(x) which are admissible at x in X. A(x) 
is said to be the admissible fiber at x in X. We denote the 

IThe author expresses his gratitude to Korean Science and Engineering 
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total fiber and the admissible fiber at B E C(X) in C(X) by 
A(B) and T(B) respectively. Let M be the set of all x E X 
at which T(x) =J A(x). M is called the M-set of X [9]. Corre
spondingly we denote the M-set of C(X) by N. The points in 
the complement of the M-set of a metric continuum are called 
k-points of the space. For more about the admissibility and 
M-set, we refer [7, 8, 9]. And the concepts of Ri-continua are 
given in [2]. 

An order arc in C(X) is an arc a in C(X) such that if 
A, B E a, then A c B or B c A. If C, D E C(X) and C c D, 
C =J D, then there is a nondegenerate order arc in C(X) with 
end points C and D [6]. We call such arc an order arc in C(X) 
from C to D. 

We enlist a few known facts on connectedness im kleinen and 
local connectedness in C(X) and several new results relating 
to order arcs. 

(1.I)Lemma [7, Propositions 1.5 and 1.6]. Let X be a 
metric continuum. (1). For each x E X, {x},X E A(x) and 
A(x) is closed. (2). If A,B E C(X) such that A E A(a), 
B E A(x), and x E An B, then AU BE A(a). 

(1.2) Lemma. Let X be a metric continuum. If X is con
nected im kleinen at x E X then x is a k-point of x. 

Proof: Let f > 0 and A E T( x ). Since X is connected im 
kleinen at x, let U be the ~-neighborhood of x and let V be 
S-neighborhood of x, 0 < S < ~, such that if y ~ V then x 
and y lie in a connected subset C of U. Let B = C U A. Then 
H(A, B) < f. Therefore A E A(x). 

(1.2.1) Lemma. Let X be a metric continuum and x E X. 
Then the total fiber T(x) is a closed and path-connected subset 
of C(X). Thus if x is a k-point, then A(x) is path-connected. 
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Proof: T(x) is clearly closed and X E T(x). If A E T(x), 
then there is an order arc from A to X. If x is a k-point, then 
A(x) = T(x) so that A(x) is path-connected. 

(1.3) Lemma [10, Proposition 2 ]. If X is a metric con
tinuum such that A(x) contains an order arc from {x} to X 
for each x EX) then A(x) is path-connected. 

Proof: Let A E A(x). Let a be an order arc in A(x) from {x} 
to X. Then the set (3 = {AUAt : At E a} is contained in A(x) 
by part (2) of (1.1), and it is easy to see that f3 is an order arc. 

(1.4) Lemma [1, Corollary 16]. Let X be a metric con
tinuum. It for each x E X, the admissible fiber A(x) is 
path-connected) then X does not contain any Ri-continuum for 
iE{1,2,3}. 

Eberhart's lemma can be restated as follows. 

(1.5) Lemma [3, Lemma 2.1.2 ]. Suppose an element A E 
C(X) contains a point at which X is connected im kleinen. 
Then C(X) is connected im kleinen at A. 

(1.6) Corollary. If X is locally arcwise connected at a E A 
and A is a point of C(X)) then C(X) is locally arcwise con
nected at A. 

Proof: Let V be a connected t:-neighborhood of a in X and 
let 0 be the f-neighborhood of A in C(X) and B E O. Let 
y E V nBand C be a subcontinuum of V which contains both 
a and y. Let a and f3 be order arcs in C(X) respectively from 
A and B to A U B U C. Then a U f3 c O. Therefore there is 
an arc in 0 joining A to B. 

(1.7) Corollary. Let N be the M-set of C(X). Then) for 
each A E N) X is not connected im kleinen at any point of A. 

Thus uN is entirely contained in the set N of all points x 
at which X is not connected im kleinen. 
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Let D be a subset of a metric space X. Let C(D) = {B E 
C(X) : BCD}. For A E C(X), let H(A, C(D)) = inf{H(A, B) : 
B E C(D)}. The next lemma is contained in [5, Theorem 2]. 

(1.8) Lemma. Let A E C(X). If, for each open set U in X
 
containing A, there is ah > 0 such thatH(A,C(D)) ~ Sforall
 

. components D of U not containing A, then C(X) is connected 
im kleinen at A. 

Proof: Let Ot; be the f-neighborhood in C(X) of A. Let Uf
 
be the ~-ball about A in X, and let C be the component of
 
Uf containing A. Let 0 < S < ~ such that H(A, C(D)) ~ 6
 
for all components D of U5. different from C. Let V be the 6

2 

neighborhood of A in C(X) and let B E V. Since H(A, B) < S,
 
B nD = 0 for all components D of U.! different from C. Hence
 

2 

B C C. Let 0A and 0B be order arcs respectively from A and
 
B to C. Then 0A U 0B C O( so that there is an arc in O(
 
between A and B.
 

(1.8.1) Lemma. Let A E C(X). If C(X) is connected im
 
kleinen at A, then the admissible fiber A(A) at A in C(X) is
 
path-connected.
 

The proof is similar to that of Lemma (1.2). 

Suppose ° is an order arc in C(X). When we say ° is
 
parametrized we mean a == {At}, t E [0,1], is parametrized
 
in such a way that As C At whenever s < t. We call Ao the
 
initial element of ° and Al the terminal element of Q. De

fine at == {As E a : 0 ~ s ~ t} for each t E [0,1], and let
 
a = {at}tE[O,I]. Then each at is an order arc in C(X) and &
 
is an order arc in C2(X). We say that a is the order arc in
 
C2 (X) induced by a.
 

(1.9) Theorem. Let a = {At}tE[O,I] and (J = {Bt}tE[O,l] be
 

parametrized order arcs in C(X). Let a = {at }tEI and !J =
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{,8a}sEI be the induced order arcs by Q and (3 respectively. Then 
H 2 ( 0',(8) < f if and only if H 3

( &, fi) < f. 

Proof: Suppose H3(0:, fi) < f. Since UO: = 0' and Up = (3 and 
H2(Uo:,U/J) ~ H 3 (&,/J) < f, we have H2(Q,(3) < f. 

Suppose H2(a,(3) < f. Let ato E 0:. Then ato is an order arc 
from Ao to Ato . Then there is an element Bao E (3 such that 
H(Ato , Bao ) < f. Let ,8so E /J be an order arc from Bo to Bao 
such that H(Ato , B so ) < f. We show that H2(ato,!3so) < f by 
contradiction. Suppose there is an element At E Qto such that 
H(At , Bs) ~ f for each 0 ~ S ~ so. In particular, H(At , B so ) ~ 

f. Let B s ' E (3 such that H(At , B s') < f. Then So < s' so that 
B so CBs'. But then (i). B so CBs' and H(At, B s') < f 

imply that B so C Bs' c N( f, At), and (ii). At C A to and 
H(Ato , B so ) < f imply that At C A to C N(f,Bso ). Combining 
(i) and (ii) we have H(At , B so ) < f which is a contradiction. 
Thus for each At E Qto there is an element B s E (3so such that 
H(At, Bs) < f. Similarly one can show that, for each Bs E (3so, 
there is an element At E Qto such that H(At, Bs ) < f. There
fore we have H2(Qto, (3so) < f. Since ato and (3so are arbitrary, 
we have H3

( 0:, /3) < f. 

(1.9.1) Corollary. Let a = {At}tE[O,I] be a parametrized order 
arc. Let a = {Qt}tE[O,I] be the induced order arc by Q. If, for 
each f > 0, there is 0 < S < € such that whenever B o E C(X) 
with H(Ao, B o) < 8 there is an order arc (J with the initial 
element Bo such that H 2 (a, (3) < f, then each at E A(Ao). 

(1.10) Lemma. Let X be a metric conitinuum. Let a = 
{At}tE[O,l] be an order arc in C(X) from Ao to AI. Let C E 
C(X). (aj. If Ao n C i= 0 and Al \ C i= 0, then the set 
(3 = {C U At : At E a} is an order arc in C(X). Further
more, if, in addition, H( C, Ao) < f then H2

( Q, (3) < f. (b). If 
C nAl i= 0, C \ Al i= 0, (3' is an order arc in C(X) from Al to 
At U C , and H(C U AI, At) < f, then, = a U (3' is an order 
arc from Ao to C U Al such that H 2(a,,) < f. 
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Proof: First we prove that the set (3 is a continuous image of 
a. Define 9 : a ~ f3 by g(At) = C U At for each At E a. 
Let f > o. Let At, As E a such that H(At, As) < f. Then 
H(g(At),g(As)) = H(C U At,C U As) ~ H(At,As) < f by 
[7, Lemma 1.4]. Hence 9 is continuous. It is clear that 9 is 
onto. Since f3 is linearly order by the strict set inclusion C, we 
use a Whitney map Jl : (3 ~ [Jl(AoU C), Jl(At U C)] which is 
one-to-one and onto. Hence f3 is an order arc. 

Now suppose H(C, Ao) < f. Let CUAt E (3. Then H(At,CU 
At) = H(AoU At, C U At) ~ H(C, At) < f by [7, Lemma 1.4]. 
Hence H(g(At), At) < f. Hence H2 (a, (3) < f. 

The proof for the part (b) is similar. 

(1.11) Lemma. Let X be a metric continuum. Let a = {At}tEI 
be an order arc in C(X) from A o to Al such that Ao has a 
point a at which X is connected im kleinen. Then, for each 
f > 0, there is a 8 > 0 such that if B is an element of the 8
neighborhood Vs ofAo in C(X) then there is an order arc (3 in 
C(X) from B to an element of C(X) such that H 2 (a, (3) < f. 

Proof: Let 0 < T < !min{f,H(Ao,AI )}. Since X is connected 
im kleinen at a, there is 0 < 8 < ~ such that the component 
D of N(~,a) containing a contains N(8,a). Let Vs be the 8
neighborhood of Ao in C(X) and B E Vs. Then B n fJ =I 0 so 
that BUfJUAo is a subcontinuum of X. Since fJ is contained in 
the closure of N(~, Ao) and B c N(8, Ao), we have BUJ2UAo C 
N(T, Ao). This fact together with Ao C N(T, BUD U Ao) 
yields H(B U jj U Ao, Ao) < T. Since f < H(Ao, AI) and 
Ao C At, we have Ao C N(T, At) and At et N(T, Ao) so that 
Al \ (B U jj U Ao) =I 0. Let (32 = {B U jj U At : At E a} to 
be an order arc in C(X) from B U jj U A o to B U jj U Al such 
that H2 (a, (32) < T by the part (a) of (1.10). Let (31 be an 
order arc in C(X) from B to B U tJ U Ao, and let (3 = (31 U (32. 
Then (3 is an order arc from B to B U jj U At. We show that 
H 2(a, (3) < f. For each C E (31, we have Bee c B U fJ U Ao 
and H(Ao,C) ~ H(Ao, BUfJUAo) < T and H2({Ao},(3t) < T. 
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Thus this fact together with H 2(a, (32) < r yields H2(a, (3) < 
r < f. 

Definition. A continuous mapping f of a topological space X 
onto a topological space Y is said to be confluent if, for each 
subcontinuum /( of Y, each component of the inverse f-l(/{) 
is mapped by f onto /{. 

A pair {{Xn}~=o, f} consisting of a sequence {Xn}~=o of 
pairwise disjoint subcontinua of a metric space X and a con
tinuous map f : U~oXn ---+ Xo is said to be a c-pair if it 
satisfies the following property: for each n, the restriction 
f I X n == fn : X n ---+ Xo is a confluent map and fo is the 
identity map on X o such that, for each f > 0, there is an N 
such that f;l(x) c N(f,X) for all x E X o and for all n ~ N. 

Let {Xn}~=l be a sequence of subsets of a space X. Denote 
the limit superior of the sequence by LsXn , the limit inferior 
of it by LiXn, and the limit of the sequence by LtXn. 

(1.12) Lemma. Let {{Xn}~=o, f} be a c-pair. Then LtXn == 
X o and LtC(Xn) == C(Xo). 

Proof: Let us first prove that LtXn == X o. It is clear from 
the definition that X o C LiXn. Let x E LsXn, and {xnk}k:o, 
Xnk E X nk , be a sequence which converges to x. By the con
tinuity of ! the sequence {!(xnk)}k::o == {!nk(xnk)}k::o con
verges to a point y E X o. Let f > 0 be given. There is 
a positive N l such that fnk(xnk ) E N(~,y) for all k > N l . 
By the hypothesis, there is a positive integer N 2 such that 
Xnk E f;kl fnk(Xnk ) C N(~, fnk(x nk )) for all k > N2 so that 
Xnk E N(f,y) for all k > max{Nl ,N2}. Thereforey == x E X o. 
Thus LsXn C X o. This proves that LtXn == X o. 

We now prove the second part. Let f > o. Let N be an 
interger such that f;l( x) C N( f, x) for all x E X o and for all 
n > N. Let !( E C(Xo). For n > N, let Bn be a component 
of f;l(l{). Then Bn C U{f;l(y) : y E !{} C N(f,l{). On 
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the other hand for each x E K, there is some y E Bn such 
that fn{Y) = x. So that d(x,y) < f. Hence x E N(f,y). Thus 
!{ c N (f, Bn ). Therefore H (Bn , !() < f.. This proves that the 
f-neighborhood of !( in C{X) intersects C(Xn ) for all n > N. 
Hence C(Xo) C LiC(Xn ). 

Now suppose B E LsC(Xn ). Since LtXn = X o, it is obvi
ous that B E C(Xo). Thus LsC(Xn) C C(Xo). This proves 
C(Xo) = LtC(Xn). 

(1.13) Theorem. Let {{Xn}~o, f} be a c-pair. Let f. > 0 and 
let a be an order arc in C(Xo). Then there is a positive interger 
N such that, for each n > N, there is an order arc r in C{Xn) 
such that H 2

( a, r) < f.. Futhermore, if A is the initial point of 
a which contains a point at which X o is connected im kleinen, 
then there are a positive integer N and a b-neighborhood Vs of 
A in C(U~=oXn) such that, for n > N and for each element 
B E Vs n C(Xn) there is an order arc I in C(Xn) having its 
initial point B such that H 2( a, I) < f.. 

Proof: We prove the first part. Let f. > 0 be given. Let a 
be an order arc in C(Xo) from Ao to AI. We parametrize 
a = {At}tE[O,I] so that As C At and As i=- At whenever s < t. 
Let N be a positive integer such that f;l(x) c N(f,X) for all 
x E X o and for all n > N. For each fixed n > N, let Bo be 
a component of f;I(Ao). We fix this component. Let f3n be 
the collection of all Bt , where Bt is the component of f;I(A t ), 

At E a, which contains Bo. We claim that there is an an 
order arc in C(Xn) containing f3n. Let B I be the component of 
f;I(AI ) which contains Bo. Let Sn = {B E C(BI ) : Bo C B}. 
We give an relation -< on Sn to be Eo: -< B/3 if Bo: C B/3 and 
Bo: i=- B{3. Then -< is a strict partial order. We claim that f3n 
is a simply ordered subset of Sn. To see it let Bt , Bs E f3ne 
Let At, As E a such that Bt and Bs are the components of 
f;I(At ) and f;I(As ) respectively containing Bo. Since a is 
also simply ordered set by -< we may assume that As C At 
and As i=- At. Then by the confluency of In' it is easily seen 
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that B s --< B t • The transitivity is obvious. So that f3n is simply 
ordered set. Then by the maximal principle, there is a maximal 
simply ordred subset r of Sn containing f3n. Then r is an order 
arc in C(Xn ) from Bo to B1 • 

We show that H 2(a,r) ~ f. First we note that (i). H(At,Bt) < 
f for each t E [0, 1]. 

We show that (ii). if B E r \ (3n, then there is Aso E a such 
that B ~ B so ' fn(B) == A so and H(B, A so ) < f. 

Let B E r \ (3n be an arbitray element. Then Bo --< B --< B1 • 

Let S = {s : Bs --< B} and T == {t : B --< Bt }. Then Sand T 
are both nonempty. We let So == sup S and to == inf T. Then 
So ~ to. 

Let {tm}~=l be a decreasing sequence in T which converges 
to to, and let {Btm}~=l be the corresponding sequence of ele
ments of (3n. Without loss of generality we assume that {Btm}~=l 

converges to C E r and the sequence {Atm }:=l converges to 
Ato · Since Bto ~ Btm for all m, Bto C LtBtm == C. On the 
other hand by the property of the map In' we have C C Bto . 
Hence we have C == Bto . Therefore B ~ Bto == C. 

Now let {sm}~=l be an increasing sequence in S converg
ing to So. We may again assume that the corresponding se
quences {BSm}~=l and {ASm}~=l converge to C' E rand A so 
respectively. Then Bsm --< C' ~ Bso for all m and C' ~ B. 
Since So ::; to, we also have Bso ~ Bto . Hence we have either 
B --< Bso or Bso --< B. If Bso --< B, then there would exist an s, 
So < s < to, such that Bso ~ Bs ~ Bta , Bs E (3n. This contra
dicts the choice of either So or to. Thus we have C' ~ B ~ B so . 

Since fn(Bsm ) == Asm ~ fn(C') as m ~ 00, and Aso == 
!n(Bso ), we have fn(B) == A so . 

We now show that H(B,Aso ) < f. Since B C Bso and 
H(Bso,Aso ) < f, we have B C N(f, A so ). Let x E A so . Then 
there is y E Bnf;l(x) such that y E j;l(x) C N(f,X). Hence 
x E N(f, y). Aso C N(f, B). Therefore H(B, A so ) < f. 

Now we combine (i) and (ii), one conclude that H2 (a, r) < f. 

We prove for the second part. Let N be a positive integer 
such that !;l(x) C N(~,x) for all x E X o and all n > N. Let 
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A E C(Xo) contains a point a at which X o is connected im 
kleinen. Let Z = U~=oXn. Since X o is connected im kleinen at 
a, there is 0 < 81 < 1~ such that the 81-neighborhood N(S1' a) 
in the subspace X o of a is contained in the component C of 
N(1~,a). Since the induced map f* : C(Z) --+ C(Xo) by f 
is continuous at A, there is a 0 < 8 < 81 such that the 8
neigllborhood Vs of A in C(Z) \ U~=IC(Xn) is mapped into 
the 81-neighborhood VOl of A in C(Xo). 

Let B E Vs n C(Xn ) for some n > N. Then H(A, B) < 8 
and H(fn(B), A) < 81 so that H(fn(B), B) < ~. 

Since fn(B) n C # 0 (becuase H(fn(B),A) < 81 , f(B) = 
fn(B), and f(A) = fo(A) = A ), A U fn(B) U a is a sub
continuum of X o. Let 1"1 be an order arc in C(Xo) from A to 
AUfn(B)Ua and let r2 = {AUfn(B)UaUAt : At E a}. Then 
1" = 1"1 U 1"2 is an order arc in C(Xo). Since H(A, A U a) < 1

f
S 

Ca c N(81,a) C N(1~,A)) and_H(A,fn(B)) < 81 , H(A,AU 
C U fn(B)) = H(A U A,A U C U fn(B)) ~ max{H(A,A U 
a), H(A, fn(B))} < I

fs by [7, Proposition 1.5], we have 
fH 2(0:,1"2)::; I S by (1.8). 

Now let A' E 1"1. Then A' C Auaufn(B) so that H(A, A') ::; 
H(A, A U C U fn(B)) < 1~ by [9, (0.63.3), p.34]. This means 
that H 2({A},1"I) < IfS • Hence H 2(0:,r) < IfS • 

Let D be the component of f;I(A U C U fn(B)) which con
tains B. Let II be an order arc in C(Xn ) from B to D, and 
let /2 be an order arc in C(Xn ) whose initial point is D such 
that H2 (1"2, /2) < ~ which is provided by the first part for ~. 

Let / = /1 U /2- Then / is an order arc in C(Xn ). 

In order to show H2(0:, /) < f, we show first that H2(/1, Tl) < 
19f 
30· 
For each B' E /1, H(A, B' ) ~ H(A, B) + H(B, B'). Since 
H(B, B') = H(B, BUB') ~ H(B, D) by [9, (0.63.4), p.34], we 
compute H(B, D) ::; H(A, B) +H(A, AU aU fn(B)) +H(AU 
C U fn(B), D) < ~f. So that H(A, B') < ~~f. On the other 
hand, for each A' E 1"1, H(A', B) ::; H(A, A') + H(A, B) ~ 

H(A,AUCUfn(B)) < ;~. Combining these two, we conclude 
that H 2(Tl,/I) < ~f. 
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Since H 2(r2,,2) ~ ~, we see that H 2(r,,) < ;~€. Hence 
H 2(a,,) ~ H2(o:,r) + H 2(r,,) < ~~€ < f. This completes 
the proof. 

2.	 NONCONTRACTIBLE HYPERSPACE WITHOUT 

Ri-cONTINUUM. 

Charatonik exhibited a dendroid X [1, Example 5, p.209] 
without Ri-continuum whose hyperspace C(X) is not contrac
tible. We take this space X to prove that C(X) does not con
tain any Ri-continuum by showing that the adimissible fiber 
A(A) at A in C(X) is path-connected. 

Let X be the dendroid (Example below). We use the same 
notations as in the example. We need some additional nota.
tions: Let Tn be the triod in Qn whose vertices are Cn, an, and 
dn • Let T~ be the image under the central symmetry map 9 
with respect to the origin b. We denote the unique arc between 
two points x and y by [x,y]. If x = y then [x,y] = {x}. 

We now define several subsets of C(X): For each positive 
in teger n, let £n be the collection of all triods A in Tn \ {an} 
such that one vertex of A is a point of the half-open interval 
[cn, bn), the other vertex lies in [dn, bn), the third vertex of A lies 
in [bn,an) ( here we allow the third vertex can be bn). Let £~ 

be the set of all images of elements of £n under the symmetry 
map g. Let}(l = {A E C(X): A contains a point at which X is 
locally connected }. Let}(2 be the set consisting of only the 
vertical arc [c, a]. Let W = K 1 U K 2 U (U~l(.Cn U £~)). 

Lemma 2.1. C(X) is connected im kleinen at each A E w. 
Proof: If A E K,1' we apply (1.5). If A E K 2 U £n U £~, we 
apply (1.8) or [5, Theorem 2]. 

For each positive integer n, let Un = C(Tn \ (K,1 U £n) and 
let U~ be the collection of all images of elements of Un un
der the symmetry map g. Let V = C([c, a]) \ K2 and let 
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N = V U (U~=1(Un U U~)). Now one can easily show that: 

Lemma 2.2. N = C(X) \ w. 
Proof: Let A E C(X) \ W. Then A c U~=I([Tn \ {an}] U 
[T~ \ {a~}]) u [e,a]. Since all Tn' T~, [e,a] are disjoint, either 
A C Tn \ {an}, A C T~ \ {a~} for some n, or A is a prop
er subset of [e, a]. Also A (j. (L n U L~) for any n. A must be 
an arc in X such that either A E V or A E (UnUU~) for some n. 

Proposition 2.3. Let X be the dendroid. Then, for each A E 
C(X), there is an order arc in A(A) from A to C(X). 

Proof: Suppose A E W. Then C(X) is connected im kleinen 
at A. So that A is a k-point of C(X) by (1.2). Hence A(A) = 
T(A), where T(A) is the total fiber at A in C(X). Thus any 
order arc 0: in C2 (X) from {A} to C(X) is contained T(A) so 
that a c A(A). 

Suppose A E N. Since each element of N is an arc in X, 
we write A = [x, y] with the end points x and y. 
Let A E V. Let e ~ x ::; y < a. We find an order arc 
a = al U a2 from {A} to C(X) in A(A) as follows: 
Let Q = {[(I - t)x + te, (1 - t)y + tal : t E [0, I]}. Then Q is 
an order arc in C(X) from A to [e, a]. For convenience, we let 
At = [(1 - t)x + te, (1 - t)y + tal. Then Q = {At: t E [0, I]} 
such that A = Ao and [e, a] = AI. For each tEl, let at = 
{As E a : 0 ~ s ::; t}. Then at is an order arc in C([e, a]) for 
each t E (0,1] and a1 = {at: tEl} is an order arc in C2(X) 
from {A} = ao to al = a. We note that [e,a] E al. 

We show that at E A(A) for each t E [0,1]. 
Suppose x =I c. Then we take the following e-pair {{Xn}~=o, f}: 

For each n, let X 2n = Qn, X 2n- 1 = Q~, X O = [e, a], and 
fn : X n ~ X o the horizontal projection. Then each In is a 
confluent map and f = U~=lfn : U~=oXn ---+ X o is contin
uous and fa is the identity on X o. For € > 0, let Nand 
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6 > 0 be the same as in the proof of (1.13). We choose 61 , 

o < 61 < min~{d(x,c),8,f,d(a,y)}. Let B be an elemen
t of the 61-neighborhood of A in C(X). Then B is entirely 
contained in Qn (or Q~). Hence by (1.13), there is an order 
arc, in C(Qn) (or C(Q~)) such that H 2(a1") < f and so 
that H3(a1,i) < f by (1.9). Hence there is ,s E i such that 
H2(at"s) < f. If B E C([c,a]), by (1.10) we have an order 
arc i E C2(X) such that H2(a1") < f so that H3 (i,a1) < f. 
Hence, by (1.9.1) at E A(A) for each t E [0,1]. 

If x = c, let Nand 0 < 8 be the same is in (1.13) for ~. Let 
B E C(X) and H(B, A) < 8. If B in entirely contained in Qn 
or in Q~, then we get the same , and l' as above. Otherwise 
B must contain more than one ramification points a~ of Q~. 

Let a~ E B such that d(a~,c) 2:: d(a~,c) for all a~ E B, and 
let C = [a~, c]. Then H(A, C U A) < 8 and H(B, C U A) < 8. 
Then applying (1.10) twice we get an order arc, in C(X) with 
the initial point B such that H2 (" a1) < f so that and l' such 
that H 3 

( a1 ,1') < f. Hence there is an element , s E l' such that 
H 2(at"s) < f. This proves that at E A(A) for each t E [0,1]. 

Let &2 = {at}tEI be any order arc in C2(X) from a1 to 
C(X). Since [c, a] is a k-point of C(X) and [c, a] E a1 C at 
for each tEl, at E A([c, a]) for each tEl. Since 0:1 E A(A), 
(1t E A([c, a]), and [c, a] E a1 n (1t, a1 U (1t = (1t E A(A) by 
(1.1). It is clear that & is an order arc in A(A) from ao = {A} 
to C(X). 

Now suppose A = [x, y] E Un U U~. Suppose A E Un. Then 
either A C [cn' an] or A C [dn' an]. We prove only for Cn :s; x ~ 

y ::; an. Let f > 0 be given. Since an tJ. A, so we must have 
d(y, an) > o. There are two cases to consider: 
Case 1. Cn :s; x < bn. Let 0 < f' < ~ min{f, d(y, an), 
d(bn , an), d(x, [bn , dn])}. 

Let em be the unique point of the intersection of [cn,m, an] 
and the horizontal line y = (1 - f'). For each m, let em be the 
unique point of the intersection of [cn, an] and the horizontal 
line, and let eo be the point in the intersection of the line and 
[cn,an]. Then d(an,eo) = f'. Let {{Xm}m=O,!} be the c-pair 
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defined by, for each m, X n = [cn,m, em] and Xo = [cn, eo] and 
fm : X m ~ X o be the horizontal projection of Xm onto Xo, 

and fo the identity on Xoand f = U~=l/m. Then each 1m is a 
confluent map and I : Z = U~=oXm --+ X o is continuous. Let 
0'1 be an order arc in C(X) from A to [x, eo] and let 0'2 be an 
order arc in C(X) from [x, eo] to [x, an]. Then 0'1 is an order 
arc in C(Xo) and Q'. = 0'1 U 0'2 is an order arc from A to [x, an]. 
We note that, since H([x, eo], [x, an]) < f', H 2 ( 0'1 U0'2,0'1) < f' 
by (1.10). Let & = {at}tE[O,I] denote the induced order arc by 
Q'. Now let Nand <5 > 0 be given by (1.13) for f'. Let Vs 
be the 8-neighborhood of A in C(X), and B E V n C(Z). If 
B E C(Xm ), m > N, then there is an order arc (3 from B 
such that H 2(a1,(3) < f' by (1.13) and H 3(&1,/3) < f', where 

&1 = {O!thE[O,I] and iJ = {,BthE[O,I] are the induced order arcs by 
0'1 and (3 respectively as in (1.9). If B E C(Tn ) then BnA i= 0 
and H(B, A) < 81 so that the order arc (3 obtained by (1.10) 
is such that H2((3, ( 1 ) < 81 and H3(/3, (1) < 81. In any case, 
we have H 2(a, (3) ~ H 2(0'1 U a 2 , a 1) +H 2(aI, (3) < 2f' < f and 
hence H3 

( ex, /3) < f by (1.9). Furthermore, one can show that, 
for each at E a, thereis(3s E /3 such that H2(at,(3s) < f. Hence 
at E A(A) for each at. Let & = {at}tEI and let l' = {,s}sEI 
be any order arc in C2 (X) from 0'1 to C(X). Since [x, an] E 
al E A(A) and [x, an] is a k-point of C(X) and 0'1 C /s implies 
[x, an] E Is for each Is E 1', so that by (1.1) /s E A([x, an]) for 
each /s E 1'. This prove that & U l' is an order arc in A(A) 
from {A} to C(X). 

Case 2. bn :5 x. In this case we let 0 < (.' < ~{(., d(y, an), 11
0 

}. 

We need two c-pairs. Let {{Xm}~=o, I} be the c-pair for this 
£..' as in Case 1. Let y = (1 - (.') be horizontal line. For each 
positive integer m, let e~ be the point of the intersection of 
the line y with [dn,m, an]. Let e~ the point of intersection of the 
line y with [dn, an]. Let 

Ym = [P:n, e~] for each m and YO = [dn, e~]. Let gm : 
Ym ~ YO be the horizontal projections. Let 9 = Ugne Then 
{{Ym}~=o,g} is a c-pair. Let 0'1 be an order arc in C(X) from 
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[x, y] to [x, eo] and let a2 be an order arc in C(X) from [x, eo] 
to [x, an]. Let a = a l U a 2 • Then a is an order arc in C(X) 
from [x,y] to [x,a n ]. Applying the same technique and argu
ment as in Case 1 with each one of the c-pairs, we see that 
each element at of the induced order arc & = {At}[O,l] by a 
is admissible at A = [x, y] in C(X). This order arc a is an 
order arc in C2 (X) from ao == {A} to al == a. As before, we 
let l' = {f't}tE[O,l] be an order arc in C2 (X) from al to C(X). 
Since [x, an] E al E A(A), and [x, an] is a k-point of C(X) and 
[x, an] E It for each It E 7, we have It E A(A) for each It E 7 
by (1.1). Thus & U1'. C A(A) is an order arc in C2(X) from 
A = ao to C(X). 

Corollary 2.4. C(X) does not contain any Ri-continuum. 

By (2.3) there is an order arc in A(A) from A to C(X) for 
each A E C(X). Hence by (1.3) and (1.4) we conclude that 
C(X) does not contain any Ri-continuum. 

Charatonik's Example [1, Example 5, p.209]. In the 
Euclidean plane let a == (0,1), b == (0,0), c == (0, -1) and 
for each positive integer n let an == (2-3n ,1), bn == (2-3n , 0), 
C == (2-(3n+l), -1), and d == (2-(3n-l), -1). For each positive n n 

integer m, let bn,m == (2- 3n (1 - 2(m+3»), 0), b~ m == (2-3n (I + 
2-(m+3») 0) c - (2-(3n+l)(1 - 2-(m+3») ~I) and d , , n,m - , , n,m 
(2-(3n-l)(1 + 2-(m+3»), -1). 

For each n let Qn==[an, bn]U[bn, en] U[bn, dn]UU~=l ([bn,m, an]U 
[cn,m, bn,m]) U U~=l([b~,m, an] U [dn,m, b~,m]). Let Y=[a, al] U 
[a, c] U U~l Qn and let Q~ and Y' respectively be the images 
of Qn and Y under the symmetry map 9 with respect to the 
origin b. Finally we put X == Y u Y'. 
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