Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT ${}_{\bigodot}$ by Topology Proceedings. All rights reserved.

NORMALITY AND COVERING PROPERTIES OF OPEN SETS OF UNCOUNTABLE PRODUCTS

KENICHI TAMANO¹ AND HUI TENG

ABSTRACT. Let X be a product of paracompact σ spaces X_{α} . Then the following conditions for an open
set U of X are equivalent:

- (a) U is normal (countably paracompact, collectionwise Hausdorff, orthocompact, θ -refinable, paracompact);
- (b) U is an F_{σ} -set of X and X_{α} is compact metrizable for all but countably many α 's.

0. Introduction

Nagami [N] proved that the normaliy and the countably paracompactness are equivalent for a product of paracompact Σ -spaces. He asked: Let ω_1 be the first uncountable cardinal, and I^{ω_1} the product of ω_1 many copies of the unit interval. Then is an open set of I^{ω_1} normal if it is countably paracompact? The purpose of this paper is to answer Nagami's question positively. More generally, we show the following theorem in section 2:

Theorem. Let $X = \prod_{\alpha < \lambda} X_{\alpha}$ be a product of paracompact σ -spaces. Then the following conditions for an open set U of X are equivalent:

(a) U is normal (countably paracompact, collectionwise Hausdorff, orthocompact, θ -refinable, paracompact);

¹ This work was done while the first author was visiting Auburn University.

(b) U is an F_{σ} -set of X and X_{α} is compact metrizable for all but countably many α 's.

In section 1, we prepare lemmas which will be used in the proof of our theorem. The key to the proof is the fact that if U doesn't satisfy (b), then U contains a closed copy of $2^{\omega_1} - \{0\}$, which has none of the covering properties in (a).

Let us briefly review σ -spaces and semi-stratifiable spaces. The reader is referred to [O] and [G] for these spaces. A space is a σ -space if it has a σ -discrete network. A space X is semi-stratifiable if there is a function G which assigns to each $n \in \omega$ and closed set $H \subset X$, an open set G(n,H) containing H such that

- (i) $H = \bigcap_n G(n, H)$;
- (ii) $G(n, H) \subset G(n, K)$ if $H \subset K$.

Every σ -space is semi-stratifiable. A semi-stratifiable space is compact metrizable if it is countably compact. Every countable product of (paracompact) σ -spaces is a (paracompact) σ -space. Every countable product of semi-stratifiable space is semi-stratifiable. The product $\prod_{n<\omega} X_n$ is paracompact (Lindelöf) if each X_n is semi-stratifiable and each finite subproduct is paracompact (Lindelöf). This follows from the fact that the product $\prod_{n<\omega} X_n$ is paracompact (Lindelöf) if each finite subproduct is perfectly normal and pracompact (Lindelöf) (see [O] for the paracompact case).

All spaces are assumed to be completely regular T_2 . κ and λ are cardinal numbers. ω is the smallest infinite ordinal and cardinal, and ω_1 is the smallest uncountable ordinal and cardinal. A cardinal number is the set of all ordinals which precede it. A product $X = \prod_{\alpha < \lambda} X_{\alpha}$ of spaces is the product with the Tychonoff topology. If each X_{α} is identical to a fixed space Y, we write Y^{λ} for $\prod_{\alpha < \lambda} X_{\alpha}$. For $S \subset \lambda$, denote by π_S the natural projection $\pi_S : X \to \prod_{\alpha \in S} X_{\alpha}$. The space 2^{λ} is the product of λ many copies of the two point discrete space $2 = \{0,1\}$. Define 0, $1 \in 2^{\kappa}$ by $0(\alpha) = 0$, $1(\alpha) = 1$ for any $\alpha < \kappa$.

1. Preliminary Lemmas

Let (X,τ) be a space and κ an uncountable cardinal. A subset of X which is an intersection of less than κ many open sets is called a $G_{\delta}^{<\kappa}$ -set. A $G_{\delta}^{<\omega_1}$ -set is simply called a G_{δ} -set. Let τ_{κ} be the topology on the same underlying set X with the base consisting of all $G_{\delta}^{<\kappa}$ -sets. The space (X,τ_{κ}) is called the κ -modification of (X,τ) . We need the following three lemmas:

Lemma 1 [Y]. Let X be a product of semi-stratifiable spaces. Then a closed set of X is a G_{δ} -set if and only if it is a union of G_{δ} -sets.

The following Lemma ensures an embedding of $2^{\omega_1} - \{0\}$ in an open set of a product space.

Lemma 2. Let κ be a regular uncountable cardinal, and $\lambda \geq \kappa$ a cardinal. Suppose that $(X,\tau) = \prod_{\alpha < \lambda} X_{\alpha}$ is a product of spaces such that every point of X_{α} is a $G_{\delta}^{<\kappa}$ in X_{α} for any $\alpha < \lambda$. Let $A \in \tau_{\kappa}$, where (X,τ_{κ}) is the κ -modification of (X,τ) . Then the following conditions are equivalent:

- (a) $X A \notin \tau_{\kappa}$;
- (b) There is a subspace C in (X, τ) such that C is homeomorphic to 2^{κ} and C A is a singleton.

Proof: (b) \Rightarrow (a): Let $C - A = \{p\}$. Then every $G_{\delta}^{<\kappa}$ -set containing p meets $C - \{p\} = C \cap A$, because no point of 2^{κ} is a $G_{\delta}^{<\kappa}$ -set of 2^{κ} . Hence $X - A \notin \tau_{\kappa}$.

(a) \Rightarrow (b): Assume (a). Then there is a point $p \in \operatorname{cl}_{\tau_{\kappa}} A - A$. Define

supp
$$q = \{ \alpha < \lambda : q(\alpha) \neq p(\alpha) \}$$
 for each $q \in X$.

By induction on $\xi < \kappa$, we take a sequence $\langle p_{\xi} : \xi < \kappa \rangle$ of points of A and an increasing sequence $\langle S_{\xi} : \xi < \kappa \rangle$ of subsets of λ of cardinality less than κ satisfying the following:

(1)
$$\operatorname{supp} p_{\xi} \subset S_{\xi} - \cup \{S_{\eta} : \eta < \xi\}; \text{ and }$$

(2)
$$\{q \in X : q | S_{\xi} = p_{\xi} | S_{\xi} \} \subset A \text{ for each } \xi < \kappa.$$

Assume that $\langle p_{\eta} : \eta < \xi \rangle$ and $\langle S_{\eta} : \eta < \xi \rangle$ are defined for $\xi < \kappa$. Define

$$T_{\xi} = \bigcup \{S_{\eta} : \eta < \xi\}, \text{ and } Z_{\xi} = \{q \in X : q(\alpha) = p(\alpha) \text{ for any } \alpha \in T_{\xi}\}.$$

Since $|T_{\xi}| < \kappa$ and every point of each X_{α} is a $G_{\delta}^{<\kappa}$ -set of X_{α} , Z_{ξ} is a $G_{\delta}^{<\kappa}$ -set of X. Hence there is a point $p' \in Z_{\xi} \cap A \in \tau_{\kappa}$ because $p \in Z_{\xi}$ and $p \in \text{cl}_{\tau_{\kappa}} A$. Take a subset S_{ξ} of λ of size less than κ such that $T_{\xi} \subset S_{\xi}$, and $\pi_{S_{\xi}}^{-1} \pi_{S_{\xi}}(p') \subset Z_{\xi} \cap A$. Define $p_{\xi}(\alpha) \in X$ by

$$p_{\xi}(\alpha) = \begin{cases} p'(\alpha) & \text{if } \alpha \in S_{\xi} \\ p(\alpha) & \text{if } \alpha \in \lambda - S_{\xi}. \end{cases}$$

Then p_{ξ} satisfies (1) and (2), which completes the induction step.

Now define

$$\begin{array}{ll} R_{\xi} &= S_{\xi} - \cup \{S_{\eta} : \eta < \xi\}; \\ R &= \lambda - \cup \{S_{\xi} : \xi < \kappa\} \\ &= \lambda - \cup \{R_{\xi} : \xi < \kappa\}; \text{ and} \\ C &= \{q \in X : q | R = p | R, \text{ and} \\ &\text{for any } \xi < \kappa, \text{either } q | R_{\xi} = p | R_{\xi} \text{ or } q | R_{\xi} = p_{\xi} | R_{\xi} \}. \end{array}$$

It is easy to check that the subspace C is homeomorphic to 2^{κ} . It remains to show that $C - \{p\} \subset A$. To see this, let $q \in C - \{p\}$. Define

$$\xi_0 = \min\{\xi < \kappa : q | R_{\xi} \neq p | R_{\xi}\}.$$

Then by the definition of C,

$$q|R_{\xi_0} = p_{\xi_0}|R_{\xi_0}.$$

By the minimality of ξ_0 , we have

(4)
$$q|R_{\xi} = p|R_{\xi} \text{ for any } \xi < \xi_0.$$

It follows from (1) that supp $p_{\xi_0} \subset R_{\xi_0} \subset \lambda - \bigcup_{\xi < \xi_0} R_{\xi}$. Hence

(5)
$$p_{\xi_0}|R_{\xi}=p|R_{\xi} \text{ for any } \xi < \xi_0.$$

Combining (3), (4) and (5), we have $q|S_{\xi_0}=p_{\xi_0}|S_{\xi_0}$. Hence by (2), we have $q \in A$. \square

The space $2^{\omega_1} - \{0\}$ has none of the covering properties mentioned in our theorem.

Lemma 3. Let κ be an uncountable cardinal. Then $E = 2^{\kappa} - \{0\}$ has the following properties:

- (a) E contains a closed copy of the space $(\lambda_0 + 1) \times (\lambda_1 + 1) \{(\lambda_0, \lambda_1)\}$ for any ordinals λ_0, λ_1 of cardinality $\leq \kappa$, where $\lambda_i + 1$, i < 2 are spaces with the order topology:
- (b) E contains a closed discrete set of cardinality κ ;
- (c) E is not normal;
- (d) E is not countably paracompact;
- (e) E is not collectionwise Hausdorff; and
- (f) E is not orthocompact.

Proof: (a), (b): Let D be a discrete space of size κ and $D \cup \{\infty\}$ be its one point compactification. Since the weights of compact zero-dimensional spaces $(\lambda_0+1)\times(\lambda_1+1)$ and $D \cup \{\infty\}$ are less than or equal to κ , they can be embedded in 2^{κ} as closed sets. Hence $(\lambda_0+1)\times(\lambda_1+1)-\{(\lambda_0,\lambda_1)\}$ and D can be embedded in E as closed sets.

Before showing the properties from (c) to (d), note that $2^{\omega_1} \times \{\pi_{\kappa-\omega_1}(\mathbf{0})\} - \{\mathbf{0}\}$ is a closed subset of E homeomorphic to $2^{\omega_1} - \{\mathbf{0}\}$. Since normality, countable paracompactness, collectionwise Hausdorffness and orthocompactness are closed hereditary, it suffices to show that the space $2^{\omega_1} - \{\mathbf{0}\}$ doesn't have these properties. So from now on we assume that $\kappa = \omega_1$.

(c), (d): By (a), the Tychonoff plank $T = (\omega_1 + 1) \times (\omega + 1) - \{(\omega_1, \omega)\}$ can be embedded in E as a closed set. It is well known that T is neither normal nor countably paracompact.

(e): By (b), E contains an uncountable discrete closed set. Since E has the countable chain condition, it cannot be separated by open sets.

(f): By (b), E contains a discrete closed set $D = \{d_{\xi} : \xi < \omega_1\}$. For any $\xi < \omega_1$, take an open set U_{ξ} of E satisfying:

$$d_{\xi} \in U_{\xi} \subset E - \{d_{\eta} : \eta < \omega_1, \ \eta \neq \xi\}; \text{ and }$$

(6)
$$U_{\xi} \subset \pi_{\xi}^{-1}(\{d_{\xi}(\xi)\}).$$

Define U = E - D, and

$$\mathcal{U} = \{U\} \cup \{U_{\xi} : \xi < \omega_1\}.$$

Then \mathcal{U} is an open cover of E. Suppose that there is an interior preserving refinement \mathcal{V} of \mathcal{U} . For any $\xi < \omega_1$, take $V_{\xi} \in \mathcal{V}$ containing d_{ξ} . Since U_{ξ} is the only element of \mathcal{U} which contains d_{ξ} , we have $V_{\xi} \subset U_{\xi}$. Since E is separable, there are a point $p \in E$ and an infinite subset A of ω_1 such that $p \in \cap \{V_{\xi} : \xi \in A\}$. But $\cap \{V_{\xi} : \xi \in A\} \subset \cap \{U_{\xi} : \xi \in A\}$, and by (6), $\cap \{U_{\xi} : \xi \in A\}$ has no interior, which contradicts the interior preserving property of \mathcal{V} . \square

Remark 1. The alternative proof of (f) is as follows: Let $S = \omega_1 \times (\omega_1 + 1)$. It is known that S is not orthocompact [S]. So it suffices to show that S can be embedded in E as a closed set. Let $S' = (\omega_1 + 1) \times (\omega_1 + 1)$ and S'' the space obtained from S' by identifying $\{\omega_1\} \times (\omega_1 + 1)$ to a single point called ∞ . Since S'' is a compact zero-dimensional space of weight ω_1 , S'' can be embedded in 2^{ω_1} as a closed set. Hence S, which is homeomorphic to $S'' - \{\infty\}$, can be embedded in E as a closed set.

2. Theorems

We state our main theorem in a general form:

Theorem 1. Let $X = \prod_{\alpha < \lambda} X_{\alpha}$ be a product of paracompact semi-stratifiable spaces, each finite subproduct of which is paracompact. Suppose that \mathcal{P}_0 and \mathcal{P}_1 are closed hereditary classes

of spaces containing all paracompact spaces such that $2^{\omega_1} - \{0\}$ belongs to neither \mathcal{P}_0 nor \mathcal{P}_1 , and $\omega^{\omega_1} \notin \mathcal{P}_0$. Then the following conditions for an open set U of X are equivalent:

- (a) $U \in \mathcal{P}_0$;
- (b) $U \in \mathcal{P}_1$, and X_{α} is compact for all but countably many $\alpha < \lambda$;
- (c) U is an F_{σ} set of X, and X_{α} is compact for all but countably many $\alpha < \lambda$.

Proof: (c) \Rightarrow (a), (c) \Rightarrow (b): Suppose the condition (c). Then X can be written as a product of a paracompact space and a compact space. Hence X is paracompact. So an F_{σ} -set U of X is paracompact. Thus we have (a) and (b).

- (a) \Rightarrow (c): Assume that $U \in \mathcal{P}_0$. First we show that X_{α} is compact for all but countably many $\alpha < \kappa$. Suppose not. Then uncountably many X_{α} 's contain an infinite discrete closed set. Hence U contains a copy of the product space ω^{ω_1} as a closed subset, which contradicts the closed hereditariness of \mathcal{P}_0 . Next we show that U is an F_{σ} -set. Suppose not. Note that each point of each X_{α} is a G_{δ} because X_{α} is semi-stratifiable. Hence by Lemma 1, X U is not a union of G_{δ} -sets. In other words, $X U \notin \tau_{\omega_1}$. By Lemma 2, U contains a closed copy of $2^{\omega_1} \{\mathbf{0}\}$, which again contradicts the closed hereditariness of \mathcal{P}_0 . (b) \Rightarrow (c): The proof is a part of the proof of (a) \Rightarrow (c). \square
- Corollary 1. Let $X = \prod_{\alpha < \lambda} X_{\alpha}$ be a product of paracompact semi-stratifiable spaces, each finite subproduct of which is paracompact. Then the following conditions for an open set U of X are equivalent:
 - (a) U is normal;
 - (b) U is countably paracompact;
 - (c) U is collectionwise Hausdorff;
 - (d) U is orthocompact;
 - (e) U is paracompact;
 - (f) U is θ -refinable;
 - (g) U is weakly $\delta\theta$ -refinable, and X_{α} is compact for all but countably many $\alpha < \lambda$.

Proof: Apply Theorem 1 by noting the following facts. The properties of U in conditions from (a) to (g) are closed hereditary properties. ω^{ω_1} does not have properties from (a) to (f) (see [vD]). $2^{\omega_1} - \{0\}$ does not have properties from (a) to (e) by Lemma 3. $2^{\omega_1} - \{0\}$ is neither θ -refinable nor weakly $\delta\theta$ -refinable because the space ω_1 with the order topology is neither θ -refinable nor weakly $\delta\theta$ -refinable, and by Lemma 3 (a), ω_1 can be embedded in $2^{\omega_1} - \{0\}$ as a closed set. \square

Remark 2 In Corollary 1, weak $\delta\theta$ -refinability in (g) can be replaced by any other closed hereditary property \mathcal{P} such that every paracompact space has the property \mathcal{P} and ω_1 is not in the class \mathcal{P} . For such properties, see [L].

In case that each finite subproduct is Lindelöf, the properties in Corollary 1 are equivalent to Lindelöf property and \aleph_1 -compactness.

Theorem 2. Let $X = \prod_{\alpha < \lambda} X_{\alpha}$ be a product of semi-stratifiable spaces, each finite subproduct of which is Lindelöf. Suppose that \mathcal{P}_0 and \mathcal{P}_1 are closed hereditary classes of spaces containing all Lindelöf spaces such that $2^{\omega_1} - \{0\}$ belongs to neither \mathcal{P}_0 nor \mathcal{P}_1 , and $\omega^{\omega_1} \notin \mathcal{P}_0$. Then the following conditions for an open set U of X are equivalent:

- (a) $U \in \mathcal{P}_0$;
- (b) $U \in \mathcal{P}_1$, and X_{α} is compact for all but countably many $\alpha < \lambda$;
- (c) U is an F_{σ} set of X, and X_{α} is compact for all but countably many $\alpha < \lambda$;
- (d) there is a countable subset S of λ such that $U = \pi_S^{-1} \pi_S(U)$, and X_{α} is compact for all but countably many $\alpha < \lambda$.

Proof: (a) \Rightarrow (c), (b) \Rightarrow (c): Similar to the proof in Theorem 1. (c) \Rightarrow (d): Since X is a Lindelöf space, the F_{σ} -set U is also Lindelöf. Hence U is a countable union of basic open sets, which implies (d). (d) \Rightarrow (a), (d) \Rightarrow (b): Suppose (d), then U can be written as a product of a Lindelöf space and a compact space, hence U is Lindelöf. Thus (a) and (b) hold. \square

Corollary 2. Let $X = \prod_{\alpha < \lambda} X_{\alpha}$ be a product of semi-stratifiable spaces, each finite subproduct of which is Lindelöf. Then the following conditions for an open set U of X are equivalent:

- (a) U is Lindelöf;
- (b) U has no subset of cardinality ω_1 which is closed and discrete in U i.e., U is \aleph_1 -compact;
- (c) U has any one of properties from (a) to (f) in Corollary 1;
- (d) U has the property (g) in Corollary 1.

Proof: Apply Theorem 2. We need only check that the \aleph_1 -compactness satisfies the property of \mathcal{P}_0 in Theorem 2. Clearly \aleph_1 -compactness is closed hereditary. ω^{ω_1} is not \aleph_1 -compact by [M]. $2^{\omega_1} - \{0\}$ fails to be \aleph_1 -compact by Lemma 3 (b). \square

Remark 3. For the realcompactness of a G_{δ} -set in a dyadic space, see [PP]. It is shown that for a G_{δ} -set G in a dyadic space, G is realcompact if and only if G is Lindelöf.

We conclude with two questions.

Question 1. Is the space $2^{\omega_1} - \{0\}$ countably metacompact?

Kemoto and Yajima [KY] asked whether ω^{ω_1} is weakly θ -refinable. The negative answer to the following question implies that we can remove the compactness from the condition (g) in Corollary 1.

Question 2. Is the space ω^{ω_1} weakly $\delta\theta$ -refinable?

Acknowledgement. The authors wish to thank Gary Gruenhage, Yukinobu Yajima and Akio Kato for their helpful suggestions.

REFERENCES

- [vD] E. K. van Douwen Covering and separation properties of box products in Surveys in General Topology (G. M. Reed eds.), Academic Press, New York, 1980, 55-129.
- [G] G. Gruenhage, Generalized metric spaces, in Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan eds.), North-Holland, 1984, 423-501.
- [KY] Kemoto and Yajima, Orthocompactness in infinite product spaces, Proc. Amer. Math. Soc., (to appear).
- [L] D. Lutzer, Ordered topological spaces, in Surveys in General Topology
 (G. M. Reed ed.), Academic Press, New York, 1980 247-295.
- [M] J. Mycielski, α -incompactness of N^{α} , Bull. Acad. Pol. Sci. Ser. Math., 12 (1964), 437-438.
- [N] K. Nagami, Countable paracompactness of inverse limits and products, Fund. Math., 73 (1972), 261-270.
- [O] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku 9 (1968), 236-254.
- [PP] R. Pol and E. Pol, Remarks on Cartesian products, Fund. Math., 93 (1976), 57-69.
- [S] B. M. Scott, Toward a product theory for orthocompactness, in Studies in Topology (K. R. Allen and N. M. Stavrakas, eds.), Academic Press, New York 1975, 517-537.
- [Y] Y. Yajima, On Σ -products of semi-stratifiable spaces, Topology and Appl. 25 (1987) 1-11.

Yokohama National University Tokiwadai Hodogaya Yokohama 240, Japan

Sichuan University Chengdu Sichuan 610064 People's Republic of CHINA