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ON w* AND ABSOLUTELY DIVERGENT SERIES 

PETER VOJTAs 

ABSTRACT. In this paper we summarize some of our 
former results on series, ultrafilters and cardinal charac
teristics in a new unified manner by Galois-Tukey con
nections. Using some new observations about the connec
tion between separative factorization of the comparison 
ordering of divergent series and w* we get a new insight 
into these older results. This gives a new type of char
acterization of points of w* and a (poss,ibly) new sort of 
duality. 

Using Galois-Tukey connections we rephrase some of our 
former results from [VI], [V2] and [CV] in the language of 
[V3]. We recall some basic facts and introduce notation (to be 
selfcontained) concerning w*-the reminder of the Cech-Stone 
compactification of natural numbers, series and cardinal char
acteristics. Studying nowhere dense subsets of w* generated by 
series we characterize the separative factorization of the com
parison ordering of absolutely divergent series (downwards). 
Moreover the same structure concerned upwards gives a new 
type of characterization of points of w* (we show it on Q-points 
and rapid ultrafilters). 

This work was supported by the grant 2/1224/94 of the Slovak Grant 
Agency for Science. 
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THE REMAINDER OF THE CECH-STONE COMPAC'rIFICATION 

OF NATURAL NUMBERS. 

Let w denotes the set of natural numbers, [w]W is the system 
of all infinite subsets of w, [w]<w is the system of all finite 
subsets of w, P(w)/fin is the Boolean algebra of subsets of 
w modulo ideal of finite sets (sometimes seen as [w]W). The 
Stone space of algebra P(w)/fin is denoted w* == St(P(w)/fin) 
and equipped with the topology generated by base consisting of 
sets of form: for A ~ w let A* == {j : j is a uniform ultrafilter on 
wand A E j}. We will often without noting switch from j E w* 
to j ~ [w]W and back. For an ideal I on w, I+ == P(w) \ I 
and FI denotes the dual filter (and vice versa for a filter F 
on w, IF is the dual ideal). Ideals and filters on w can be 
viewed (represented) as subsets of w* in the following way: 
a(I) == U{A* : A E I} is the open set corresponding to I 
and 8(F) == n{ A* : A E F} is the closed set corresponding 
to F. For F, Q ~ P(w) , (F U Q) denotes the smallest filter 
(if at all) generated by F U Q. Note that a(I) is open dense 
iff 8(FI ) is nowhere dense iff I is tall (i.e. (\IX E [w]W)(3Y E 
[X]W)(Y E I)). The mapping i : open(w*) -+ ideals on w 
defined by i (G) == {X ~ w : X* ~ G} is order isomorphism 
from (open(w*),~) into (not onto) (ideals on w,~) in some 
sense inverse to a : ideals on w -+ open(w*) defined above. 
(Similarly for filters, 8 and its inverse.) Standard reference 
sources in topology are [E], [vD], [vM], [W]. 

SERIES, COMPARISON AND IDEALS. 

In the whole paper we deal only with absolute convergence 
and divergence, hence our basic object is W (0, +00), the space 
of all sequences of nonnegative reals. Elements of W (0, +00) 
are usually denoted a, b, c; the n-th entry is a(n) or sometimes 
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£00 == {a E W (0, +00) : lim an < +oo} ,
n-+oo 

ho== {a E W (0, +00) : lim an == O} , 
n-+oo 

Co == {a E W(O, +00) : lim an == O} ,
n-+oo 

and for a, b E W (0, +00) we say that a is eventually dOIIJinated 
by b, denoted a :::;* b, if there is a no such that for all n ~ no 
is an :::; bn. For a E W(O, +00) define 

I a == {x ~ w : L an < +oo} , 
nEX 

denote Fa == FIa . Observe that a E Co iff 8(Fa) is nowhere
 
dense iff a(Ia ) is open dense. Moreover
 
a E £1 iff 8(Fa ) == 0 iff a(Ia ) == w*,
 
a E ho \ Co iff Int(8(Fa )) i= 0 and 8(Fa) i= w*,
 
a E W (0, +00) \ ho iff 8(Fa) == w* iff a(Ia) == 0 (because I a ==
 
[w]<W).
 
Hence a E Co \£1 iff 0 i= 8(Fa) is closed nowhere dense subset of
 
w*, and those we are interested in. Standard reference source
 
for real analysis is [F].
 

CARDINAL CHARACTERISTICS, GALOIS-TUKEY
 

CONNECTIONS.
 

There is a large variety of cardinal characteristics studied 
in applications of set theory in real analysis, topology, alge
bra etc. (see [vD], [vM] , [V]). An attempt of a unifying ap
proach was given in [V3] (we follow it here). For arbitrary 
binary relation R we say that D ~ rng(R) is R-dominating 
if (Vx E dom(R))(3y E D)((x, y) E R) and B ~ dom(R) is 
R-unbounded if (Vy E rng(R))(3x E B)((x, y) t/. R). Define 

b(R) == min{IBI : B ~ dom(R) and B is R-unbounded }, 

i)(R) == min{IDI : D ~ rng(R) and D is R-dominating }. 
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Lot of cardinal invariants studied in [vD], [vM], [V] are of this 
form. To prove inequalities between cardinal characteristics we 
introduced in [V3] the following machinery: A pair of functions 
(E, F) is called a Galois-Tukey connection from R to 3 if E : 
dom(R) ~ dom(3) and F: rng(3) ~ rng(R) and (E(x),v) E 
3 implies (x, F(v)) E R. Note that if there is a Galois-Tukey 
connection from R to 3 then 0(3) ::; b(R) and '0(3) ~ 'O(R). 
The fact that there is a conIlection from R to S will be denoted 
by R ~ S. 

NOWHERE DENSE SETS OF w* GENERATED BY SERIES. 

Observe that a ::;* b implies 8(Fa) ~ 8(Fb). 

Lemma. For a, b E W (0, +00) is 8(Fa)n8(Fb) = 8(Fmin(a,b)) = 

8((Fa U Fb))· 

Proof: (1 st eq., ~) Let j E 8(Fa) n 8(Fb) i.e. Fa U Fb ~ j. 
We try to prove Fmin(a,b) ~ j. Suppose Y E Fmin(a,b) i.e. for 
X = w \ Y we have EnEX min(a, b)(n) < +00. Denote Xl = 
{n EX: a(n) < b(n)}, X2 = {n EX: a(n) = b(n)} and 
X3 = {n EX: a(n) > b(n)}. Then Xl E I a because on Xl is 
a(n) = min(a(n), b(n)), similarly X 2 E I a nIb, and X 2 E I b. 
So W \ Xl E Fa ~ j, w \ X2 E Fa ~ j, w \ X3 E Fb ~ j hence 
y == w \ X == n7=1 (w \ Xi) E j. 

(1st eq., 2) Easy. 
(2nd eq.) As w* is regular and all sets involved are closed, it 

is enough to notice that 8(Fa) n 8(Fb) and 8( (Fa U Fb)) have 
same neighborhoods. 

Corollary. 8(Fa ) n 8(Fb) == 0 iff min(a, b) E fl. 

Lemma. 8(Fa ) U 8(Fb) = 8(Fmax(a,b)). 

Proof: (2) Take j E w* such that Fmax(a,b) ~ j we are going 
to prove that either Fa ~ j or Fb ~ j. Suppose not, i.e. we 
have X E Fa \ j and Y E Fb \ j (i.e. EnEw\X a(n) < 00 and 
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EnEw\Y b(n) < (0). But then for Z == (w \ X) n (w \ Y) == 
(w \ (X U Y)) we have 

~ max(a, b)(n) ~ ~ a(n) + ~ b(n) < +00 
nEZ nEw\X nEw\Y 

hence X U Y E Fmax(a,b) ~ j but X U Y E j gives, as j is an 
ultrafilter, either X E j or Y E j contradiction. 

(~) is again easy. 

Definition For a E Co \ £1 and X E [w]W denote a r X series 
defined by 

(a rX)(n) == a(n) if n E X, 
(a rX)(n) == 0 ifn f/.: X. 

Lemma. (i) a r X E Co \ £1 iff X* n 8(Fa ) i= 0 iff X E I:. 
(ii) 8(FafX) == 8(Fa) n X* == 8((FaU {X})). 

Proof: (i) is easy. 
(ii, ~) Let j E 8(Fa) n X* i.e. Fa ~ j, X E j and take 

Y E Fafx. We show that Y E j. Let us calculate how the sum 
EnEw\y(a rX)(n) < 00 is brought up. For nEw \ (X U Y) is 
(a r X)(n) == 0 so remaining part EnEX\y(a r X)(n) < 00 i.e. 
X \ Y E I a so 

w \ (X \ Y) E Fa ~ j and this together with X E j gives 
w \ (X \ Y) n X == X n Y E j hence Y E j. 

(~) as a r X ~ a and X E F afX (if at all) and we are done. 

Corollary. (Va E Co \ £1)(8(Fa ) is dense in itself). 

Proof: If not, then for some X ~ w is 8(Fa ) nx* an ultrafilter, 
but as we can easily see, for all a E Co \ £1, Fa is not an 
ultrafilter. Indeed, any Y E Fa can be split to Y1 , Y2 in such 
a way that EnEY1 a(n) == EnEY2 a(n) == +00, i.e. both Y}, Y2 E 

It· 
Of course not all dense in itself nwd subsets of w* are of form 

8(Fa ), but we do not deal with this characterization problem 
here. 
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We finished this introductory part and we recall now (a re
formulated version of) results from [VI], [V2] and [CV]. We 
show how they are interrelated and what does this say about 
the structure of nowhere dense subsets of w* generated by se
rIes. 

RAPID ULTERAFILTERS AND THEIR NONCENTERED
 

VERSION.
 

Definition We define binary relation CONY ~ Co x [w]W as 
follows 

(a,X) E CONY iff L: a(n) < 00. 
nEX 

Theorem 1. (see [VI]). Relation CONVand «*n(ww )2) are 
Galois- Tukey equivalent (i. e. there are Galois- Tukey connec
tions in both directions). 

Proof: (i) Galois-Tukey connection from (Ww, <*) (exactly speak
ing we consider only increasing functions) to CONY. For 
J E W w define E(J)(i) = lO~:il) if i E (J(n - l),J(n)) for 
n > 0, else arbitrary and for X E [w]W put F(X) = ex where 
ex is the unique increasing enumeration of X. We have to 
prove that (E(f), X) E CONY implies f <* ex. Indeed, if 
there are infinitely many n's with ex (n) ~ f (n) then 

00 • log(n + 1)L: a(n) = L: a(ex(n)) ~ 11m (n + 1) = +00. 
n-+oo n + 1nEX n=O 

Let us note, that the proof of this part of the theorem owes 
much to a result of E. Coplakova, which was a part of prelim
inary version of [CY] but did not appear in the final one. 

(ii) conversely for a E Co put H(a)(k) = min{i : (Vj ~ 

i)(a(j) < 2\)} and J«g) = rng(g). Again easily H(a) <* 9 
implies (a,rng(g)) E CONY. 
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Definition (G. Choquet) An ultrafilter j E w* is said to 
be rapid if the family of functions enumerating elements of j, 
{ex: X E j} is a dominating family in (Ww , <*). 

Corollary. TFAE. 

(i) j is rapid. 
(ii)	 (Va E co)(3X E j)(LnEXa(n) < +(0) z.e. (Va E 

co)(3X E j)(X E I a ). 

(iii)	 j E naEco a(Ia ). 

(iv)	 j E w* \ UaEco 8(Fa ). 

Proof (i) ---+ (ii) If {ex: X E j} is dominating then {!«ex): 
X E j} = j is CONY-dominating. !< being that of Theorem 
1 (ii). Conversely (ii) ~ (i) is emphasized by the mapping F 
of Theorem 1 (i). (ii) ~ (iii) ~ (iv) is easy. 

Let us notify (though we will emphasize it later) that this 
gives a new type of characterization of a class of ultrafilters. 

Q-POINTS. 

Similar idea (though not precisely formulated there) is be
hind the main result of [CV]. Recall that j E w* is a' Q-point 
if for every disjoint partition of w into finite pieces R ~ [w]<w 
there is an X E j such that for all R E R is IX n RI ~ 1. 
In order to fit in the previous pattern we have to change it 
(equivalently) . 
Definition. Denote lR the system of all R ~ [w]<w disjoint 
partitionsofw, put In = {X ~ w: (3k)(VR E R)IRnXI ::; k}. 
The dual filter we denote Fn . For R, S E lR define R ~ S iff 
In ~ Is· 

Observation. TFAE. 

(i) j is a Q-point. 
(ii)	 (Vn E ~)(3X E j)(3k E w)(VR E R)(IR n Xl ~ k) i.e. 

X EIn . 
(iii)	 j E nnElIR a(In ). 
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(iv) j E w* \ UnEJR 8(:Fn). 

Proof: Easy, just observe that if X E j is such that for all 
R E R is IX n RI ~ k we can split X into k disjoint pieces, 
each hitting R at most once and as j is ultrafilter, one of these 
k-many pieces is in j. 

Theorem 2. (see [CV]). There is a Galois-Tukey connection 
from (lR,~) to (Ww, ~*). 

Proof: First for given partition R we construct a mapping fn 
(the E-mapping of the very connection). We follow the proof of 
[CV]. By glueing together elements of R and "rounding" it we 
can obtain an interval partition R' >i= R, defined by function 
fn. By induction, enumerate R == {Rn : nEw}, 

fn(O) == max{max(R) : R E R&R n (0, max(Ro)) =I 0}, 
fn(n + 1) == max{max(R) : R E R&R n (O,max(Rn +1 )+ 

fn(n) + 1) =I 0}, 

put R' == {(fn(n),fn(n+1)): n E w}U{(O,fn(O))}. For 
X E In' take k such that (VR E R')(IX n RI ~ k) then (VR E 
R)(IX n RI ~ 2k + 1). For a monotone function 9 E W w we 
would like to define F(g) a partition such that the apropriate 
implication involved in this connection is valid. F(g) will be an 
interval partition generated by function 9 defined by induction 
g(O) == g(O) +1, g(n +1) == g(g(n) +g(n) +1) +1. Note that if 
for some monotone f E W w dominated by 9 and eE w we have 
f(~) < g(n) ~ f(~ + 1) then g(n + 1) > g(g(n) +g(n) + 1) ~ 

f(y(n) + g(n) + 1) ~ f(f(~) + 1) ~ I(e + 1). Now assume 
E(R) == fn ~* 9 and F(g) is the partition given by g. If 
X ~ wand k E ware such that (VR E F(g))(IX n RI ~ k) 
then (VR E R')(IX n RI ~ 2k + c) (the constant c depending 
on where fron~ 9 dominates In) and (VR E R)(IX n RI < 
2(2k + c) + 1) i.e. E(R) ~* 9 implies R ~ F(g). 



ON w* AND ABSOLUTELY DIVERGENT SERIES 343 

EXISTENCE THEOREMS. 

Definition Let n(w*) be minimal size of a family of nowhere 
dense subsets of w* covering the whole w*. 

Note first that each Q-point is rapid, but because of the 
later problem of considering properties of induced ordering of 
nwd subsets of w* also downwards we deal with both types of 
existence theorems. As the size of Co \ £1 and of lR is c and 
ideals I a and In are tall it can be proved that t = c implies 
there are Q-points (and rapids) just by induction building a 
tower of witnesses for each a E Co \ £1 (or R E 1R) . Using 
tallness of ideals parallelly we can by induction (under ~ = c) 
even build a MAD-families of such witnesses and every long 
chain in such a matrix (if there are) produces rapids, Q-points. 
Moreover, notice that if n(w*) > c then neither UaEco\ll 8(Fa ) 

nor UnEI. 8(Fn ) can cover the whole w* and hence there are 
rapids a,nd Q-points. (To compare this estimates with that of 
others see exhaustive references in [CV]). Moreover note that 
it is known to be consistent with set-theory that there are no 
P-points and that there are no rapids (see references in [CV]). 
We now give an existence theorem which is stronger (or at least 
not weaker) than those known from literature (see [CV]). 

Corollary. ([CV]). If n(w*) > D = D(Ww, <*) then there are 
Q-points. 

Proof: Using the F mapping of previous theorem we can con
vert any dominating family D = {go : QED} of (Ww , <*) 
into a family of partitions {F(go) : QED} such that as for 
every R E 1R there is an QED with In ::;* go, and hence 
R ~ F(go) i.e. In 2 I F (9a) = I o (the dual filter denote Fo) 
i.e. 8(Fn.) ~ 8(Fo ). So 

U 8(Fn ) = U8(Fo ). 

REI. oEl) 

But as for any partition R, Fn is nowhere dense in w* and as 
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() < n(w*) these D-many filters canIlot cover the whole w* so 

w* \ U 8(Fn) == w* \ U 8(Fo ) f-: 0 
nE~ oED 

i.e. there are Q-points. 

Similarly we need to estimate the number of series necessary 
to define rapid filters (via induced filters, nowhere dense in w*). 
Though every Q-point is rapid and existence follows, we deal 
with this for other reasons, as mentioned above. 

Definition. 

(i) lFq == {8(Fn ) : R E lR}. 
(ii) lFr == {8(Fa ): a E Co \R1 

}. 

Note that we showed (lFq , ~) -4 (lR, ~) -4 (Ww, ~*) (the first 
connection being easy as In ~ Is implies 8(Fn ) ~ 8(Fs )). A 
similar result holds for IFr. 

Proof: The first connection is easy as a <* b implies I a ~ I b 

and this gives 8(Fa ) ~ 8(Fb). To establish the last, first -4: 

define E(a)(n) == min{i: (\lj > i) a(j) < n~l} and F(f)(i) == 
n~l if i E (f(n),f(n + 1)) fulfills, that E(a) <* f implies 
a <* F(f) conversely for ~ same mappings fulfill F(f) <* b 
implies f <* E(b). 

Corollary. If n(w*) > D then there are rapid ultrafilters. 

Proof: Using F-mapping of connection from previous Theorem 
we convert arbitrary dominating family of (Ww, <*) of minimal 
size into system of nowhere dense sets which covers the same 
portion of w* as all filters generated by series do. But as there 
are not enough of them to cover the whole w*, there are rapid 
ultrafilters. 
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So looking to (lFr,~) and (lFq,~) upwards, both have the 
()-numbers smaller than or equal to ()(Ww , <*) and hence both 
under n(w*) > () define a nonempty class of ultrafilters. 

There is yet another interesting feature of looking to these 
ordering downwards. For Co \ £1 (or even W (0, +00) \ £1) we can 
look to <* as an ordering from the comparison test for abso
lute divergence. The smaller series the more information about 
divergence it carries (in the forcing sense). Note that for ab
solute convergence the analogous problem dealt with upwards 
directed structure. Nevertheless here the problem is "Boolean 
like", as there are two divergent series (e.g. one with diver
gency concentrated to odd numbers (i.e. 8(Fa ) ~ (2N + 1)*) 
and one with divergency concentraced to even number (i.e. 
8(Fa ) ~ (2N)*)) with no divergent series below both of them. 
So the problem of how efficient is the comparison ordering 
for the absolute divergence is no more a problem of charac
terizing some cardinal invariants (as b(Co \ £1, ~*) == 2 and 
()(Co \ £1, ~*) == 2W

) but more a problem of characterizing the 
Boolean structure generated by this partial ordering. 

PARTIAL ORDERS AND COMPLETE BOOLEAN ALGEBRAS. 

Assume (P, <) is a partial ordering without the smallest el
ement. We say that x, yEP are compatible (x I y) if there is 
a z E P with both z :::; x and z :::; y. Elements x,y E Pare 
incompatible (x -l y) if they are not compatible. For a partial 
ordering (P, <) we can find a complete Boolean algebra B such 
that (P, <) is order preserving mapped onto a dense subset of 
B in the following way (see [J]). On P define a topology gen
erated by basic open sets of the form {x : x :::; p} for pEP 
(called the cut-topology). The system of regular open sets in 
this topology forms a complete Boolean algebra and for every 
p there can be assigned the set Int (cl( {x : x :::; p})). This is 
an order preserving mapping from (P, <) into (RO(P, <), ~). 

This mapping is one-to-one if P is separative (i.e. if for any 
x i y there is a z :::; x with z 1- y). 
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Theorem 4. ([V2]). If lJ == cf(2W 
) then RO(£oo \ £1, ~*) ~ 

RO(P(w)/fin). 

This theorem states that looking to (£00 \ £1, :::;*) as a par
tial ordering downwards, it generates (uniquely) a complete 
Boolean algebra (which at least consistently is isomorphic to 
the complete Boolean algebra of regular open subsets of w*). 

SEPARATIVE FACTORIZATION OF THE COMPARISON
 

ORDERING OF DIVERGENT SERIES AND w*.
 

Note that the ordering (£00 \ £1 , ~*) is not separative because 
e.g. {~}~=o i* {2~ }~=o but for every a E £00 \ £1 , a ~* 
{~}~=o,wehavealsomin(a(n)';n) ~ ~min(a(n),~) tf-:£1. (For 
terminology needed see [J].) In [J] there is described a way, how 
a partial ordering which is not separative can be converted to 
a separative one: factorizing by a suitable equivalence, which 
topologically says, the generated cuts have the same interior 
of closure. 

Lemma. TFAE. 

(i) a I b. 
(ii) min(a, b) tf-: £1. 

(iii) fJ (Fa) n fJ (Fb) =1= 0. 

Proof: (i) f-4 (ii) by the definition of being compatible. (ii) f-4 

(iii) follows from Lemma stating fJ(Fa) n fJ(:Fb) == fJ(Fmin(a,b)). 

Theorem. In the partial ordering (£00 \ £1, ~*) with the cut

topology
 
Int( cl( {c : c ~* a})) == Int( cl({c : c ~* b})) iff fJ(:Fa) == fJ(:Fb).
 

Proof: By [J] we see, that it is enough to show that (Vc)(c Ia f-4 

c I b) iff fJ(Fa) == fJ(:Fb). 
Sufficiency. Assume fJ(:Fa) == fJ(:Fb) and we have a c with c I a 

by previous Lemma c Ia iff fJ(Fc)nfJ(Fa) =1= 0iff fJ(:Fc)nfJ(:Fb) =I 
oiff c I b. 



ON w* AND ABSOLUTELY DIVERGENT SERIES 347 

Necessity. Assume by contradiction that (Vc)(c I a ~ c I b) 
but, say, there is a j E 8(Fa ) \ 8(Fb). As w* is a regular 
topological space there is an X E j with X* n 8(Fb) == 0. As 
j E 8(Fa ) n X* the series c == a r X rt £1, clearly c I a and 
c ..1 b, contradiction. 

Corollary. The ordering (IFr,~) is the canonical separative 
factorization of the ordering (co \ £1, :::;*). 

We finish our paper by the following motivation of a prob
lem. We showed that rapid ultrafilters and Q-points in w* are 
defined (besides topological and combinatorial definitions) as 
those points in w* which are not covered by a certain family of 
nowhere dense sets. (It is not our aim to show here that this is 
also true for other classes of ultrafilters in w*.) Up to this the 
rt)le of a family IF of nowhere dense subsets of w* is described 
by the number i1(IF, ~) as the number of nwd sets necessary to 
cover everything what is possible to cover by whole IF, which 
leads to theorems of type n(w*) > i1(IF,~) then there are ''IF
points". Moreover we showed, that (at least for IFr) this fam
ily (IF,~) considered downwards as a partial ordering can be 
Boolean-isomorphic to some other Boolean algebra (we showed 
at least under p == cf(2W 

) that RO(IFr,~) ~ RO(w*)). This can 
be also shown for other types of ultrafilters (see e.g. [KV]). But 
these are not problems we would like to point out. 

We would like to emphasize the problem which we find topo
logically interesting: Characterize those families IF of nowhere 
dense subsets of w* which are (at least consistently) Boolean 
isomorphic to RO(w*) (i.e. RO(IF,~) ~ RO(w*)). Moreover 
we have a feeling that there is a new form of duality hidden 
behind this phenomenon, though we are not able to formulate 
it precisely. 
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