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NOT ALL PSEUDO-OPEN MAPS ARE
COMPOSITIONS OF CLOSED MAPS AND
OPEN MAPS

ALEXANDER ARHANGEL’SKII, WINFRIED JUST, AND
HOWARD WICKE

ABSTRACT. We give examples of properties preserved
by inductively open-compact maps and inductively per-
fect maps, but which are not preserved by pseudo-open
compact maps. It follows that not all pseudo-open com-
pact maps are compositions of inductively open-compact
maps and inductively perfect maps.

All maps considered in this paper are continuous and sur-
jective. All spaces are T;. We write f~'y for the inverse image
of a point y.

1. Definitions: Let X,Y be topological spaces, and let
f + X — Y. The map f is pseudo-open iff Vy € YV open
U(f~'y C U = y € int(f[U])).

The class of pseudo-open maps contains all open maps and
all closed maps. Moreover, the class of pseudo-open maps is
closed under compositions. Therefore, if f = fyo fx_10...0 fj
for some k € w, and if each of the maps f; is either open or
closed, then f is pseudo-open.

Since the introduction of the class of pseudo-open maps in
[A1], a number of significant results on this class of maps have
been obtained. Let us mention but a few of them: Arhangel’skii
([A1], [A3]) characterized Frechet-Urysohn spaces as pseudo-
open images of metrizable spaces. Coban proved that para-
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compact images of metrizable spaces under pseudo-open com-
pact maps are metrizable (see [A4]), and Burke [Bu] showed
that images of paracompact spaces under pseudo-open com-
pact maps are metacompact. Nevertheless, it appears that
there are no known examples of pseudo-open maps which have
been shown not to be a composition of closed maps and of
open maps. The problem of finding such examples boils down
to finding a property of maps that is preserved under compo-
sitions, is common to both closed and open maps, but is not
shared by pseudo-open maps in general. In this note we give
examples of properties that can be used to distinguish pseudo-
open maps from compositions of closed maps and open maps,
and we construct examples of pseudo-open maps which are not
compositions of closed maps and open maps.

2. Definition: Let X,Y be topological spaces, and let f :
X — Y. The map f is compact iff f~'y is a compact subspace
of X forevery y €Y.

Note that closed, compact maps are known under the name
perfect maps.

3. Claim: Let f: X - Y, g :Y > Z,andh=gof. If h
18 compact, then so are f and g. If each fiber of h is finite or
is an infinite convergent sequence, then the same is true for f
and g.

Proof: Let f,g,h be as in the assumptions.

First we show that f is compact. Let y € Y, and let z =
g(y). By compactness of h, the set h~!z is a compact subset of
X . Moreover, f~1y is a closed subset of the compact set h™1z,
hence compact.

Now we show that g is compact. Let 2 € Z. Then g~z is the
image of the compact set A~'z under the continuous function
f, hence compact.

This proves the first part of the claim. The proof of the
second part is similar.
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4. Definition: We call a space X a CD-space iff X =Y &
Z, where Y is an infinite discrete subspace of X and Z is
connected and compact.

Note that a Hausdorff space X is a CD-space iff there is
a connected compact subspace Z of X such that X\Z is an
infinite closed discrete subspace of X.

EXAMPLE 1: Let I be the unit segment with the usual topol-
ogy, and let Y be an infinite discrete space of cardinality < 2%
(disjoint from I). Put X =Y @ I. Then X is a CD-space.

We will use Theorem 5 and Corollary 6 (proved below) in
discussing Example 1.

5. Theorem: If X is a CD-space, and f is an open compact
mapping or a perfect mapping of X onto Y, then Y is also a
C D-space.

6. Corollary: Let f be a compact mapping of a CD-space X
onto a space Y which is not a CD-space. Then f is not a
composition of any finite sequence of mappings each of which
is either open or closed.

Ezample 1 continued: We fix a one-to-one mapping g of Y into
I, and define a mapping f of X onto I as follows: f(z) = z
for each z € I, and f(z) = g(z) for each z € Y. Then f is
a finite-to-one (and hence compact) mapping of the C D-space
X onto the space I which is not a C D-space. By Theorem 5,
f can not be represented as a composition of a finite sequence
of mappings, each of which is open or closed. Nevertheless, f
is pseudo-open, as follows from Observation 8 below.

7. Definition: Let P be a property of mappings. Let us say
that a mapping f of a space X onto a space Y has property P
(strongly) inductively, or that f is (strongly) inductively P, if
there is a (closed) subspace Z of X such that f(Z) =Y, and
the restriction of f to Z has property P. If P is the property
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of being open with compact fibers, then we say that the map
is inductively open-compact.

The map f in Example 1 is inductively perfect, even induc-
tively a homeomorphism. To see this, consider the restriction
of f to I. The following observation implies that f is pseudo-
open:

8. Observation: Every inductively pseudo-open map is pseudo-
open .

Let us now prove Theorem 5. The proof naturally splits into
two parts.

9. Lemma: Let X =Y @ Z, where Y 1is an infinite discrete
space and Z is an infinite connected compact space, and let g
be a compact open mapping of X onto a space H such that g[Z]
s infinite. Then:

(1) The sets g[Y] and g[Z] are disjoint; and

(2) H = Y1 ® Z1, where Y1 = g[Y] is an infinite discrete
space and Z1 = g[Z] is an infinite connected compact space.

Proof: Take any point y € Y. The set {y} is open in X.
Hence the set {g(y)} is open in H, that is, the point g(y) is
isolated in H. By continuity of g, g[Z] is an infinite connected
compact subspace of H. It follows that all points of the set
g[Z] are non-isolated in H. Thus the sets g[Y] and g[Z] are
disjoint. We have proved (1).

Moreover, Y; = g[Y] is an open discrete subspace of H, since
the mapping g is open. The subspace Z; = g[Z] is also open in
H, for the same reason. It follows that H = Y; & Z;. The set
Y7 is infinite, since the restriction of g to Y is a finite-to-one
mapping. The lemma is proved.

10. Corollary: The image under an open compact map of a
C D-space is a C D-space.

Proof: The only case not covered by Lemma 9 is the situation
where the compact connected part of the space reduces to a



NOT ALL PSEUDO-OPEN MAPS ARE COMPOSITIONS ... 7

single point, i.e., where the whole space is discrete. The proof
in this case is trivial.

11. Lemma: Let X,Y, and Z be as in Lemma 9, and let g
be a closed compact mapping of X onto a space H. Then the
complement of g[Z] in H is an infinite closed discrete subspace
of the space H.

Proof: Since g is closed and Y is a closed discrete subspace of
X, g[Y] is a closed discrete subspace of H. By the continuity of
g, g[Z] is a compact subspace of H. It follows that every closed
discrete subspace of g[Z] is finite. Therefore, the intersection
of g[Y] and ¢[Z] is a finite set. The restriction of g to Y is a
compact mapping, hence it is a finite-to-one mapping. Hence
the set K of all points y € Y such that g(y) € g[Z] is finite,
and the set Y7 = g[Y'\K] is infinite. Clearly, Y; is a closed
discrete subspace of H, and Y; is the complement to g[Z] in
H.

12. Corollary: The image of a C D-space under a perfect map
1s a C'D-space.

This concludes the proof of Theorem 5.

Example 1 is somewhat unsatisfactory in that the mapping
f is both inductively closed and inductively open. Let us call
a mapping f (strongly) blended if it can be represented as the
composition of a finite sequence of mappings each of which
is either (strongly) inductively open or (strongly) inductively
closed. Now we are going to construct an example of a pseudo-
open compact map that is not blended. '

EXAMPLE 2: Let (¢n)new be a one-to-one enumeration of the
rationals. Moreover, fix a sequence (I, )ne, Of open intervals in
the real line such that for all n € w:

() gn € Ip;

(b) gx & I, for all k < n;

(c) The length of I, is at most 1.
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For each n € w, choose a set H, = {z} : y € I,} in such a
way that z7; # z7* whenever (n,y) # (m,z). Let Xo = U{Hn :
n € w}. Define a metric p on X, as follows: For each n € w
and y, z € I, such that y # 2, let o(zy, 27) = |y — gn|+ |2 — ¢nl.
If y = 2, then set o(zy,z}) = 0. Finally, if n # m, then set
o(zy, mz) =2, regardless of whether y, z are dlfferent or equal.
The bound on the length of the I,,’s assures that the triangle
inequality holds.

Now let G = {y € R : Vn € wiIm > n(y € I,)}. By
condition (b), all elements of G are irrationals. Choose a set X
of size continuum that is disjoint from Xy, and enumerate X in
a one-to-one manner by the elements of G : X; = {zy : y € G}.

Let X = XoU X1, and let 7 be the topology on X generated
by all open subsets of X in the topology induced by the metric
o, together with the family V = {V," : m € w, y € G}, where

={zy}U{zy:n>m&ye€ L}

Let M be the set of reals endowed with the topology of the
Michael line. Let f : X — M be defined by : f(z}) =y for all
y€ M and n < w.

13. Claim: The function f defined above is continuous.

Proof: We show that for each z € X, f is continuous at z. If
z is an isolated point, then there is nothing to show. If z = zy/
for some y, then the restriction of f to the neighborhood V"
of z is constant, and hence f is continuous at z. The only
other points in X are of the form zj’ for some n. Let U be
a neighborhood of ¢, in M. Then, for small enough ¢ > 0,
the open ball around z7 of radius € (in the topology on Xj
induced by p) gets mapped into U, and again continuity of f

at :cf;n follows.

14. Claim: f is pseudo-open.

Proof: Let y € M, and let U be an open neighborhood of f 'y
in X. We want to show that y € int(f[U]). If y is irrational,
then y is isolated in the topology of M and there is nothing to
prove. So assume that y = ¢, for some n. But then for some
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¢ > 0, the set {z7 : |[gn — y| < €} is contained in U, and the
image of this set under f is an open neighborhood of g,.

15. Claim: f is compact.

Proof: Let y € M. If y € G, then the inverse image of y under
f is finite. If y € G, then the inverse image of y under f is
homeomorphic to a convergent sequence. In both cases f~ly
is compact.

16. Claim: The space X constructed above is reqular.
Proof: Straightforward.

The map f constructed above exhibits three interesting phe-
nomena: it is compact but not tri-quotient, and it does not pre-
serve the properties of having a base of countable order and of
being submaximal. Each one of these phenomena implies that
f is not blended. Let us now comnsider these three properties
one by one.

17. Definition: [M] A surjective map f : X — Y is tri-
quotient if one can assign to each open U in X an open U* in
Y such that :
(i) Urc C f [U B
(if) X
(iii) U C Y 1mp11es U*C v,
(iv) If y € U* and W is a cover of f~lyNU by open subsets
of X, then there is a finite 7 C W such that y € (UF)*.

We call U — U* a t-assignment for f.

18. Lemma: (a) All open maps and all perfect maps are tri-
quotient.
(b) A map is tri-quotient iff it is inductively tri-quotient.

Proof: Clear. See [M, Theorem 6.5 and Lemma 6.4].

19. Lemma: The composition of two tri-quotient maps s tri-
quotient.

Proof: See [M, Theorem 7.1].
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20. Corollary: Every strongly blended compact map is tri-
quotient.

Proof: Let f be a compact map and suppose f cam be written
as a composition fxo fr_10...0 fo such that each of the maps
fi is either inductively open or inductively closed. By Claim
3, each of the maps f; is compact. By Lemma. 18, each of the
maps f; is tri-quotient. By Lemma 19, f is tri-quotient.

21. Lemma: The map f of Example 2 is not tri-quotient.

Proof: Suppose to the contrary that f is tri-quotient. Let
U — U™ be a t-assignment for f. Since ¢ € X* and since
{Hy} is an open cover of f~1go N X, it must be the case that
go € Hj. Since Hj is open, there exists some n > 0 such that
gn € H{. But again, {{z) }} is an open cover of f~'g, N Ho.
Thus, ¢, € {23 }*. By Definition 16(i), {z) }* = {gn}, which
is impossible, since rationals are not isolated in the topology
of the Michael line.

Not being tri-quotient is a property of the map rather than
the spaces involved. Let us now consider a property of the
space X that is not preserved by f.

22. Definition: Let X be a Th-space. We say that X has
a base of countable order, or that X is BCO iff there exists
a sequence (Bp)ne, of open bases for X such that for each
decreasing sequence (Up)new With U, € B, for every n € w,
the collection {U, : n € w} is a base at every z € My, Un.

The original definition of BCO was given in [A2]; the for-
mulation used here was established in [WoW]. The class of
all BCO spaces includes all metrizable spaces, all developable
spaces, all T} first-countable scattered spaces, in particular, w;
with the order topology. The Michael line does not have a
base of countable order because paracompact Hausdorff spaces
which have a base of countable order are metrizable [A2].
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23. Claim: The space X of Example 2 has a base of countable
order.

Proof: The claim is an immediate consequence of the following
more general fact.

24. Lemma: Suppose X is a first-countable space with the fol-
lowing property: There ezists a decomposition X = Xy U X,
into two disjoint subspaces such that:

(a) Xo has a base of countable order;
(b) X, is a discrete space;
(c) Xo is open in X.

Then X has a base of countable order.

Proof of the lemma: Let X, Xy, X; be as in the assumptions.
Let (By)new be a sequence of bases that witnesses the BCO of
Xo. For each z € X1, let {V* : m € w} be a base at z such
that V" N X; = {z} for all m € w. Define: C, = B, U {V,*:
m >n & z € X;}. Note that each C,, is a base in X. Moreover,
let (Up)new be a decreasing sequence such that U, € C, for all
n € w, and let y € Npey, Un. In order to show that {U, : n € w}
is a base at y, consider two cases:

Case 1: 3In € w(U, N X;) = 0.

Then U, € B, for sufficiently large n, and it follows from
the choice of the B,’s that {U, : n € w} is a base at y.

Case 2: Not Case 1.

Since each element of C, contains at most one member of
X1, and since the sequence (Uy)ne, Was assumed decreasing,
there exists exactly one z € X such that z € U, for all n €
w. But then U, = V" for each n € w and some sequence
(Mn)new With lim, ,,om, = o0o. Thus, z = y, and the family
{Un :n € w} is a base at y.

25. Corollary: The property of having a base of countable or-
der is not preserved by pseudo-open compact maps.

As was shown in [WW], base of countable order is preserved
by uniformly monotonically complete open maps (in particular
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by open-compact maps) with regular domains and 7T; ranges.
In [W] it was proved that base of countable order is preserved
by perfect maps. Moreover, BCO is hereditary. Hence induc-
tively perfect maps and inductively open-compact maps pre-
serve BCO. It follows from the second part of Claim 3 and
the description of the map f of Example 2 that f cannot be
blended.

The two reasons for non-blendedness of f given so far rely
heavily on the fact that f is compact. Let us conclude this
note with an argument that does not rely on compactness of

f.

Definition: A space X is said to be submazimalif every subset
A of X which is dense in X is also open in X. An I-space is
a space X such that the complement to the set of all isolated
points of X is a discrete subspace of X.

The concept of a submaximal space can be found in [Bo;
I-spaces were defined in [AC]. Obviously, every I-space is sub-
maximal, and each subspace of a submaximal space is submax-
imal.

27. Claim: The space X of Ezample 2 is an I-space.

Proof: The set of nonisolated points of X is {zf; :n € w} U
{zy 1 y € G}, which is clearly a discrete subspace of X.

28. Claim: The Michael line is not submazimal.

Proof: The set {0} U (R\Q) is dense, but not open in the
Michael line.

It was shown in [AC] that both submaximality and the class
of I-spaces are preserved by both inductively open mappings
and inductively closed mappings. For the preservation of sub-
maximality by such mappings, one does not even have to as-
sume continuity. Therefore the mapping f of Example 2 is not
the composition of any family of inductively open or induc-
‘tively closed mappings, even discontinuous ones.
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29. Remark: Restricting the map f of Example 2 to the
subspace f~!Q, one obtains an example of a compact pseudo-
open map on a countable metrizable I-space that is not tri-
quotient and does not preserve submaximality. Just and Wicke
earlier constructed an example of a pseudo-open compact map
from a countable subspace of R x Q x Q onto Q x Q that is not
tri-quotient. In [AC], there is another example of a pseudo-
open compact map from a countable metrizable I-space onto
a metrizable compact space that is not submaximal.

We conclude this note with two open problems.

Problem 1: Is there a tri-quotient (compact) mapping which
is not strongly blended? Which is not blended?

Problem 2: Find topological properties other than submax-
imality and the I-space property that are inherited by sub-
spaces and are preserved by open mappings and by closed
mappings, but are not preserved in general by pseudo-open
mappings.
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