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A GLANCE AT COMPACT SPACES WHICH
 
MAP "NICELY" ONTO THE METRIZABLE
 

ONES
 

VLADIMIR V. TKACHUK 1 

ABSTRACT. We call a space metrizably fibered if it 
maps continuously and with metrizable fibers onto a met
~izable space. Most of our attention is concentrated on 
the class M of metrizably fibered compact spaces. It 
is evident that M is a subclass of the class :FC of first 
countable compact spaces. We prove that M is strictly 
smaller than :FC and that M is invariant with respect 
to open maps while not being invariant under contin
uous mappings. It is established that if perfectly nor
mal compact space is metrizably fibered, then so are all 
its continuous images. We also introduce the concept 
of weakly metrizably fibered space and show that any 
Eberlein compact space of weight less than or equal to 
continuum is weakly metrizably fibered, while under the 
negation of the Souslin hypothesis there exist perfectly 
normal Corson compact spaces of cardinality whichWl 

are not weakly metrizably fibered. 

O. INTRODUCTION. 

The topologists are very short of Z FC examples of non
metrizable perfectly normal compact spaces. The most daring 
hypotheses about this class persist for dozens of years without 
noticeable progress in their solutioll. In fact all perfectly nor
mal compact spaces known in Z FC are some derivatives of the 
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double arrow space S (such as continuous images of closed sub
sets of S x I W

, where I is the unit segment [0, 1] with its usual 
topology). That's why D.H.Fremlin asked if it was consistent 
that any perfectly normal compact space has a two-to-one con
tinuous map onto a metrizable one. This question was cited 
by G.Gruenhage in [5]. 

It seems to be a folklore that no Souslin continuum with 
all its intervals non-separable admits a continuous map onto a 
metrizable space with the inverse images of all points metriz
able. This clearly implies that the negative answer to 
D. H. Fremlin's question is consistent with ZFC. 

If a space X can be mapped continuously and with metriz
able fibers onto a metrizable space, we say that X is metrizably 
fibered. We take a look at tIle class M of compact metrizably 
fibered spaces. It is proved that M is strictly smaller than the 
class FC of first countable compact spaces. We show that M is 
invariant under open maps, but not under the continuous ones. 
We establish, however, that if X is a perfectly normal conlpact 
space from M, then any continuous image of X belongs to M 
too. We also introduce the class of weakly nletrizably fibered 
spaces and prove that each Eberlein compact space of weight 
less than or equal to continuum belongs to it. 

1. NOTATION AND TERMINOLOGY. 

Throughout this paper "a space" means "a Tychonoff space" . 
If X is a space, then T(X) is its topology and T*(X) == 
T (X) \ {0}. TIle end of a proof of a statement will be de
noted by D. For a space X and A c X we denote by A the 
closure of A in X. If it might not be clear in which space the 
closure is taken, then we write clx(A) for the closure of A in 
X. A cardinal number T is identified with the smallest ordinal 
number having power 7. A space X is Frechet-Urysohn if for 
any A c X if x E A then there is a sequence in A converging 
to x. A space X has countable tightness (is sequential) if for 
any A c X, A -I A we have a (convergent) sequence B == {an: 
nEw} C A with BetA. A subset F == {x a : Q E T} of a 
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compact space X is called free sequence of length T if for all 
a E T we have {x{3 : {3 < a} n {x{3 : {3 2: a} = 0. 

All other notions are standard and can be found in [4]. 

2. MAPPING COMPACT SPACES ONTO THE METRIZABLE 

ONES	 WITH INVERSE IMAGES OF ALL POINTS 

METRIZABLE. 

We shall need some simple inner characterizations of metriz
ably fibered spaces. 

2.1. Proposition. The following are equivalentj'or every space 
X; 
(1) X admits a continuous map p onto a second countable space 
M such that p-l (y) is metrizable for all y EM; 
(2) X has a countable j'amily 'Y of cozero open sets such that 
U'Y = X and the set 'Y(x) = n{U E 'Y : x E U} is metrizable 
for any x EX; 
(3) X has a j'amily 'Y C T*(X) as in (2) with the additional 
property that it is closed with respect to finite intersections and 
for any x E X and U E 'Y with U :J 'Y(x) there exists some 
V E 'Y such that 'Y (x) eVe V c U; 
(4) X has a countable family 'Y of zero sets such that U'Y = X 
and the set 'Y(x) = n{U E 'Y : x E U} is metrizable for any 
x E X. 

Proof: It is evident that (3) ==> (2). Assume that p : X -4 M 
is a map like in (1). We shall prove simultaneously that (1) ==> 
(3) and (1) ==> (4). Fix a countable base B in M closed ,vith 
respect to finite intersections and let 'Y = {p-l(W) : WEB} 
(or 'Y = {p-l(W) : WEB} respectively). It straightforward 
that'Y is like in (3) (or in (4) respectively), so that we proved 
(1) ==> (3) and	 (1) ==> (4). 

Let us prove simultaneously that (2) ==> (1) and (4) ==> 
(1). If we have a family 'Y like in (2) (or in (4) respectively), 
pick a continuous map PU : X -4 I with Pu1((O, 1]) = U (or 
piJl((O, 1]) = X\U respectively) for all U E 'Y. We claim that 
the diagonal product p of the mappings PU is what we need to 
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prove (1). Clearly, the image M == p(X) is second countable. If 
y E p-lp(x) for some x E X, then pu(y) == pu(x) for"all U E ,. 
Thus y E n{U : x E U} == ,(x) and therefore p-lp(x) C 1'(x) 
for all x EX. All sets 1'(x) being metrizable we established 
the metrizability of all fibers of p. D 

2.2. Theorem. Let X be a compact space which admits a con
tinuous map with metrizable fibers onto a metrizable space (i. e. 

X EM). If f : X ~ Y is an open map, then Y EM. 

Proof: By Proposition 2.1 X has a family, as in 2.1(3). Let 
us prove that the family 8 == {f(U) : U E ,} satisfies 2.1(2). 
Every U E l' is a-compact so tl1at the set f(U) is open and 
a-compact in Y. Hence the family 8 consists of cozero sets of 
Y. Clearly, U8 == Y so let us only check that 8(y) is metrizable 
for any y E Y. 

Pick an x E f-l(y). Suppose that z E Y and f-l(z) n 
l' (x) == 0. The set l' (x) is compact and , is closed under 
finite intersections, so there is a U E l' such that x E U and 
U n f-l(z) == 0. Therefore f(U) ~ z and z tf- 8(y). 

Consequently, f-l(z) n 1'(x) =J 0 for all z E 8(y) and this 
means exactly 8(y) c f (1' (x)). Any continuous image of the 
metrizable compact space 1'(x) is metrizable so 8(y) is metriz
able too. D 

2.3. Example. The class M is not invariant under continu
ous maps. 

Proof: Note first, that every metrizably fibered compact space 
Y is first countable. Indeed, let y E Y. If the family l' is as in 
2.1(3), then ,(y) is a closed G6-set in Y and y is a G6-set in 
,(y).Therefore {y} is a G6-set in Y. In compact spaces any 
G6-point is a POi11t of countable character, so Y E Fe. 

Let X be the Alexandroff duplicate of I, i.e. X == 10 U II 
where Ii are disjoint copies of I. All points of II are isolated 
in X and the base at a point to E 10 consists of the sets Uo U 
(U1\{tl}) where Uo is an open interval in 10 containing t and 
U1 , tl are the respective copies of Uo and to in II. The space 



A GLACE AT COMPACT SPACES... 325 

X admits a two-to-one continuous map onto I. If we identify 
the points of 10 we will obtain a one-point compactification Y 
of the discrete space of power c. The space Y does not belong 
to M because it is not first countable. D 

2.4. Example. There are first countable compact spaces which 
are not metrizably fibered, i. e. the class M does not coincide 
with the class Fe of first countable compact spaces. 

Proof: Let X = I x I x I be the lexicographic cube. Recall 
that its topology is generated by the following order: (x, y, z) < 
(Xl, YI, Zl) iff X < Xl or X = Xl and Y < YI; or X = Xl, Y = YI 
alld Z < Zl. 

It is well known that X is a first countable compact space. 
We shall prove tllat X tt. M. Take any continuous map f : 
X ~ M where M is a second countable space with a metric 
p. Let us prove that there are at most countably many tEl 
such that the image of the set It = {t} x I x I contains more 
than one point. 

If it is not so, then the set A = {tEl: If(It)1 > I} is 
uncountable. Pick the points at, bt E It such that f(at) =1= f(bt ) 
for each tEA. There is an c > 0 and an uncountable B C A 
such that p(f(at), f(b t )) ~ c for all t E B. The set B can not 
be scattered, so there is a nontrivial sequence S = {tn : n E 

w} C B converging to a point z E B. Any convergent sequence 
in I contains a monotone convergent subsequence so we may 
assume that S is monotone. 
Case 1. If S is increasing, then both sequences {atn : 'n E w} 
and {btn : nEw} converge to the point (z, 0, 0) E X which is 
a contradiction because the oscillation of j at this point would 
be ~ c. 
Case 2. If S is decreasing, then both sequences {atn : 11, E w} 
and {btn : 11, E w} converge to the point (z, 1, 1) E X which is 
a contradiction because the oscillation of j at this point would 
be ~ c. 

From what we established it follows that there are continuum 
many points Z E M such that j-l(z) contains the set {t} x I x I 
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so all these fibers are not metrizable. D 

We saw that a continuous image of a metrizably fibered space 
is 110t necessarily metrizably fibered. However, it is so if the 
image is perfectly normal or even perfectly ",-normal. Recall 
that a space is perfectly "'-normal if the closure of any open 
set in this space is a zero set. 

2.5. Theorem. Let X EM. Then any continuous perfectly 
",-normal image of X also belongs to M . 

Proof: Let j : X ---+ Y be a continuous onto map. We may 
assume j to be irreducible. Fix a family ~ in X as in 2.1(3). 
We assert that the family 17 = {j(U) : U E ~} satisfies the 
condition 2.1(4) for Y. 

Indeed, Y is perfectly K-normal, and j irreducible so all 
elements of 17 are closures of open set and therefore are zero 
sets in Y. Clearly, U17 = Y, so let us OIlly check that 17(Y) is 
metrizable for any y E Y. Fix an x E j-l(y). 

Suppose that z E Y and j-l(z) n 'Y(x) = 0. The set 'Y(x) 
is compact and 'Y is closed under finite intersections, so there 
is an U E ~ such that x E U and U n j-l(z) = 0. Therefore 
j(U) ~ z and z tt: 17(y)· 

Consequently, j-l(z) n'Y(x) =I 0 for all z E "l(y) and this 
means exactly 17(Y) C j('Y(x)). Any continuous image of the 
metrizable compact space 'Y(x) is metrizable so 17(Y) is metriz
able too. D 

2.6. Corollary. (1) Any perfectly normal image of a metriz
ably fibered compact space is metrizably fibered; 
(2) if a perfectly normal compact space is metrizably fibered 
then so is every continuous image of X ; 
(3) if a perfectly normal compact space is obtained from the 
Hilbert cube and the double arrow space using closed subspaces, 
countable products and continuous images, then it is metrizably 
fibered. 
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Proof: The item (1) is clear. To prove (2) one must only ob
serve that any continuou~ image of a perfectly normal compact 
space is perfectly normal. All operations mentioned in (3) pre
serve being metrizably fibered, so applying (1) we settle (3). 
D 

2.7. Remark. It is a folklore that any Souslin continuum with 
no intervals separable is not metrizably fibered. Hence it is 
consistent with Z Fe that not every perfectly normal compact 
space is metrizably fibered. In an e-mail letter G. Gruenhage 
communicated to the author a proof that for any continuous 
map of such a Souslin continuum onto a metrizable space, there 
is an inverse image of a point which contains a non-empty 
interval. 

The last thing we'd like to look at is the property defined in 
2.1(4) without requiring the closed sets of the relevant family to 
be G6-~ets. It defines a new class of spaces, which is invariant 
under countable products, and closed subspaces. All Lindel6f 
spaces, belonging to this class have the cardinality less than or 
equal to continuum but not all compact spaces from this class 
are continuous images of first countable compact spaces. 

2.8. Definition. Let us call a space X weakly metrizably fibered 
if there is a countable family 1 of closed subsets of X such that 
U1 = X and ry(x) = n{F E 1 : x E F} is metrizable for every 
x EX. In this case we shall say that 1 metrizably fibers X . 

2.9. Proposition. (1) The cardinality of a weakly metrizably 
fibered Lindelof space does not exceed 2w

; 

(2) any closed subspace of a weakly metrizably fibered space is 
weakly metrizably fibered; 
(3) a countable product oj· weakly metrizably fibered spaces is 
weakly metrizably fibered; 
(4) if a space is a countable union of its closed weakly metriz
ably fibered subspaces, then it is weakly metrizably fibered; 
(5) any continuous image of a weakly metrizably fibered com
pact space is weakly metrizably fibered; 
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(6) every perf'ectly normal weakly metrizably fibered compact 
space is metrizably fibered. 

Proof': The properties (1)-(4) are straightforward from the 
definiton. Let X be a weakly metrizably fibered space with 

the family 1 as in 2.8. Let f : X ~ Y be a continuous map. 
Evidently, the family 1 may be assumed to be closed with re
spect to finite intersections. Let 1] == {f(F) : F E 1}. The 
proof that 1](Y) is metrizable for any Y E Y goes exactly like in 
2.5. The equality U1] == Y being clear we established (5). To 
prove (6) use 2.1. (4). D 

2.10. Corollary. Any continuous image of a metrizably fibered 
compact space is 10eakly metrizably fibered. 

It follows from 2.3 and 2.9(5) that not every weakly metriz
ably fibered space is first countable - because the Alexandroff 
compactification of a discrete space of power ~ 2w is weakly 
metrizably fibered. It turns out, however, that all such spaces 
have countable tightness. 

2.11. Theorem. Any weakly metrizably fibered compact space 
has countable tightness. 

Proof: Suppose not. Fix a space X witnessing that. Then 
X contains a free sequence F of length WI [1]. The subspace 
F maps continuously onto the space WI + 1 with its natural 
order topology. Using 2.9(2) and 2.9(5) conclude that WI + 1 
is weakly metrizably fibered. 

Let us prove that it is not so, thus obtaining the necessary 
contradiction. Suppose that a countable family 1 of closed 
subsets of WI + 1 metrizably fibers WI + 1. Let It == {F E 

1 : WI (j. F}. There is an Q E WI such that Ult C Q. Let 
1] == {F E 1\1t : F n WI is bounded in WI}. 

There exists an ordinal f3 E WI such that (U It U U1] ) nWI C f3. 
All elements of {F n WI : F E 1 \ (It U 1])} are closed and 
unbounded in WI, so their intersection contains a closed un
bounded subset of WI. For any point x of this subset 1(X) is 
not metrizable - a contradiction. D 
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Once we have proved that each weakly metrizably fibered 
compact space X has countable tightness, two important ques
tions about such an X arise. First of all one wonders whether 
X is sequential or not. Well, it is known that under the proper 
forcing axionl every compact countably tight space is sequen
tial [3] as well as there exist countably tight non-sequential 
compact spaces under Jensen hypothesis [8]. The author did 
not succeed to determine whether any weakly metrizably fibered 
space is sequential in Z FC. 

Another inlportant question is whether such an X has points 
of countable character. Evidently, the Cech-Pospisil theorem 
implies that under C H any space of power continuum has such 
points. On the other hand, in [6] V.I.Malyhin constructed 
by forcing an example of a Frechet-Urysohn compact space 
without points of countable character. It turned out that any 
weakly metrizably fibered compact space has sufficiently many 
points of countable character in Z FC. 

2.12. Theorem. Let X be a weakly metrizably fibered compact 
space. Then X has a point of countable character. 

Proof: Let ~ == {Fn : nEw} be the family that metrizably 
fibers X. Without loss of generality we can assume all Fn's to 
be non-empty. The space X is compact and U{Fn : nEw} == 
X so one of the sets Fn has a non-empty interior. 

Let no be the minimal TIl E w such that ITllt(Fn ) =I 0. Let Uo 
be a non-empty open set with Uo C Fno \ U{Fm : m < no}. 

Suppose that we have natural numbers no, ... ,nk and non
enlpty open sets Uo, ... ,Uk with the following properties: 
(1) no < nl < ... < nk; 
(2) UI+I c Ul for all l < k; 
(3) Ul C Int(Fnl ) n Ul- I for all l ::; k; 
(4) the number nl is the smallest among {ml > nl-I: Int(Fmn 
Ul- I ) =I 0}; 
(5)	 Uz n Fm == 0 for all ml E {I, . .. ,11ll} \ { 1110, . . . ,11II}. 

Let us consider two cases. 
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Case 1. There is no ml > nk with Int(Fm n Uk) i= 0. The set 
Uk has the Baire property, so that there is a point x E Uk such 
that x tf:. U{Fm : m > nk}' Therefore ')'(x) == n{Fni : i ~ k} 
and Uk C ')' (x ). The set ')' (x) being metrizable and Uk open 
in X all points of Uk have countable character in X so our 
theorem is proved. 

Case 2. There exists an ml > nk such that Fm n Uk has a 
non-empty interior. Choose nk+l to be the smallest such mI. It 
is clear that 

W == Int(Fnk+1 n Uk)\(Fnk+1 U ... U Fnk+1 - 1) i= 0. 

Choose a non-empty open set Uk+l C Uk+l C W. It is 
straightforward that the properties (1)-(5) are fulfilled for k+1 
as well. It follows from what we did in Case 1, that we may 
assume the inductive construction to go on for all natural k. 

Let H == n{Uk : k E w}. Then H is a non-empty G8 subset 
in X. Our proof will be finished if we establish that H is 
nletrizable. 

Indeed, let x E H. Then x E n{Fnk : k E' w} and x tf:. Fm 

if m i= nk for all k E w. But this means exactly that ')'(x) == 

n{ Fnk : k E w}. This set is metrizable and contains H, so H 
is metrizable. D 

2.13. Example. There exists a compact sequential non Frechet
Urysohn weakly metrizably fibered space. 

Proof: Let X be a Mrowka space [7]. We only need to know 
that X is compact, sequential, non Frechet-Urysohn space such 
that X == Y U A where Y is one point compactification of the 
discrete space of power 2W and A is countable. 

Fix a family /-l which metrizably fibers Y and add to /-l all 
points of A each one considered as a one-point subset. It is 
easy to see that the resulting family')' metrizably fibers X. D 

2.14. Corollary. Not every compact weakly metrizably fibered 
space is a continuous image of a first countable compact space. 
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Proof: Indeed, any continuous image of a first countable com
pact space is a Frechet-Urysohn space. D 

2.15. Theorem. Let X be an Eberlein compact space of cardi
nality not exceeding continuum. Then X is weakly metrizably 
fibered. 

Proof: Any Eberlein compact space is a continuous irnage of 
a zero-dimensional Eberlein compact space [2, Ch. 4, §8]. It 
is clear from the de'finition of Eberlein compact space, that its 
cardinality is ~ 2w if and only if its weight is ~ 2W Therefore X • 

can be represented as a continuous image of a zero-dimensional 
Eberlein compact space Y with w(Y) ~ 2W 

• 

Let U == U{Un : nEw}, where Un is a point finite family 
of cozero open subsets of Y and the family U is To-separating 
in the sense that for any different x, y E Y there is a U E U 
such that IU n {x, y } I == 1. Such a family exists in any Eberlein 
compact space by a Rosenthal's criterion [2, Ch.4, §4]. 

Any U E Un is Lindel6f and hence can be represented as 
a disjoint union U{V(U, k) : k E w} of clopen subsets of Y. 
Let Unk == {V(U, k) : U E Un} for all n, k E w. The families 
Unk are point finite and consist of clopen sets in Y. Of course, 
their union V To-separates the points of Y. Hence the family 
{Xu: U E V} separates the points of Y. The map X == ~{Xu : 
U E V} embeds Y into the Calltor cube 2v . Let Xnk == ~{Xu : 
U E Unk} and Ynk == Xnk(Y). Then each Ynk lies in the 0'

product S == {j E 2v : l{j-1(1)1 < w} of the cube 2v . The 
space Y enlbeds as a closed subset into the product of Ynk, so 
by 2.9(2) and 2.9(3) it suffices to establish that Ynk is weakly 
metrizably fibered for any nl, k E w. So our proof is finished by 
the following 

2.16. Lemma. Let Z be a compact subset of S. Then Z is 
weakly metrizably fibered. 

Proof of the lemma. As Z == U{Zn : nl E w}, where Zn == {f E 
Z : 11-1 (1)1 == n/} and Zn it suffices to prove the lemma for 
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each Zn. But every Zn is a finite union of continuous images 
of closed subspaces of An where A is the Alexandroff compact
ification of the discrete space of power continuum. Now A 
is weakly metrizably fibered being a continuous image of the 
Alexandroff duplicate of the unit segment. Therefore An is 
weakly metrizably fibered and we are done. D 

2.17. Example. Under the negation of the Souslin hypothesis, 
there exists a perfectly normal Corson compact space which is 
not weakly metrizably fibered. 

Proof: Take any Souslin continuum S with all of its intervals 
non-separable. G.Gruenhage proved (see Remark 2.7) that for 
any continuous map of S onto a metrizable space the inverse 
image of some point contains a non-trivial interval. There ex
ists an irreducible map f of S onto a Corson compact space X 
[9]. Being perfectly normal, the space X is weakly metrizably 
fibered iff it is metrizably fibered. Let 9 be a map of X onto 
a metrizable space M. The set f-l(g-l(z)) contains an open 
interval U for some z EM. The map f is irreducible so there 
is an open non-empty subset V C X such that f- 1(V) cU. It 
is clear that V C g-l(z). Hence g-l(z) can not be metrizable, 
because V is not separable. D 

3. UNSOLVED PROBLEMS. 

Of course the most intriguing unsolved questions on the topic 
of this paper are the ones related to perfectly normal compact 
spaces. Before stating them the author would like to make 
it clear that he in no way pretends to be the first o~e who 
invented these questions. 

3.1. Problem. Is it consistent that any perfectly normal com
pact space is metrizably fibered? 

3.2. Problem. Is it consistent that any perfectly normal com
pact space is obtained from the double arrow space using con
tinuous images, closed subspaces and the products with second 
countable spaces? 
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3.3. Problem. Suppose that X is a metrizably fibered compact 
space. Is it true that every first countable continuous image of 
X is metrizably fibered? 

3.4. Problem. Is any first countable weakly metrizably fibered 
compact space a continuous image of a metrizably fibered space? 

3.5. Problem. Suppose that each continuous first countable 
image of a compact space X is metrizably fibered. Must X be 
perfectly normal? 

3.6. Problem. Is any continuous image of the lexicographic 
square metrizably fibered? 

3.7. Problem. Is it true in ZFC that any weakly metrizably 
fibered compact space is sequential? 

3.8. Problem. Is the Helley space (i.e. the subspace of II 
with the topology of pointwise convergence which consists of 
monotone functions) (weakly) metrizably fibered? 

3.9. Problem. Does there exist in ZFC a Corson compact 
space of power continuum whi~h is not weakly metrizably fibered? 
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