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INTERPLAY BETWEEN
INFINITE-DIMENSIONAL TOPOLOGY AND
FUNCTIONAL ANALYSIS. MAPPINGS
DEFINED BY EXPLICIT FORMULAS AND
THEIR APPLICATIONS

CZESLAW BESSAGA

ABSTRACT. We recall some explicit formulas of ana-
lytic character which were invented during the process of
formation of infinite-dimensional topology, and present
some applications of them. The following topics are cov-
ered:

A. Radial homeomorphisms and retractions of con-
vex bodies; analogues of gauge functionals and radial re-
tractions for Banach lattices. Applications: Lipschitz re-
traction onto co (Lindenstrauss) and lack of fixed points
for Lipschitz self-maps of non compact convex sets (Lin -
Sternfeld).

B. Non-complete-norm deleting homeomorphisms
and diffeomorphisms with applications (Garay) to ordi-
nary differential equations. An analogy with West’s the-
orem on fixed point sets of transformation groups.

C. The coordinate switching technique: a “simulta-
neous” proof of West’s theorem and the Ribe-Aharoni-
Lindenstrauss example of uniformly homeomorphic and
not Lipschitz homeomorphic separable Banach spaces.

15



16 CZESLAW BESSAGA

INTRODUCTION

The aim of the article is to recall some explicit formulas
of analytic character which were invented during the process
of formation of infinite-dimensional topology, and to present
some old and recent applications of them.

The approaches based on these formulas have been later
replaced by more efficient and more general topological tech-
niques: Z-sets, the limiting process for back-and-forth homeo-
morphisms and absorbers, Bing shrinking criterion, etc. (cf.
[vM]), and partially forgotten by specialists. After several
years some of them were re-discovered (perhaps, others are
going to be re-discovered) by mathematicians working in other
areas.

A digression: when I read the recent paper of Simon and
Watson [SW], it was a sort of shock for me to learn that the
back-and-forth technique in the topological context, which is
the main tool for absorbers, was known to Cantor already in
the 19-th century.

An advantage of explicit formulas over other constructions
of maps is that they allow one to examine the maps for some
additional properties and, often, the formulas can readily be
modified to get the required additional properties of resulting
maps, cf. sect. 1 and 2.

The words “infinite-dimensional topology” in the title are
understood in the narrow sense: the topology of manifolds
modeled on infinite-dimensional Banach spaces, including clas-
sification and identification (recognition) problems. The top-
ics connected with global analysis such that as applications of
fixed-point theorems and compact fields, cf. [DG|, The Leray-
Schauder Theory [LS], the infinite-dimensional Morse theory,
the Atiyah—Singer index theory, etc. will be completely omit-
ted.
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1. GEOMETRIC CONSTRUCTIONS VERSUS ANALYTIC
FORMULAS. RADIAL MAPS. ULTRA-SMOOTHNESS

Let X be a normed space. By a convex body in X we
mean a closed convex subset of X with nonempty interior; a
starlike body in X is a closed subset S of X such that 0 € S
and ts € int S for every z € S and for every 0 <t < 1. We
shall denote by

cb(X), sb(X)

the class of all convex bodies U with 0 € int U and the class of
all starlike bodies in X, respectively. Clearly cb(X) C sb(X).
For U € sb(X) the gauge functional gy : X — R* and the
characteristic cone of U are defined by

gu(z) =inf{t >0 : z €tU} and ccU = g;*(0).

In other words cc U is the union of all the rays emanating from
0 which are contained in U or the singleton {0} if no such rays
exist. It is easy to prove that, for U € sb(X) [for U € cb (X)),
the functional gy is continuous [Lipschitz)].

EXERCISE 1. Suppose V1, Vs € ¢b(X) are radially bounded.
Construct an autohomeomorphism h of X carrying V; onto V5.

Our finite-dimensional intuition suggests the following
naive approach: For each ray L emanating from 0, let {v.} =
LNoV; and {wr} = L NOV;. Take the required h so that, for
each L, the restriction h|L is affine, and h(vy) = wy.

Unfortunately, in the infinite-dimensional case so defined
maps are not always continuous. However the construction
can easily be corrected: Consider a third closed convex body
U such that 0 € U C int Vi Nint Va. For any ray L emanating
from 0, let ur, vy, and wy, be the three points of the intersection
of L with the boundaries of the bodies. Now define h to be
the identity on U, affine on each ray L \ [0;uy] and such that
h(U L) = wr.
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The best way to see that now h and (by the symmetry of
the assumptions) h~! are continuous is to write h in terms of
the gauge functionals gy, g1, go of the bodies U, V1, Vs:

(1) h(z) = o(gu(z), gu(z)/g1(2), gu(z)/ g2(2)) - (z/gu(=)),

where

R ift <1;
p(t) = { 1+ (t—1)(a—1)/(8-1), otherwise.

The following is evident

Theorem 1.1. Let U, V1, V, € sb(X) be such that U C int V1N
intVy and ccU = ccVy = ccVy; then the formula (1) defines
an autohomeomorphism of X which carries Vi onto Us. If
U,Vi € ¢b(X), then h is locally Lipschitz.

There are many possibilities of modifying the last theo-
rem. One of them:

Proposition 1.1. Let (X, ||-||) be a normed space whose norm
| - || is of class C" (except 0), let w be another norm of class
C" such that |z| > 2w(z) for z #0. Let

U(z) ={z : ||z|| < 1}, V=A{z: w(z) <1}

Then there exists a C™ autodiffeomorphism h of X preserving
the rays emanating from 0 and such that h|U =1id, h(2U) =
V.

The required h can be defined by the formula

(2) h(z) = f(l[z]], w(z)/llz]]) - (z/w(2)),

where f : (0;4+00) x (0;1/2) U {(0,0)} — [0;400) is of class
C", f(t,u) increasing with respect to t (for fixed u),

Ftu)=ut, if t<1, ° f(t,u)=1t/2, i t>2.
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Here is another example of a map defined in terms of gauge
functionals:

Theorem 1.2. Let U € sb(X) [U € cb(X)]. The formula

(3) r(z) = (max[1, gp(z)])™" - =.

defines a continuous [locally Lipschitz] retraction of X onto U
with the property r(X \ intU) = 0U .

DEFINITION. Let p : X — R* be a seminorm. Let Y be a
subset of X. A map h : Y — X is said to be wltra-continuous
with respect to p if it is continuous, when regarded as

hi:(Y,q) = (X,q)

for an arbitrary (not necessarily continuous) norm ¢ dominat-
ing p. Analogously one defines wltra-Lipschitz [locally ultra-
Lipschitz] and differentiable ultra-C™ maps. Maps of all these
kinds will be referred to as wultra-smooth.

Remark. The maps h and r of Theorems 1.1 and 1.2 are
locally ultra-Lipschitz with respect to py = g_yny. The map
h of Proposition 1.1 is an ultra-C" diffeomorphism with respect
to -

2. LIPSCHITZ RETRACTIONS ONTO ORDER STARLIKE SETS
IN FUNCTION SPACES. THE STERNFELD-LIN MEMBRANE

Assume that X is a Banach lattice consisting of real func-
tions with the supremum norm and with the natural order
relation <.

Xt={zeX: 0<z}
is the positive cone of X. Let e € X be the constant function
identically equal to 1.

DEFINITION. A closed subset A of X is said to be order
starlike if 0 € A C X* and for every = € A the order segment
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{y € X : 0 <y < z} is contained in A. The order gauge
functional of A is the function g4 : X — R defined by

ga(z) = inf{t > 0: max(0,z — te) € A}.

Proposition 2.1. Let g4 be the order gauge functional of A
and let z,y € X. Then 0 < ga(z) < ||z||; max[0,z — ga(z)] €
A; ga(z) =0 if and only if max[0,z] € A.

(2) lga(z) — ga@)ll < llz — yll.

Proof of (2). Let ||z — y|| = € and let max(0,z — ty) € A.
Then max[0, z — (t+e€e)] = max|0, y +ee —te] < max(0, z — te),
whence max(0,z — te) € A, i.e., ga(y) < ga(z) + € and, by
symmetry, ga(z) < ga(y) +e.

Corollary 2.1. Let A be an order starlike set in X. Then the
formula

r(z) = max[0,z — ga(z)e]

defines a retraction r : X — A such that ||r(z) — r(y)| <
20|z — yll forz,y € X.

We shall present two applications of the last Corollary.

EXAMPLE 1. Consider the positive cone [J, in the space lo, of
all bounded numerical sequences. By the Lin-Sternfeld mem-
brane we shall mean the set M of all the points z = (z;) € I}
with ||z|| = sup|z;] < 1 which have at most two non-zero
coordinates.

The Lin—Sternfeld membrane is order starlike and has the
following remarkable properties:

Proposition 2.2. (i) M s a Lipschitz absolute retract,

(it) For every € > 0 there is a Lipschitz map h : M — M
such that € < ||z — f(z)| < 2¢ for everyx € M.

(iii) Every noncompact closed convez set K in a Banach
space contains a subset Lipschitz homeomorphic to M.
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The statement (i) follows from the fact that the space lo,
is a Lipschitz absolute retract and M is a Lipschitz retract of
loo-

To prove (ii) observe that the membrane M is small-
distance-Lipschitz homeomorphic to the half-strip

R* x [0;1).

Proof of (iii) . Applying the well-known Riesz construction
we select a sequence (z,), z, € K such that, for all k, the
distance of zy; from the plane spanned by zq,... ,zx is > €
for some € > 0. Let L be the union of all consecutive segments
[zk;l‘k+1]. Then

My = |J[0;y]
yeL
is the required Lipschitz copy of M.

An easy consequence of the last proposition is the follow-

ing

Theorem 2.1 (Lin—Sternfeld [LiS].) Every noncompact
closed convex set K in a Banach space admits a Lipschitz map
f i+ K — K with the property.

sup{||z — f(z)|| : z € K} > 0.

EXAMPLE 2 (Lindenstrauss). There is a Lipschitz retraction
of o onto cg.

In fact, the positive cone c{ is an order starlike set in
loo, therefore there is a Lipschitz r : lo, — c¢f. Taking the
restriction ro = 7|l% and next extending ¢ “by symmetry” to
the whole Iy, i.e, by letting r(zx) = (sgn zx) - (|zk|), we obtain
the required retraction of I} onto cg

The presentation of the material of this section had been

influenced by Goebel and Kirk [GK]
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3. MORE ULTRA-SMOOTH MAPS: NCN DELETING
HOMEOMORPHISMS. GARAY’S PHENOMENA FOR ODE’s
IN BANACH SPACES

The abbreviation ncn in the title of the section stands for
“noncomplete norm”.

EXERCISE 2. Let (X,w) be a noncomplete normed space and
let A be a subset of X which is complete in the metric induced
by w. Find a homeomorphism of X \ A onto X.

We shall present a solution given in [B1]. Denote by (Y,w)
the completion of X in the norm w. (Notice that the extended
norm for Y has been denoted by the same symbol w.) and let
yo € Y \ X. Let 0 < § < 1. Pick linearly independent vectors
z1,%9,... € X and zg = 0 so that

(o<}

w(zn — Tp-1) — 0, Zw(wn —Zp_1)=2§6

n=1 :

and consider the arc
oo
L= U [Tn—1;Zn)].
n=1

Letp: Rt - L be (the only) continuous map such that

(4) |
p(0) =yo, p(t)=1for t>0, w(p(u) - p(v)) < |u—wvf

Observe that the composed map: z — p(d,(z, A)) satisfies

the Lipschitz condition with constant §. Therefore h : Y — Y
defined by the formula

(ncn) h(y) =y + p(du(y, A))

is a Lipschitz autohomeomorphism of Y, the Lipschitz con-
stants for A and h~! are 1 + 6§ and (1 — 6)~!, respectively;
moreover h(y) =y if w(Y) > 1.

The restricted map h = h|X \ A carries X \ A onto X;
both h and h~! are locally ultra-Lipschitz with respect to w.
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Consequently, for an arbitrary norm ||-|| for X which dominates
the norm w (i.e. ||z|| > cw(z) for some ¢ > 0) the map

he (XNA-D) = (X0

is a locally Lipschitz homeomorphism.

For an arbitrary infinite dimensional normed (in particu-
lar, Banach) space (X, ||-]|), the norm || -|| dominates a certain
non-complete norm w. Therefore:

Proposition 3.1. Let (X,|| - ||) be an infinite-dimensional
normed space. If A is a compact subset of X then there is
a homeomorphism h of X \ A onto X. Moreover, if w is an
arbitrary continuous norm in X, the homeomorphism h can be
so defined that h(z) = z if d,(z,A) > 1 and that both h and
k=1 are locally Lipschitz (in every norm dominating the norm

w).

In the case where the space (X, || - ||) admits an additional
non-complete differentiable norm, the argument above can be
adapted to the diffeomorphic setting. To this end, replace the
piece-wise linear parametrization of the arc L by a smooth tra-
jectory of a particle moving with bounded velocity (measured
by w) which has velocity 0 at each vertex of L, and replace d,,
in formula (ncn) by a differentiable Urysohn function satisfy-
ing the Lipschitz condition with respect to w with a sufficiently
small constant.

Here are samples of this kind result:

Theorem 3.1. Let X be an infinite-dimensional separable
normed space and A a compact subset. Then there ezists a
C® diffeomorphism of X \ A onto X which is the identity on
a complement of an “ellipsoid”.

By ellipsoid we mean a ball in a continuous inner product
norm.
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Theorem 3.2. Let (X, || - ||) be an infinite-dimensional sepa-
rable normed linear space whose morm is of class C" and let
AcC{z € X : |z| <1} be compact. Then there exists a C"
diffeomorphism of X \ A onto X such that h(z) = = if ||z| > 2.

For more general results see Dobrowolski [Do] and [Dol].

We shall present an application of the above results to or-
dinary differential equations in normed spaces; we shall follow
the argument of Garay [G].

In the rest of this section we assume that:

(*) (X, || - |I) is an infinite-dimensional separable normed
space, B = {z : ||z|]| < 1} the unit ball, and K is a compact
subset of B.

From Theorems 3.1 and 3.2 we shall derive, respecf,ively,
the following two theorems:

Theorem 3.3. There exists a C™ function f : X — X such
that f~Y(K) =0, f(z) = z for z in the complement of a certain
ellipsoid and such that, for every (to,z0) € R x (X \ K), the
differential equation

(5) y' = f(y)

has a unique solution passing through (to, zo) and the solution
is global and unbounded.

Theorem 3.4. Under the additional assumption, that the norm
|-l is of class C™, r > 1, there exists a C™~* function f : X —

X such that f~Y(K) =0, f(z) = = if ||z|| > 2 and such that,

for every (to,zo) € R x (X \ K), the differential equation

(6) y = f(y)

has a unique solution passing through (to, zo) and the solution
is global and unbounded.
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Proof of Theorem 3.3 (outline). Let h be a diffeomorphism
of X\ {0} onto X \ K which is the identity outside an ellipsoid
V. (h exists by Theorem 3.1). Consider the family of curves:

(7 z=h(h Hzo)e!), teR, =zoe€ X\ {0}

which are pair-wise disjoint and cover the set z \ K; they con-
stitute the totality of the solutions of the differential equation:

(8) z' = g(z)
where

9(z) = [[Dh7Y] (h(2)]().
Let f; : X — X be the extension of g by letting fi|K = 0.
Now the differential equation:

(9) z' = fi(x)

almost does satisfy the assertion of Theorem 3.3, except that
f1 may be discontinuous at the points of K. We correct this
failure by letting:
f(z) = ¢(z) f1(=),

where ¢ : X — [0;1] is a C* Urysohn function such that
$~1(0) = K and ¢|(X \ V) = 1.

The proof of Theorem 3.4 requires two modifications: 1°
the homeomorphism h is now such that h(z) = z if ||z| > 2;
20 ¢(z) = = for ||z| > 2.

The following is a relatively easy consequence of Theorem
3.2, see [G]:

Corollary 3.1. If X and A satisfy the assumptions of Theo-
rem 3.4, then there is a C™™! map F : Rx X — X such that
the Cauchy problem

(10) .’13, = F(t, .17), ﬂi(to) =X
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admits a unique (global) solution for each point (to, zo) # (0,0)
and the solutions for (0,0) are not unique and given by:

z(t) =27 (2 +1lt))a, a €K,

that means that at the time t = 1 the solutions through (0,0)
reach all the points of K .

4. WEST’S THEOREM ON GROUP ACTIONS. COORDINATE
SWITCHING TECHNIQUE

Roughly speaking Theorem 3.3 says that the additive group
R can act as a group of diffeomorphisms on any separable
infinite-dimensional normed space X so that a prescribed com-
pact set A is the set of fixed points for all # 0 elements of the
group R. This should be compared with the following topolog-
ical result of West [W], cf. [BP1], pp. 292-295. '

Theorem 4.1. Let X be a separable infinite dimensional Ba-
nach space and let G be a separable metric group. Then, for
every closed subset A of X, the group G can act on X as a
group of homeomorphisms so that A is the set of fized points
for each (but the identity e) element g € G.

The main point of the proof is the following

Lemma 4.1. X is homeomorphic to the reduced cartesian prod-
uct

Z=(XxX)4=AU(X\A4)xX
(the open sets in Z are unions of open sets in (X \ A) x X and

sets of the form V(U) = ANU U (U \ A) x X where U is an
open subset of X ).

In fact, there is an action g — Sy of the group G on X
such that Sy(z) # Sy(y) for z,y € X, z #y, e # g € G
(cf. [BP1], p. 199). Represent X as Z and define the required
action: g — Ty on Z by Ty(z,y) = (z,S,(y)) for z € X \ A
and Ty(a) = Sy(a) for a € A.
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Now I shall try to present the main idea — coordinate
switching technique — of the proof of the Lemma.

By [K] and [A] X is homeomorphic to the Hilbert space
H = Iy and to its countable infinite power H*. So, instead of
Z we may consider the reduced cartesian product

(H*® x H)a, A C H™, closed.

By definition of the product topology, each point z ==
(z1,29,...) € H®\ A has a neighborhood U € H*® \ A ex-
pressed in terms of finitely many coordinates. Define
ind(z) = min{k : z has a neighborhood U
depending on zi, ...z only }.
The “first approximation” for the homeomorphism h of H°
onto (H*™ x H)4 is the following

forz € X*°\ A, h(a) =a for a € A.
Of course, the map h is not even continuous. This failure
is corrected as follows:

1° Instead of ind(z) we use a continuous control function
A H® — R®U{co}, A71(00) = A, X > ind, locally depending
on finitely many (less than its value) coordinates.

2° At the point z with A\(z) =t € [n + 1;n + 2] we factor
out a hilbertian subspace H; of H,; x H, 5 which interpolates
between Hp41 (for t =n + 1) and Hpyo (for ¢t =n + 2).

The interpolation is obtained by means of a, so called,
reflective isotopy fi - H x H — H X H: fpou1(z,y) = (z,y),
frta(z,y) = (y,2).

The easiest way to construct a reflective isotopy is to use
the complex structure of the product space H x H for inter-
polating between the identity and the map (z,y) — (y,—z)
by multiplying by the complex function e® and next using the
complex structure of the second Cartesian factor H (which is
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isomorphic to its square) to interpolate between —z and z, cf.
[Ku].
The final formula for the corrected homeomorphism h is

h(z) = fa@) ().

For details see [BP], p. 294.

It should be noted that the first explicit formulation of
Lemma 4.1 is due to Anderson and Schori, [AS]; and it was
the main tool in the probf of their celebrated theorem on topo-
logical stability of Hilbert manifolds: M is homeomorphic to
M x H.

In the eighties the coordinate switching method was re-
discovered by functional analysts for the purpose of getting
examples of non-isomorphic separable reflexive Banach spaces
W and Z which are uniformly homeomorphic, see the next
section.

Problem 1. Let A be a compact subset of the Hilbert space
Iy and let G be a locally compact Lie group. Does there exist a
diffeomorphic action g — T, of the group G on Iy such that A
is the fixed point set for every element g € G but the identity?

Problem 2. Let A, B C I3, A compact, B closed and ANB =
0. Let ¢ — U, be a free diffeomorphic action of a locally
compact Lie group on l;. Does there exist another action g —
T, such that A is the fixed point set for all ¢ € G but the
identity, and Ty|B = Uy|B for all g € G 7

Problem 3. Find an elementary proof of the the Burghelea
— Kuiper — Moulis — Eels — Elworthy (see [BK], [Mo], [EE])
theorem on diffeomorphic stability of C* Hilbert manifolds.
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5. MAZUR HOMEOMORPHISM. MORE COORDINATE
SWITCHING: THE RIBE — AHARONI — LINDENSTRAUSS
EXAMPLE

In 1929 Stanistaw Mazur [M] proved that the space [, is
homeomorphic to I, (r,p € [1;400)) under the map:

(zg) — (|xn|”/rsgn Tn)-

By norm-preserving Mazur homeomorphisms we shall mean
- the maps: M,, : l, — I, defined by

(11)
Myp(@n) = @) I~ (|2al”"sgn zs), 7,p € [1;+00).

Proposition 5.1. The maps M,, have the following proper-
ties:

() | M@ = Nz, MypoMay = My for eachs,r,p €
[1,400) (here the same symbol || - || denotes the norm in I, and
the norm in l,).

(ii) The family {M,, : r,p € [1,+00)}, where each M,
is restricted to the ball of radius 2P~ in 1., is equi-uniformly-
continuous.

The properties (i) are obvious, for the proof of (ii) see [R].

We shall employ certain maps induced by M, ,’s on prod-
uct spaces.

Recall that, for Banach spaces X,Y, X1, X9, ..., the space
(X x YY), is the Cartesian product X x Y equipped with the
norm [|(z,y)|| = (l<]|? + [y|)"%

(X1><X2><---)q

is the space of all sequences z = (z,) with z, € X, for
n = 1,2,... such that ||z|| = (X |lzn|P)}? < +oo. For ev-
ery Banach space E, denote

Si(E) ={z € E: |lz|| = t},
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the sphere of radius ¢ centered at 0.

For fixed p, q and for each r € [1;+00), define the norm-
preserving homeomorphism ¢, from the space [, represented
as (I, x l.), onto (I, x l,)4 by the formula:

or(@,9) = (IMep@)IP + 1217) ™ | (2, 9) | (2, My p(9)).

The following theorem is due to Aharoni and Linden-
strauss, see [Be], for the particular case (p = 1), see also Ribe
[R].

Theorem 5.1. Let ¢,p,r(n) € [1;4+00) (n € N), r(n) —p
and moreover

(12) |r(n) —p| < 1/n.

Then there exists a uniform homeomorphism h from the space
W = (l'r(l) X lp2) X + - )q onto Z = (I, X W)p.

Note that when p ¢ {q,7(1),7(2), ...} the space [, hence
also Z does not even Lipschitz embed into W, so W and Z
cannot be isomorphic as Banach spaces. The spaces W and Z
are separable and if 1 ¢ {p, q,7(1),7(2), ...}, they are reflexive.

Obviously, the maps G : W — Z, k € N, defined by
the formulas

Gk(("rn) = (u7 (yn)):
where
Yn = zn forn <k, (u,yk) = @r) (Mrkr1) (k) (Th41), (2k)),
Yn = Mr(n+1)’r(n)(xn+1) forn > k.

are homeomorphisms. None of them is uniform. Hovewer, by
the the assumption (12) and Proposition 5.1, the restrictions

FQlc = Gk'SQlc(W) . SQk(W) g S2k(Z) ke N

and their inverses F{,Cl are equi-uniformly continuous.
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Hence the map

s

5 Usum) — U su(2)

k=1

such that f|Soc(W) = FoeSox(Z) for k = 1,2,... is a uniform
homeomorphism. To complete the proof of the theorem, apply
reflexive isotopies, cf. sect. 4, to get equi-uniform homeomor-
phisms

Ft : Sf(W) — St(Z), tE R+

interpolating the homeomorphisms For so that the map h :
W — Z defined by h|Sy(W) = F;, for t € Rt is the required
homeomorphism.

6. OTHER FORMULAS

I am going to mention some other constructions leading to
explicit formulas which already have done their job in infinite-
dimensional topology but very likely will find application in
other areas of mathematics.

6.1 Relatives of Mazur homeomophisms

Let X and Y beinfinite-dimensional complete metric Inear
spaces with bases, represented as spaces of scalar sequences
(zn), (yn) of the coefficients with respect to the bases. The
following lemma can be easily proved, e.g. by the elementary
“gliding hump” argument:

Lemma 6.1. Let f, : R — R be continuous functions with
fa(0)=0 forn=1,2,... If

(mn) €eX = (yn) ey
then the map f : X — Y defined by f(zn) = (fu(zn)) is

continuous. If f is a bijection it is already a homeomorphism,
which will be referred to as a cordinate-wise homeomorphism.
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The Lemma extends to Schauder bases of subspaces.

The original Mazur homeomorphisms (not the norm-
preserving ones) are coordinate-wise.

If X is a countably-normed infinite-dimensional nuclear
Fréchet space with a basis (the same as nuclear Kothe eche-
lon space corresponding to a matrix of positive numbers) then
there exists a coordinate-wise homeomorphism of X onto cg,
cf. [BP1]. In particular, if X is the space of Taylor coefficients
of the space of all entire functions of one variable, then the
homeomorphism is induced by the classical Cauchy-Hadamard
formula:

f(zn) = (znsgn zn).

The original and the norm-preserving Mazur homeomor-
phisms do not change the supports of the sequences:

(yn) = h(xn) = {n L Tp 76 0} = {'n CYn # 0}
For a generalization of norm-preserving Mazur homeomorphisms

to arbitrary Banach spaces with unconditional bases not con-
taning le uniformly and their applications, see [OS].

6.2 Kadec coordinates

We assume that X is an infinite dimensional separable
Banach space, || - || is an equivalent strictly-convex norm on X
which satisfies the condition

(K) z, — zo weakly A ||zn|| — |lzoll = |lzn — zo|| — 0.

(such a norm exists in every separable Banach space). Let
Xo =X D X1 D Xo D -+ be a system of closed linear
subspaces of X such that dim Xx_1/Xr = 1 for k € N and
N X, = {0}. Let z € X be a point with the property that each
metric projection Pg(z) of z onto X, exists.
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The Kadec coordinates of d,(z) are defined by
do(z) = €, dist (z, X,), n=12,...,

where the signs ¢, depend on the position of P,(z) with respect
to X n+1-

The Kadec map attaches to z the point y € [3. If X is
conjugate then the Kadec map is well-defined on the whole X
and it maps X homeomorphically onto Iy, [K1], cf. [K12].

For an application to the bounded Krein—Milman property,
see [BP].

Problem 4. Let X be an arbitrary separable infinite-
dimensional Banach space. Does there exist a sigma Z-sets
A C X such that the Kadec map h is well-defined on X \ A,
h : X\ — h(X \ A) is a homeomorphism, and {; \ A(X \ A4)
is a sigma Z-set in [;?7 Try to prove the existence of A with-
out using Kadec’s theorem [K2] on topological equivalence of
separable infinite-dimensional Banach spaces.

6.3 Henderson’s formula: applications to factoring AR’s

Let X be an abelian group, X the countable infinite
product of X. Let A be an arbitrary non-empty subset of X,
r: X — X an idempotent map with r(X) = A. The following
formula is due to Henderson [H2]:

fla,z) = (a+z1,a+32—r(a+z1),a+23—71(a+22),...)

forac A z=(z,) € X*.
For applications to factoring AR’s, see Henderson [H2] and
Torunczyk [T1].

* * *

Problem. Find new applications for the formulas presented
in this article.
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