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ABSTRACT. Prime end theory is essentially a compact­
ification theory for simply connected, bounded domains, 
U, in E2 , or simply connected domains in 8 2 with nonde­
generate complement. The planar case was originally due 
to Caratheodory and was later generalized to the sphere 
by Ursell and Young, and to arbitrary two manifolds by 
Mather. There are many applications of the two dimen­
sional theory, including applications to fixed point prob­
lems, embedding problems, and homeomorphism (group) 
actions. 

Several constructions of a three dimensional topologi­
cal prime end theory appear in the literature, including 
work by Kaufmann, Mazurkiewicz, and Epstein. 

In this paper, the authors develop a simple three di­
mensional prime end theory for certain open subsets of 
Euclidean three space. It includes conditions focusing 
on an "Induced Homeomorphism Theorem", which, the 
authors believe, provides the necessary ingredient for ap­
plications. 

1. INTRODUC~TION 

Prime end theory is essentially a compactification theory for 

This paper is a revision of an appendix to Joo S. Lee's dissertation at 
the University of Florida, August 1993. It is joint work with his thesis 
adviser, Beverly L. Brechner. 

Many thanks to the referee for a careful reading of this paper and for 
valuable comments. 
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simply connected, bounded domains, U, in E 2, or simply con­
nected domains in 32 with nondegenerate complement. The 
planar case was originally due to Caratheodory [C], and was 
later generalized to the sphere by Ursell and Young [U-Y], and 
to arbitrary two manifolds by Mather [Mat]. For each such 
domain, U, there is given an associated structure of crosscuts, 
chains of crosscuts, prime ends, and impressions of prime ends. 
Caratheodory [C] and Ursell and Young [IT-Y] proved the fol­
lowing: 

Theorem 1.1. [C] The prime ends of U are in 1-1 correspon­
dence with the boundary points of the unit disk. That is, the 
compactijication is by a manifold. 

Theorem 1.2. [C,U-Y] There is a C-transformation ¢: U ---+ 

Int(D) such that ¢ is uniformly continuous on the collection of 
crosscuts of U, although not necessarily on U. 

Remark 1.1. The uniform continuity on the collection of 
crosscuts follows from a theorem in the appendix of [U-Y], and 
was observed and used earlier by the first author. 

Theorem 1.3. [U-Y] (The Induced Homeomorphism The­
orem) Let U be a simply connected domain in the plane, and 
let h : Cl(U) ---+ Cl(U) be a homeomorphism. Let </J : U ---+ 
Int(D) be a C-transformation. Then </Jh</J-l : Int(D) ---+ Int(D) 
can be extended to a homeomorphism of D onto itself. 

There are many applications of the two dimensional the­
ory, including applications to fixed point problems, embedding 
problems, periodic points of homeomorphisms, and homeo­
morphism (group) action and extension problems. See, for 
example, [C-L], [Mas], [Ep2] , [Brl,2,3], [Br-Mau], [Br-May], 
[Mayl,2], [Lew], and [Mat], among others. 

Several constructions of a three dimensional topological prime 
end theory appear in the literature, including work by Kauf­
mann [Kau] , Mazurkiewicz [Maz] , and Epstein [Epl]. These 
papers have not yet had any applications of which we are aware. 
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In this paper, we develop a simple three dimensional prime 
end theory for certain open subsets of Euclidean three space. It 
includes conditions not addressed by any of the above three au­
thors. Our additional conditions focus on an "Induced Homeo­
morphism Theorem", which we believe provides the necessary 
ingredient for applications. 

The first author would like to thank John Mayer for interest­
ing discussions on the topic of this paper many years ago, and 
for the invitation to present these results at his AMS Special 
Session in Knoxville, Tennessee, in March, 1993. She would 
also like to express her deep gratitude to both Richard Wie­
gandt for translating significant portions of Kaufmann's work 
and to John Mayer for his translation of Caratheodory's orig­
inal paper. 

2. DEFINITION OF A PRIME END THEORY ON E 3 

The essential ingredients of the planar prime end theory 
are included in Theorems 1.1, 1.2, and 1.3 quoted above. A 
satisfactory three dimensional theory should certainly include 
these. Thus, we define a prime en(l theory for open subsets U 
of E 3 to be a theory which satisfies these conditions. 

A PRIME END THEORY FOR OPEN SUBSETS OF E 3 MUST 

INCLUDE THE FOLLOWING: 

(1)	 There exists a prime end structure on U including cross­
cuts, chains of crosscuts, p,rime ends, and impressions 
of prime ends, for suitable domains, U, such that the 
prime ends determine a prime end compactification, U* 
of U, consisting of U plus its prime ends. 

(2)	 There is defined a homeomlorphism ¢ from U onto the 
the interior of some compact three manifold M 3 with 
nonempty boundary such that ¢ is uniformly contin­
uous on the collection of crosscuts of U. (Note that, 
since U C E3 and Bd(M3

) is collared in M 3 [Bro] , it 
follows that M 3 is embed-dable in E 3 .) 
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(3)	 The prime end compactijication, U* of U, is homeomor­
phic to M 3 • 

(4)	 The Induced Homeomorphism Theorem holds on M 3 . 

That is, if h : C1 (U) --+ C1 (U) is an onto homeomor­
phism, then ¢h¢-l : Int(M3 ) --+ Int(M3 ) can be ex­
tended to an (induced) homeomorphism of M 3 onto it­
self. 

In §3, we adopt a standing hypothesis for the domain U. 
We also present our definitions of "u has a prime end struc­
ture", of the space U*, and of "C-transformation". We show 
that U* is compact, so that we can indeed call it the "prime 
end compactification" of U. Our C-transformation is similar 
to Ursell and Young's [U-Y] C-transformation, and plays the 
role of the homeomorphism, ¢, in our definition above. Of 
course, there are then two major problems: (1) to character­
ize those domains U which have prime end structures, and (2) 
to characterize those open subsets of E 3 which admit a C­
transformation onto the interior of some compact 3-manifold. 
These remain open problems at present. 

The Whitehead Example. This example illustrates the typ­
ical problem that we must avoid in our open sets. It is an ex­
ample of a connected, simply connected, contractible, proper 
open subset of 3 3 which is not homeomorphic to E3. It can 
be constructed as the complement of the intersection in 3 3 , 

of "half-twisted", folded tori. Note that the open set is not 
I-connected at infinity, since the fundamental group at infin­
ity is infinitely generated. In particular, it is not 1 - ULC 
at infinity. Further, this example does not have a manifold 
compactification. A proof can be found in Husch [Hu1]. 

Below, we state some well known theorems which provide 
sufficient conditions for an open 3-manifold to be homeomor­
phic to the interior of some compact 3-manifold M 3 with non­
empty boundary. 

Theorem 2.1. [Ed] Let U be a contractible open 3-manifold, 
each of whose compact subsets can be embedded in E 3 • If U is 
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i-connected at infinity, then U is homeomorphic to E3. 

C. T. C. Wall has a related theorem, for which a corollary 
IS: 

Theorem 2.2. [Wa] If M is an open 3-manifold in E 3 which 
is i-connected at infinity, then M is homeomorphic to E 3 . 

Theorem 2.3. [Hu2] Let M be a connected, orientable 3-man­
ifold with compact boundary, and one end. The interior of M 
is homeomorphic to the interior of a compact 3-manifold iff 
there exists a positive integer n such that every compact subset 
of M is contained in the interior of a compact 3-manifold M' 
with connected boundary such that' 

i. 7rl (M - M') is finitely generated, 
2. genus(Bd(M'))~n, and 
3. every contractible 2-sphere i~~ M - M' bounds a 3-cell. 

3. A THREE DIMENSIONAL PRIME END THEORY FOR E 3 

In this section, we develop a tllree dimensional prime end 
theory for a class of domains in E:3. In §3.1, we make the nec­
essary definitions to set up its structure, including the defini­
tion of an admissible domain; in §3;.2, we prove the existence of 
such a prime end theory for admissible domains; and in §3.3, 
we define the bubble domains and prove that the bubble do­
mains admit C-transformations and therefore are admissible. 
The proof requires the use of the Topological Dehn's Lemma, 
due to Repovs [Re]. We also giv'e some examples of bubble 
domains to show that they form a large class of interesting 
domains in E 3

• However, Figure 3.2(c) shows that there are 
admissible domains which are not bubble domains. 

STANDING HYPOTHESIS FORJ §3: U is a bounded domain 
(i.e., connected open set) in E 3 

, with finitely generated homol­
ogy and finitely generated fundarrlental group. 



20 BEVERLY L. BRECHNER AND JOO S. LEE 

3.1 DEFINITIONS 

1. A crosscut is an open 2-cell D in U such that 

(1) D separates U into exactly two complementary domains, 
(2) Cl(D) is a 2-cell, and 
(3) Cl(D) n Bd(U) = Bd(D). 

2. A chain of crosscuts in U is a sequence {Di}~l of cross 
cuts such that 

(1) D i+1 separates Di from {Di+j}~2' 
(2) Cl(D i ) n Cl(Dj) = ¢J for i f:. j, and 
(3) limi--+oo(diam(Di)) = O. 

3. Two chains of crosscuts, {Qi} and {Ri }, are equi-valent 
iff 

(1) For each Qi, there exists j > i such that Qi+l separates 
Qi from Qj U R j , and 

(2) For each Ri , there exists j > i such that Ri+1 separates 
R i from Rj U Qj. 

That is, two subsequences can be alternated or "interspersed" 
to form a new, equivalent chain of crosscuts. 

4. A prime end of U is an equivalence class of chains of 
crosscuts of U. 

5. Let {Q i} be a chain of crosscuts representing the prime 
end E of the domain U, and let Ui be the associated or cor­
responding complementary domain of Qi; that is, that com­
plementary domain of Qi in U which contains Uj>i Qj. We 
call the set Cl(Ui ) the corresponding continuum, and the set 
(Cl(Ui))nBd(U) the corresponding boundary compactum. The 
impression of E, denoted by I(E), is defined to be the set 
ni Cl(Ui). Clearly, I(E) c Bd(U). If {Qi} converges to a sin­
gle point x in Bd(U), then x is called a principal point of E. 
As in the two dimensional theory, the set of principal points 
of E may be nondegenerate. However, if E is a prime end of a 
compact manifold, then E has exactly one principal point. 
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6. An onto homeomorphism ¢> : U ~ Int(M3 
), where M 3 is 

a compact 3-manifold, is called a C-transformation or a C -map 
iff all of the following hold: 

(1)	 The image of every chain of crosscuts of U is a chain of 
crosscuts of Int(M3 

). In particular, the image of each 
crosscut of U is a crosscut of Int(M3 

). 

(2)	 On each crosscut Q, ¢ extends to a homeomorphism 
from Cl(Q) onto Cl(¢(Q)). (However, ¢ does not nec­
essarily extend to a homeomorphism from the union of 
the closures of all the crosscuts of U to the union of the 
closures of their images in </J(Q).) 

(3) For each crosscut	 Qi of a prime end of U, let Ui be its 
corresponding domain. Let (Q / ,U/) be the image of 
(Qi, Ui) under ¢. We consider the following open sets 
on Bd(M3 

): Int[Cl(Ui') n Bd(M3 
)]. We require th·at 

the collection of all such open disks on Bd(M3 
) form a 

b.asis for the topology of Bll(M3 
). 

Remark 3.1. Note that if Bi denotes the corresponding bound~ 

ary compactum of Q~, and if Si denotes the boundary of Q~, 

then condition (3) of Definition 6 states that Int[CI(U/) n 
Bd(M3 

)] = Bi - Si· 
7. We say that a domain U has a prime end structure iff for 

every f > 0 there exist a finite nUIIlber of prime ends, {Ei }i::l' 
of U, and a finite number of crosscuts, {Qi}f=l, with Qi a 
crosscut of some chain representing E i , such that 

(1)	 diam(Qi) < f, 

(2) If	 Ui denotes the correspoladingdomain for Qi, then 
Bd(U)U Ui::l Ui is an f-neigllborhood of Bd(U) in Cl(U), 
and 

(3) If Bi denotes the correspon.ding boundary compactum 
of Qi, then Ui=l (Bi - Si) = Bd(U), where Si = BdJQi). 

Remark 3.2. We do not know whether (2) implies (3) in 
general. In particular, it is conceivable that for some f > 0, 
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and for a given collection of crosscuts for this f, some point p 
lies on some Sk of the collection, but not in Ui=l (Bi - Si). For 
example, suppose there is given a finite collection of crosscuts, 
{Qi}i=l, to Bd(U) such that for some pair, say Ql and Q2, 
Bd(Ql)nBd(Q2) is an arc containing the point p, but p is not in 
Bi - Si, for all i. Suppose also, that Ql and Q2 overlap in such 
a way that Bd(U) UU~=l Ui is, nevertheless, a neighborhood of 
Bd(U). In this case, note that there is no accessible arc A to 
p that lies in some Uk, with CI(A) n Bd(Qk) = 0. 

8. A bounded domain U C E 3 is an admissible domain 
iff there exists a C-transformation 4> : U --+ Int(M3 

), for some 
compact 3-manifold, M 3 , with nonempty boundary. The triple 
(U, 4>, M 3 ) is called an admissible triple. 

3.2. EXISTENCE OF A PRIME END THEORY 

ON ADMISSIBLE DOMAINS 

This section is divided into four parts, establishing the prop­
erties corresponding, respectively, to the four parts of the def­
inition of a prime end theory. In constructing the prime end 
compactification, U*, we assume only that U is a bounded do­
main in E 3 and that it has a prime end structure. For the 
remainder of this section, we also assume that U is an ad­
missible domain, which includes, in particular, the existence 
of a C-transformation, 4>, taking U onto the interior of some 
compact 3-manifold, M 3 , with nonempty boundary. 

3.2.1. THE PRIME END COMPACTIFICATION, U* 

The raison d 'etre of prime end theory is to use the prime 
ends as a compactification of the domain in question. Thus, 
we first define the space U*. Then, in Theorem 3.1 below, we 
show that if U is a bounded domain which has a prime end 
structure, then U* is compact. Of course, the question arises 
as to the existence of domains in E 3 with a prime end structure. 
In Theorem 3.2, we show that admissible domains have such 
struct.ures. 
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To this end, let U be a bounded domain in E 3 which has a 
prime end structure, and let U plus the prime ends of U be de­
noted by U*. We topologize U* by declaring the topology of U* 
to be generated by basic neighbor:hoods of the form described 
below: 

The basic neighborhoods of a Jpoint of U are the same as 
the basic neighborhoods of that J:~oint in the topology of E 3 • 

Now let E be a prime end of U, and let {Q i} be any chain of 
crosscuts representing E. Then a basic neighborhood of the 
prime end E is the· corresponding domain Wi of anyone of 
these crosscuts Qi, plus all the prime ends of U represented by 
chains of crosscuts which are eventually in Wi. 

Proposition 3.1. A point p of B'd(U) that is accessible from 
U corresponds to at least one prime end of u. 
Proof: Let A be an arc of accessil)ility to p from U. Let {fn } 

be a sequence of positive numbers with limit o. Let {£i}~l' 

denote an infinite sequence of finite collections of crosscuts to 
Bd(U) satisfying Definition 7. A tail end of the arc A lies in 
the corresponding domain of some element Q1 of the collec­
tion £1, in such a way that p ~ (71(Q1), by (3) of Definition 
7. Let U1 denote the corresponding domain of Q1, and let 
8 == d(p, CI(Q1)). Let f n2 be the first element of the sequence 
{fn } such that fn2 < 8/2, and look at the finite collection 
£n2 corresponding to f n2 . The union of their corresponding 
domains forms an f n2 -neighborhood of Bd(U), so one of these 
corresponding domains, say U2corresponding to Q2, must con­
tain a (sub)tail of A, in such a w~y that p ~ CI(Q2)' by (3) of 
Definition 7. Since d(p,CI(Q1)) < 8,(Q2 U U2) must lie in U1. 
Further, CI(Q1)nCl(Q2) == 0. Thlls, we have found n2 and Q2 
so that a tail end of the arc A lies in the corresponding domain 
U2of the element Q2 of the collection £n2' (Q2 U U2) C U1, and 
CI(Q1) n CI(Q2) == 0. 

Similarly, find n3 and Q3 so that a tail end of the arc A lies in 
the corresponding domain U3 of the element Q3 of the collection 
£na, (Q3 U U3) C U2, and CI(Q2) rl CI(Q3) == 0. Continue the 
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process inductively. Then the collection of crosscuts, {Qi}~1' 

defines a chain of crosscuts corresponding to a prime end E of 
U. Further, this chain of crosscuts converges to the point p of 
Bd(U), and we may say that p corresponds to (at least) the 
prime end E of U. D 

Proposition 3.2. U* is a Hausdorff space. 

Proof: Let E and F be distinct prime ends of U, defined by the 
chains of crosscuts {Qi} and {Ri}, respectively, and let {Ui} 
and {Vi}, respectively, be their sequences of corresponding do­
mains. We must exhibit disjoint neighborhoods of E and F. 
We may assume that the sequence {Qi} converges to a point q 
in Bd(U), and that the sequence {Ri } converges to a point r 

in Bd(U). (The reason is that, since the limit of the diameters 
of each sequence is 0, some subsequence of each converges to 
a point, and we may use those subsequences to represent the 
respective prime ends.) 

Observe that either for some Qn, there is m > 0, so that no 
Rm +i , for all j > 0, lies in Un' or for some Rn, there is m > 0, 
so that no Qm+i' for all j > 0, lies in Vn. Otherwise we could 
construct an alternating sequence of crosscuts from {Qi} and 
{Ri }, and it would follow that E and F would represent the 
same prime end. Thus, without loss of generality, assume that 
for some Qn, there is m > 0, so that, for all j > 0, no Rm +i lies 
in Un' the corresponding domain for Qn. Then Qn separates, in 
U, Qn+1 from Rm+i , for all'j > 0. Thus, the neighborhoods of 
E and F defined by Un+1 and Vm +1 , the corresponding domains 
of Qn+1 and Rm+1, respectively, are disjoint. D 

Theorem 3.1. Let U be a bounded domain in E 3 which has a 
prime end structure. Then U* is compact. 

Proof: Let V be a basic open cover of U*. Since U has a prime 
end structure, for every f > 0, there is a finite set of crosscuts, 
{Qi}?:1, coming from a finite set of prime ends, {Ei }, respec­
tively, such that diam(Qi) < f and [Ui=1 Wi U Bd(U)] forms 
an f:neighborhood of Bd(U) in Cl(U). (Note that diam(Wi ) 



••• 

25 A THREE DIMENSIONAL PllIME END THEORY 

is not necessarily less than f, where Wi is the corresponding 
domain of Qi, but Wi does lie in an f-neighborhood of Bd(U).) 

We claim that there is f* > 0 SIICh that for each Qi of the 
collection {Qi }i=1 for that f*, there is a Vi E V such that if 
Wi is the corresponding domain of Qi, then [Qi U WiU {prime 
ends in Wi}] C Vi. For suppose :not. We shall construct a 
chain of crosscuts, defining a prime end F of U*, such that F 
is not contained in any member of the cover V, leading to a 
contradiction. 

To this end, let fi ~ 0, and let (Ji1 , ,Qino be a finite set 
of crosscuts of U with corresponding domains' Wi!, . .. , Win -, 

respectively, such that each of these crosscuts has diameter < ~i 
and has corresponding domain lyiIlg in an fi-neighborhood of 
Bd(U). For f1, there is at least one of these crosscuts, call it 
Q1.' such that [Q1. UW1.U {prime ends in WI.}] is not covered 
by a finite subcollection of elements of V. Now SI. == Bd(Ql.) 
is a simple closed curve on Bd(U) such that it collars into 
U (for example, along the crosscut), and therefore each point 
of SI. is accessible from U. Thus, by (3) of Definition 7, for 
each point p of SI., there is a crosscut Q with boundary Sand 
corresponding domain W, such that W contains a tail end of an 
accessible arc to p and p E B-S, wJhere B is the corresponding 
boundary compactum of Q, and S' == Bd(Q). Further, since 
V is an open cover of U*, we may choose Q so that [Q U WU 
{prime ends in W}] C some basic o]pen set E V. Not.e that this 
implies that a small open arc of S1 .., containing p, lies in B. 

Since S1. is compact, a finite Ilumber of such crosscuts, 
Q1' Q2'.·. ,Qk induces a covering of S1 •. That is, if Bi denotes 
the corresponding boundary compactum of Qi, then U7=1 Bi :) 
SI.· 

Let 62 == d(S1.' C[QI. U (U7=1 Cl(Wi ))]), where C denotes 
complementation and the complemlent is taken in the closure 
of U. Then 62 > o. Let fn2 be the first member of {fi} such that 
fn2 < ~. Without loss of generalit~y, let f2 == fn2 • For f2, there 

is a finite set of crosscuts {Q2J ;:21 satisfying the definition 
of prime end structure. Since eac:h member of {Wi }f=1 is a 
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subset of an element of V, our assumption that [QI. U WI.U 
{prime ends in WI.}] is not covered by a finite subcollection of 
V, implies that at least one of the crosscuts, call it Q2., from 

that subcolleetion of {Q2j} ~;'2I which is contained in WI., has 
the property that [Q2. U W2•U {prime ends in W2.}] is not 
covered by a finite subcollection of elements of V. Further, by 
our choice of t:2, we may assume that Cl(Q2.) n Cl(QI.) == 0. 

We have now constructed the first two members of our chain 
of crosscuts of U*. Continue the above process inductively, 
obtaining a chain of crosscuts, {Qi.}~I' with corresponding 
domains {Wi.}~I. This chain defines a prime end, say F, of 
U*, and is such that, for all i > 0, [Qi. U Wi.U {prime ends in 
Wi. }] cannot be covered by a finite set of elements of V. But 
F is a point of U*, and so lies in some element of V. So it 
follows from the definition of the topology of U*, that for some 
i, [Wi.U {prime ends in Wi.}] lies in some element of V. Thus, 
[Qi+l. UWi+I.U {prime ends in Wi+I.}] lies in an element of V, 
and this contradiction establishes our claim in paragraph two. 

Thus there is some E* > 0 such that for each Qi of the 
collection {Q i}~I for that E*, there is a Vi E V such that if 
Wi is the corresponding domain of Qi, then [Qi U WiU {prime 
ends in Wi}] C Vi. Let V* == Ui=1 Vi. Then U - V* is a 
compact subset, X, of U, so some (other) finite subcollection, 
say {OJ} j=l of V covers X. It follows that the union of these 
two finite subcollections of V, {\!j}j=1 U {OJ}j=I' is a finite 
subcollection of V covering U*. This completes the proof of 
the theorem. D 

Remark 3.3. If U is not 1 - U LC, it mayor may not have a 
prime end structure. (See Figure 3.2.) 

Lemma 3.1. Let U be a bounded domain in E 3 , let f : U ---+ 

Int(M3 
) be an onto homeomorphism, and let N be the full 

E-neighborhood of Bd(U). Then there exists, > 0 such 
that, if f-l(p'Y) is a neighborhood of Bd(U), where P'Y de­
notes the full ,-neighborhood of Bd(M3 ), then f-l(p'Y) is an 
E-neighborhood of Bd(U). That is, j-l(p'Y) C N. 
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Proof: Let !< = U - N. Then d(!<, Bd(U)) = f > 0, and 
d(Bd(M3), f(K)) = 8 > 0 since jr:(!<) is compact. We take 
, ::; 8 such that 

(1) Every ,-crosscut, R, to Bd(lvJ3
) has a 3-cell as its corre­

sponding compactum, C; (R~ecall that C is the closure, 
in M 3

, of the (small) corresponding domain of R.) 
(2)	 Diam(C) < 8 (so that C c: Ps), where Ps is the full 

8-neighborhood of Bd(M3); and 
(3) f-l(R) C N. 

Since M 3 is a compact 3-manifold, (1) and (2) can be obtained. 
Since R c C CPs, (3) holds as wrell. Let Pry denote the full 
,-neighborhood of Bd(M3). Then f-l(pry) C N, since N is 
the full f-neighborhood of Bd(U). IThe lemma follows. D 

Lemma 3.2. Let U be a bounded domain inE~ and let h : U ~ 

Int(M3) be an onto homeomorphism. Let {(Qi, Ui, Bi, Si)}i=l 
be a finite collection of quadruples, where Qi is a small cross­
cut to Bd(U) in an f-neighborhood of Bd(U), Ui is a com­
plementary domain of Qi which lie:s in that f-neighborhood of 
Bd(U), Bi is its corresponding boundary compactum (that is, 
Bi = [Bd(U) nCI(Ui)] in E3), and Si = Bd(Qi). Let {(Q~, UI, 
B~, S:) }i=l denote the collection oj' quadruples {(h( Qi), h(Ui), 
h(Bi), h(Si))}?':l. If Bd(M3) C U?':l(B: - S:), then it follows 
that if p is a point of Sk for some k, then there exists j such 
that p E Bj - Sj. Thus Bd(U) c U1i=1(Bi - Si). 

Remark 3.4. (1) We may assum.e that each Bi is a closed 
disk on Bd(M3 

) with simple closed curve boundary, Si. (2) 
We note that the statement of Lemma 3.2 is long, and the 
lemma is easy to prove. However, it is a subtle point which 
must be dealt with in our proofs of the existence of a prime 
end structure in Theorems 3.2 anel 3.7. Thus it is useful to 
state it explicitly. 

Theorem 3.2. Let U be a domai'fj~ in E 3 which admits a C­
transformation, cP. Then U has a prime end structure induced 
by cP. 
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Proof: Let ¢ : U ---+ M 3 be a C-transformation from U onto 
the interior of a compact 3-manifold, and let f > O. By 
Property (3) of the definition of C-transformation and The­
orem 3.3 (which does not depend on this theorem), for each 
o< , < f and each point y of Bd(M3 

), there is a crosscut Q~ of 
Int(M3

) such that (1) diam(Q~) < " (2) Q~ == ¢J(Qy), where 
diam(Qy) < " and (3) Qy belongs to some chain of crosscuts 
representing a prime end of U. Let Ui and Uf denote the cor­
responding domains of Qi and Q~, respectively. Since M 3 is a 
manifold, and its boundary is compact, there is a finite subcol­
lection, {Q~}i:l' of these crosscuts such that Bd(M3 

) UUi=l Uf 
forms a small neighborhood of Bd(M3 

) in M 3
. By Lemma 3.1, 

we can choose, to insure that Bd(U)UU?=l Ui is a subset of the 
full f-neighborhood of Bd(U), and thus it is an f-neighborhood 
of Bd(U). Our collection now satisfies conditions (1) and (2) 
of the definition of prime end structure. 

To insure that the subcollection {Qi}Y=l also satisfies condi­
tion (3) of the definition of prime end structure, we ask that 
the collection {Q~}i:l also have the property that Bd(M3 

) C 

U?=lInt(BI), where B~ denotes the corresponding boundary 
compactum of Q~. Then Lemma 3.2 guarantees that {Qi}?=l 
satisfies condition (3). 

Thus, the collection {Qi}Y=l forms the required finite collec­
tion in U. D 

Corollary 3.1. Let (U, ¢J, M 3 
) be an admissible triple. Then 

U has a prime end structure induced by ¢J. 

Proof: An admissible domain admits a C-transformation, by 
definition. D 

3.2.2. C-TRANSFORMATIONS AND UNIFORM CONTINUITY 

In Theorem 3.3 below, we show that a C-transformation is 
uniformly continuous on the collection of crosscuts of U. 

The reader should note that, in general, it is not necessarily 
uniformly continuous on all of U. A simple example shows 
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why: Let the domain U be the open unit cube in E 3 minus 
a two dimensional disk with a portion of its boundary in the 
boundary of the cube. Then U* is a 3-cell, but it splits apart 
the interior of the aforementioned disk into two disjoint open 
disks. Thus, if p is a point of the interior of that disk, it 
becomes two points in the prime end compactification of U, 
so that a small neighborhood of p in the original space, when 
intersected with U, becomes large in diameter when viewed in 
U*. See Figure 3.1 below. 

Figure 3.1 

However, in Corollary 3.2, we show that a C-transformation 
is uniformly continuous on all of its domain, when that domain 
is the interior of a compact 3-manifold. 

Lemma 3.3. Let X be a nondegen,erate continuum on a com­
pact 2-manifold M. Suppose that {X n Int(D i )} is a basis of 
open sets for X, where each D i is a disk in M. Then there 
exists D j* such that Bd(Dj*) contains at least 2 points of x. 
Proof: Suppose that, for every Di , ..x nBd(Di ) is empty or one 
point. For sufficiently small Di , x· n Bd(D i ) =f 0 since X is 
connected. So now we suppose X rl Bd(Di ) is one point. Let 
p, q E X and let Dj be a neighborhood of p, with diam(D j ) < 
!d(p,q). If X n Bd(Dj ) = r, then r separates p from q. 
Therefore each pair of points of X is separated by a third point 
of X, so that the continuum X is a dendrite [Wh, pp. 88-89]. 
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Thus X contains an arc. This contradicts the assumption that 
for every Di , XnBd(Di ) is one point, since a sufficiently small 
basic neighborhood of a point of the arc will intersect at least 
two points. D 

Theorem 3.3. Let ¢J : U ----+ Int(M3 
) be a C-transformation. 

Then ¢J is uniformly continuous on the collection of crosscuts 
ofU. 

Proof: Suppose that ¢J is not uniformly continuous on the 
collection of crosscuts of U. Then there exists f. > 0 such 
that for every 8 > 0, there exists a crosscut Q6 of diame­
ter less than 8 with diam( </J(Q6)) ~ f.. In particular, for this 
f. > 0, there exist a sequence of positive numbers {8i } with 
bi ~ 0 and a sequence of crosscuts {Qi} with diam( Qi) < bi 
and such that diam(¢J(Qi)) ~ f.. By Whyburn [Wh, p. 11], 
there is a convergent subsequence {Q/} of {Qi} such that 
lim (Qi') == m E Bd( U); and there is also a subsequence 
{Q/'} of {Q/} such that {¢J( Q/')} converges to a limit contin­
uum in M 3 (see [Wh, p. 14]). 

Hence, without loss of generality, we may assume that {Qi} 
converges to a point m of Bd(U) and that </J( {Qi}) converges 
to a limit continuum X in Bd(M3 

), with diam(X) ~ f.. 

For each x E Bd(M3 ) and each a such that x E 
Int[(Cl(¢(Ua ))) n Bd(M3 

)], let B~(x) denote 
Int[(Cl(¢J(Ua ))) n Bd(M3 

)]. Now we take x E X and B~(x) 

on Bd(M3 
) such that X n Bd(B~(x)) contains at least two 

points P, q. We can do this by Lemma 3.3 and Condition (3) 
of the definition of C-transformation. Let, == dist(p, q). We 
consider two sequences {PI, P2, ...}, {ql' q2, ...}, where Pi, qi E 
¢J (Qi) such that Pi ~ p, qi ~ q. Then there exists an integer 
N such that for n > N, dist(Pn, qn) > ~. Now the preim­
ages of the sequences {Pi}, {qi} converge to the same point, 
m E Bd(U). Since M 3 is a manifold, it admits a prime end 
structure. Thus, let RI , . .. ,Rk be a finite collection of cross­
cuts to the boundary of Int(M3 

), with corresponding domains 
Vi, · .. ,Vk respectively, with corresponding continua each of 
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diameter < ~, and such that the interiors of the correspond­
ing boundary compacta form an open cover of Bd(M3 

). (In 
particular, note that diam [CI(Ri lJ Vi)] < ~.) Then since the 
collection {4>-1 (Vi) }7=1 forms (together with Bd(U)) a neigh­
borhood of Bd(U), it follows that infinitely many members of 
the collection {Qi} lie in one of the corresponding domains, 
say 4>-1(Vs), where m E 4>-1(Vs). Now the image of this corre­
sponding domain, 4>(4)-1(Vs)) has <liameter < ~, but infinitely 
many pairs of points of this image are separated by a distance 
of at least t. This contradiction completes the proof. D 

Corollary 3.2. If the map 4> of the interior of the compact 
3-manifold M 3 onto itself is a C -t~r-ansformationJ then each of 
the following three statements holds: 

(1)	 4> is uniformly continuous o'n the collection of all cross­
cuts of Int(M3 )J 

(2)	 <p can be extended to a horneomorphism (f> of M 3 onto 
itself, and 

(3)	 <p is uniformly continuous on all of M 3 
. 

Proof: Assume that 4> is a C-tran.sformation. Then (1) is a 
corollary of Theorem 3.3. 

(2) Let x E Bd(M3 
), and let {CJi} be a chain of crosscuts 

with lim Qi == x. Define 4>(X) = lim 4>(Qi). Since a C­
transformation takes chains of crosscuts to chains of crosscuts, 
¢ is well defined. Now let {Xi} be a sequence in Bd(M3) such 
that Xi ~ X, and let {Q i . } j be a chain of crosscuts of mesh 

. J 

less than 1/2'" which converges to :l~i. Since {Qij}j determines 
a basis at Xi on Bd(M3), and {Qi} determines a basis at Xon 
Bd(M3), and Xi ~ X, it follows tllat ¢(Xi) ~ ¢(x). Thus ¢ 
has a (unique) extension to a continuous map, <p, of M 3 onto 
itself. That "(fJ is a homeomorphism follows from Theorem 3.4, 
which does not depend on this corollary. 

(3)	 This is a corollary of (2) ab01ve. D 
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3.2.3. MANIFOLD COMPACTIFICATIONS 

It is clear that the boundary points of a compact manifold 
with nonempty boundary are naturally in one-to-one corre­
spondence with the prime ends of the interior of that manifold. 
In the following, we first show that there is a one-to-one corre­
spondence between the prime ends of an admissible domain, U, 
and the prime ends of the interior of a compact 3-manifold, M 3 , 

with nonempty boundary. Our main theorem (Theorem 3.5) 
of this part then follows easily. Thus, for admissible domains, 
the prime end compactification of U is indeed a manifold com­
pactification, and we can think of the C-transformation as a 
"manifold compactification map" . 

Theorem 3.4. Let <p be a C-transformation, <p : U --+ Int(M3 ). 

Then ¢ determines a one-to-one correspondence between the 
prime ends of the domain U and the prime ends of Int(M3 

). 

Proof: Let E be a prime end of U. Then ¢( E) is a prime end of 
Int (M3 

), by the definition of C-transformation. We suppose 
that Ex and Ey are prime ends of U with ¢>(Ex) = ¢>(Ey) and 
we take chains of crosscuts {E~,i} and {E~,i} as representatives 
of ¢>(Ex), ¢>(Ey), respectively. Let E~,i = ¢>(Ex,i) and E~,i = 
¢(Ey,i), so that {Ex,i} and {Ey,i} are representatives of Ex and 
E y respectively. Now we construct a new chain of crosscuts of 
Int (M3

), by forming an alternating sequence from the chains 
{E~,i} and {E~,i}: 

which is equivalent to each of {E~,i} and {E~,i}. Then 

forms a chain of crosscuts of U and is clearly equivalent to each 
of {Ex,i} and {Ey,i}. Thus, Ex = Ey and ¢ is one-to-one. 

To show that this correspondence is onto, let F be a prime 
end of Int(M3 

) and let p be the principal point of F. We take 
a 3-cell neighborhood of p, B 1(p). By Theorem 3.3, there ex­
ists 81 such that if Q is a crosscut of U with diam( Q) < 81 , 
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then diam(¢(Q)) < 1/2. We notice that the set of images 
of all crosscuts with diameter less than 81 , determines a ba­
sis for Bd(M3

) in the sense of C;ondition (3) of the defini­
tion of C-transformation. Therefore, by the definition of C­
transformation and Theorem 3.3, vve can find Ql such that: 

(i)	 the "small" complementar:y domain of ¢(Ql) IS con­
tained in B1 (p ), and 

(ii)	 Int[Cl(¢(U1 )) n Bd(M3 
)] is a neighborhood of p on 

Bd(M3 
), where U1 is the corresponding domain of Ql. 

I 

Now we take f~ so that Bf~(P) <: Int(Cl(¢(U1 ))). Let f2,= 
min{1/4, f~} and consider Bf2 (P). Again by .Theorem 3.3, 
for f2/2, there exists 8~ such that if Q is a crosscut of U 
with diam(Q) < 8~, then diam(¢(Q)) < f2/2. Let 82 = 
min {8~, 1/4}. As above, we notice that the set of images of 
all crosscuts with diameter less than 82 , determines a basis for 
Bd(M3 ) in the sense of ConditioIl (3) of the definition of C­
transformation. Therefore we can find Q2 such that: 

(i)	 the "small" complementary domain of ¢(Q2) IS con­
tained in Bf2 (p), and 

(ii)	 Int[Cl(¢(U2)) n Bd(M3 
)] is a neighborhood of P on 

Bd(M3 
). 

By induction, we get a sequence of crosscuts {Q i} such that 
Qi+l c Ui (the corresponding domain of Qi), diam(Qi) ~ 0 
and {<fJ( Qi)} is a chain of crosscuts defining the prime end F. 

Note that we may assume that Bd(Qi) n Bd(Qi+l) = 0 
(i.e. {Qi} is a chain of crosscuts). In fact, suppose that there 
exists k such that Bd(Qk) n Bd(~~j) =I 0 for all j ~ k and 
let q E ni=kBd( Qj). Then since q is accessible from U (for 
example, along the crosscut Qk), and since U has a prime end 
structure by Theorem 3.2, we can find a chain of crosscuts 
{Ri } which converges to q by Proposition 3.1. The image of 
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this chain of crosscuts, {¢>(Ri )} is a chain of crosscuts since 
¢> is a C-map. Further, {¢>(R i )} has the principal point p; 
i.e., {¢>(Ri )} defines the prime end F. Then for sufficiently 
small Rkl, ¢>(Rkl) must, be contained in ¢>(Uk) where Uk is the 
corresponding domain of Qk, since {¢>(Ri)} and {¢>(Qi)} define 
the same prime end, F, with the principal point p. 

We now take a point r' E Rkl - Cl(Uk). Then ¢>(r') ~ ¢>(Uk) 
since Qk separates U. This contradicts the fact that ¢>( Rkl ) 
must be contained in ¢>(Uk). Thus, we can find j > k, such 
that Bd(Qk) n Bd(Qj) = 0. Continuing inductively, we can 
find a chain of crosscuts from {Q i}. Therefore we may assume 
that {Q i} is a chain of crosscuts such that {¢>(Qi)} defines the 
prime end F. It follows that ¢> is onto. D 

Theorem 3.5. Let U be an admissible domain. Then U* is 
homeomorphic to a compact 3-manifold-with-nonempty-bound­
ary, M 3 , in such a way that U is identified with Int(M3

) and 
the prime ends of U are identijied with Bd(M3 ). Thus, the 
prime end compactijication of U is a manifold compactijication. 

Proof: Since U is admissible, there exists a C-transformation, 
¢, taking U onto the interior of some compact 3-manifold, M 3 . 

Then ¢> is one-to-one on U by definition, and by Theorem 3.4, 
¢> determines a one-to-one correspondence between the prime 
ends of the respective domains. We need only show that ¢ is 
continuous at the prime ends of U. 

Let W bea neighborhood of some prime end of M 3 (that is, 
of some point p in Bd(M3 

)). By Property (3) of the definition 
of C-transformation and Theorem 3.3, there exists a crosscut 
Qa of U, with corresponding domain Ua, such that ¢(Qa U 
Ua ) C W. By the definition of the topology of U*, Ua plus the 
prime ends of Ua forms an open set of U*, and since ¢ takes 
this set into W, ¢> is continuous on U*. 

Thus, the C-transformation ¢ induces a homeomorphism be­
tween U* and all of M 3

. That is, our prime end compactifi­
cation of the admissible domain U is a manifold compactifica­
tion. D 
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3.2.4. THE INDUCED HOMEOMORPHISM THEOREM 

In our view, this is the most imI)ortant theorem of our three 
dimensional prime end theory, siIlce it is this theorem which 
gives rise to our anticipated applications. 

Theorem 3.6. Let (U, </>, M 3) be an admissible triple (that is, 
U is an admissible domain and </> is its associated C-transforma­
tion to M 3). If h is a homeomorphism of Cl(U) onto itself 
then the induced homeomorphism, </>h</>-l, of Int(M3) onto it­
self can be extended to a homeomorphism ¢h¢-l of all of M 3 

onto itself. 

Proof: First we show that for a prime end E of Int(M3), 
¢h¢-l(E) is also a prime end of Int(M3). Let E be a prime 
end in Int(M3) and let {Ei } be a representative chain of cross­
cuts of E. Then there exists a chain of crosscuts {Di} in 
U such that {¢(Di )} is equivalenLt to {Ei }, by the definition 
of C-transformation and Theore:m 3.3. Then, even though 
{¢-l(Ei )} may not be a chain of crosscuts in U (that is, their 
diameters may not tend to 0), {Di } is equivalent to {¢-l(Ei )} 

in the sense that there are subseqllences of the crosscuts which 
alternate. Since h is uniformly continuous, {h(Di )} is also a 
chain of crosscuts of U; and {¢h(lJ i )} is a chain of crosscuts in 
Int(M3) since ¢ is a C-map. But then {¢h(D i )} is equivalent 
to {</>h(</>-l(Ei ))} which is the same as {</>h</>-l(Ei )}. Since 
{h(D i )} is a chain of crosscuts of U, {¢(h(D i ))} is a chain of 
crosscuts of Int(M3). Now small crosscuts of a manifold cut 
off small corresponding domaip.s on that manifold. Thus, since 
{¢h(D i )} is equivalent to {¢h¢-l (Ei )}, the latter sequence has 
diameters tending to 0, so that it forms a chain of crosscuts of 
Int(M3). Thus, ¢h¢-l(E) is a prime end of Int(M3). 

We notice that the inverse of <ph¢-l, namely ¢h-1¢-1, be­
haves in the same way. Therefore ¢h¢-l acts in a one to one 
and onto manner, taking prime ends to prime ends. But the 
prime ends of M correspond precisely to the points of Bd(M). 
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To show that ¢h¢-1 is extendable to a continuous func­
tion, let x E Bd(M3 

) and {Ei } be a chain of crosscuts with 
limEi == x. Define ¢h¢-I(x) = lim (¢>h¢>-I(Ei )). Then 
¢h¢>-1 is well defined, since for a prime end E of Int(M3 ), 

¢h¢>-I(E) is also a prime end of Int(M3 ), and each chain 
of crosscuts representing a prime end of M 3 converges to a 
point of Bd(M3 

). Now if {Xi} is a sequence in Bd(M3
) such 

that Xi --+ X, then Property (3) of the definition of a C­
transformation guarantees that ¢>h¢>-I(Xi) --+ ¢>h¢>-I(X). It 
follows that ¢>h¢>-1 can be extended to the homeomorphism 
¢>h¢>-1 of M 3 onto itself. D 

3.3. BUBBLE DOMAINS 

In this part, we establish the. existence of a nontrivial, in­
teresting class of admissible domains. We define, and give ex­
amples of, the "bubble domains", and we prove that these 
domains are admissible. First we recall Bing's [Bil] definition 
of 1 - ULC: A metric space M is 1 - ULC iff for each f > 0, 
there is 6 > 0 so that each map of Bd(D) into a 6-set of M 
can be shrunk to a point in an f-set of M. We do not assume 
0- ULC. 

A bubble domain in E 3 is a bounded, connected, 1 - ULC, 
open subset U, whose boundary contains a dense subset S, 
such that the following conditions are satisfied: 
(1)	 There is a monotone map f : CI(U) --+ M 3 , such that 

(a)	 flU is a homeomorphism onto Int (M3 
), and 

(b) for each xES, 1-1I (x) = x. 

(2)	 Bd(M3 
) admits a decreasing sequence of triangulations 

{Ti }, with mesh (Ti ) --+ 0, such that 

(a)	 the one-skeleton of Ti lies in f( S), and 
(b)	 the boundary of each two-simplex of Ti in Bd(M3 

) has 
inverse of diameter less than t. We call f-l(l-skeleton 
of Yi) a i-dimensional f-triangulation of Bd(U), if t < 
f. 
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(3) 5 is collared into .U; that is, there is a homeomorphism 
9 : 5 x [0, 1) ~ U such that 

(a) g(8,0) == 8, for all 8 E 5, anld 
(b) g(8, t) E U, whenever t > O. 

In this situation, U is called a bubble domain and 53 - U 
is called a bubble continuum. The triple (U,!, M 3

) is called a 
bubble triple. (We use the word "bubble" because the crosscuts 
to the boundary look like bubbles on the boundary.) 

~ 0 """ 

tJ IJ II !I',i:<~::,/~....-~ ............
 

(a) Bowling Ball (b) Bowling Glove (c) Modified Bowling Glove 

Figure 3.. 2 

Two interesting examples are the "bowling ball" and "bowl­
ing glove" examples (Figure 3.2(a),(b)), which were constructed 
by John Mayer. Note that the bowling ball is not an admissi­
ble space since it does not admit a Ie-transformation, by Theo­
rem 3.2. A third interesting examI>le is the "modified bowling 
glove" of Figure 3.2(c), constructed by Bob Daverman, w~o 

pointed out to us that this latter e:xample is not 1 - ULC, but 
does admit a C-transformation. It therefore also has a prime 
end stru«ture, by our Theorem 3.2. Note that this example 
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also shows that there are admissible domains which are not 
bubble domains. 

These examples are basically three dimensional versions of 
the Warsaw circle, again with a limit segment. The bowling 
ball (with infinitely many fingers) is a bubble continuull1, since 
its complement is a bubble domain. However, the interior of 
the bowling ball is not a bubble domain (so its complement, 
the bowling glove, is not a bubble continuum). 

We note that the interior of the bowling ball does not have a 
prime end structure, and thus by Theorem 3.2, there cannot be 
a C-transformation from the interior of the bowling ball onto 
the interior of B 3

. 

We construct below a number of other exotic examples (Fig­
ure 3.3). Thus, we see that even the very restrictive definition 
of bubble domain gives rise to many examples to which our 
theory applies. 

Spiral Double Spiral Distorted Torus 

Figure 3.3. 

Before proving that a bubble triple is an admissible triple, we 
will briefly review Dehn's Lemma which will play an important 
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role in our three dimensional prime end theory. 
In 1910, Max Dehn [De] first presented the lemma with a 

"proof"; however, in 1929 in [Kn], H. Kneser discovered a se­
rious gap in the proof given by Dehn. 

The following is the statement of Dehn's Lemma, as given 
by Bing [Bi2, p. 198]: 

Dehn's Lemma. If D is a PL singular disk in a PL 3-mani­
fold-without-boundary M 3 such that S(D) n Bd(D) = 0, then 
there exists a nonsingular P L dis.k, Do, such that Do C M 3 

and Bd(Do) = Bd(P). (Here S(L» means the singular set of 
D.) 

In 1957, C. D. Papakyriakopoulos [Pa] proved the lemma. 
Since Papakyriakopoulos' proof of the lemma, there have been 
several generalizations and simplifications, including a paper 
by A. Shapiro and J. H. C. Whitehead [S-W] and a paper by 
D.W. Henderson [He]. 

In 1988, there was an improvement of Dehn's Lemma by D. 
Repovs [Re]. In his paper, he extended the classical Dehn's 
Lemma to a topological version. He only required the map 
to be continuous and therefore a Dehn disk is a continuous 
Dehn disk. That is, a continuous map f : D2 -+ M 3 of a 
two dimensional disk, D2

, into a 3-Inanifold-without-boundary, 
M 3

, is a Dehn disk iff Sf n Bd(D 2
) = 0, where Sf = Cl {x E 

D 2 If-lf(x) # x} is the singular set of f. 

Topological Dehn's Lemma. Siuppose f : D 2 -+ M 3 is a 
Dehn disk in a 3-manifold with boundary M 3 • Then, for every 
neighborhood U C M 3 of f(Sf), there is an embedding F : 
D2 -+ M 3 such that FIBd(D 2

) = .fIBd(D2
) and F(D 2 )-U = 

f(D 2 ) - U. 

Lemma 3.4. Let M be a compact 2-manifold without bound­
ary. Then there exists E > 0 such that if T is a triangulation 
of M with mesh of each simplex le:ss than E, then CI(st(v, T)) 
is a 2-cell for all vET. 
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Lemma 3.5. Let M 3 be an orientable 3-manifold, and let 
Bd(M3 

), T, and ~ satisfy the hypotheses of Lemma 3.4 above. 
Since there are only a finite number of vertices v in T, the col­
lection {Bd( Cl(st(v, T))) }vEKO forms a finite number of sim­
ple closed curves, say {Ci }, whose interiors form a finite open 
cover of Bd(M3

). Let Qi be a crosscut to Bd(M3
) in Int(M3

), 

such that Bd(Qi) = Ci and diam( Qi) < f. Then the union of 
the corresponding domains of {Qi} plus Bd(M3 

) forms an f­

neighborhood of Bd(M3 
) in M 3 

• 

In the next two theorems, we prove that a bubble domain is 
admissible, by showing that it admits a C-transformation. 

Theorem 3.7. If (U, !, M 3 ) is a bubble triple, then! induces 
a prime end structure on U. 

Proof: The proof uses ideas from Bing [Bil], and the Topolog­
ical Dehn's Lemma [Re]. 

We notice that Int(M3 
) has the prime end structure induced 

by the triangulations {Ti} of Bd(M3 
) from the definition of 

bubble triple. Let !{l be the I-skeleton of the triangulation Ti 

so that !(l c f(8), by the definition of bubble domain. Then 
8 2 U~l f- 1 (KI) · 

Let f > O. For this f, let, > 0 be the number given by 
Lemma 3.1. Let 0 be the full ,-neighborhood of Bd(M3 

). 

Then f- 1 (0) is a subset of the full f-neighborhood of Bd(U). 
Let (3 > 0 be a number such that the full (3-neighborhood of 
Bd(U) is a· subset of f-1(0). 

For ~, there exists 8 > 0 such that every closed path in a 
8-subset of U can be shrunk to a point in a ~~subset of U, 
since U is 1 - ULC. For ~, let Tj be the first member of the 
collection {Ti} such that the diameter of the inverse. image of 
the boundary of the star of each v E Tj is less than 8. We 
notice that the closed star of v E Tj is 2-cell by Lemma 3.4, 
so it has a simple closed curve boundary, say a~v. Further, 
Bd(M3 ) is orientable [Mo, p. 170], so that it is a sphere with 
n handles. 
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Since S can be collared into U we can pull f-l(a~v) into 
U along the collar, by a very small move. Let 9 be the home­
omorphism giving the collar. Then the simple closed curve 
g[f-l(a~v) x 1/2] can be shrunk to a point in a ~-subset of U. 

Without loss of generality, we may assume that the sin­
gular disk D~ obtained by shrinking the simple closed curve 
g[f-l(a~v) x 1/2] to a point, has no singular points on its 
boundary. In fact, suppose that th.ere are singular points on 
the boundary. We notice that the singular disk D~, which is 
produced by the definition of 1-Uj[C, is entirely in U. There­
fore the distance between f- 1 ( a~v) and the singular disk D~ 

is nonzero, and there is an annulu.s between them in U. We 
tack onto D~ the collar beginning at g[f-l(a~v) x 1/4], which 
is a simple closed curve lying in tllis annulus. Then the new 
singular disk 

has no singular points on its bounclary. Consequently we can 
consider the singular disk D~ as having no singular points on 
its boundary. 

Hence, from the Topological Dehn's Lemma [Re]' for ev­
ery (small) neighborhood W of the singular set of D~, there 
exists a real topological disk Dv in D~ U W, such that Dv dif­
fers from D~ (setwise), only inside W. Thus, we may assume 
that diam(Dv) < 2:, and that the 'collection {g[f-l(a~v) x 
[0,1/2) ]U DV}VEKq, is a collection of crosscuts to the boundary 
of U of diameter < 

J 

(3, induced by the triangulation T j • Let us 
call this collection {Qv}VEKC? Then the collection {f(Qv)}VEKC?

J . J 

is a finite collectio,n of crosscuts to ~Bd(M3), obtained from the 
stars of the vertices of Tj • So the union of their correspond­
ing domains and Bd(M3 

) forms a rLeighborhood of Bd(M3 
) in 

M 3 , by Lemma 3.5. It follows that the union of the corre­
sponding domains of the crosscuts in the collection {Qv}vEKq

J 

plus Bd(U) is an f-neighborhood, "V, of Bd(U) in Cl(U). We 
have now satisfied conditions (1) and (2) of the definition of 
prime end structure. 
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To see that condition (3) of the definition of prime end struc­
ture is also satisfied, we note that our crosscuts to Bd(U) are 
the inverses of stars of vertices on Bd(M3 

). But, on Bd(M3 
), 

the union of the interiors of these stars contains Bd(M3 
). 

Thus, by Lemma 3.2, condition (3) of Definition 7 is also sat­
isfied. 

Since E can be chosen to be arbitrarily small, all the condi­
tions of Definition (7) are satisfied. Consequently, we have a 
prime end structure on U induced by f. 

Theorem 3.8. If (U, f, M 3
) is a bubble triple, then the map f 

is a C -transformation. 

Proof: We first show that the image of a crosscut is a cross­
cut. Since the map f is monotone on Cl(U) and the closure 
of a crosscut is a disk, it follows that, for every crosscut Q, 
Bd(f(Q)) is a simple closed curve or a single point. It suffices 
to show that it cannot be degenerate. To this end, suppose 
that Q is a crosscut of U, with corresponding domain W, and 
such that Bd(f(Q)) is degenerate. Then any sufficiently small 
crosscut to the boundary of U, lying in W, maps to an open 
disk with degenerate boundary (tangent to Bd(M3 

)). But, 
since U has a prime end structure induced by f (Theorem 3.7), 
we can find a crosscut Q* C W such that f (Q*) is a (small) 
crosscut of Int(M3 

) with Bd(f(Q*)) being the boundary of a 
two-simplex of Ti , for some i. This contradicts our assumption 
that Bd(f(Q)) is degenerate. It follows that f(Q) is a crosscut, 
for every crosscut Q in U. 

We next show that f maps Cl(Q) homeomorphically onto 
Cl(f(Q)). Suppose that f has singular points on Bd(Q) for 
some Q in U, and let p E Bd(f(Q)) such that f-l(p) is non­
degenerate, necessarily an arc. Let 8 be the dense set of the 
definition of bubble domain. Then p f/. 1(8) since each point 
of 8 is an inverse set. Thus, we can take a chain of cross­
cuts {Ri} in Int(M3 

), where Bd(Ri ) is the boundary of the 
star of a vertex from the triangulation {Ti} in the definition 
of bubble domain, and p lies in the interior of each associated 



43 A THREE DIMENSIONAL PRIME END THEORY 

2-cellon Bd(M3 
). We also notice that f-l(p) is an arc [a, b], 

since f is a monotone map. Since Bd(Ri ) n Bd(f(Q)) has 
two points ai, bi for sufficiently la.rge i, we consider the two 
sequences {ai} and {bi } which apl)roach p. Then the two se­
quences {f- 1 (ai)}, {f-l(bi)} lie 011 Bd(Q) and approach the 
opposite endpoints of the arc f- 1(p), respectively. Thus, the 
points f-l(ai) and f-l(bi) are separated by some fixed positive 
number Q. This contradicts the fact that f-l(T/) forms a 1­
dimensional ti-triangulation, where {ti} tends to 0, which fact 
comes from the definition of bubble domain. This contradiction 
shows that f maps CI(Q) homeolllorphically onto CI(f(Q)), 
and proves Condition (2) of the definition of C-transformation. 

We now show that, for every chain of crosscuts {Qi} of U, 
{f (Qi)} is a chain of crosscuts of M 3

. Since f is uniformly 
continuous on CI(U), it suffices to show that Bd(f(Qi)) n 
Bd(f(Qi+l)) == 0. Suppose that t:here exists a chain of cross­
cuts {Qi} such that, for some i, Bd.~(f(Qi))nBd(f(Qi+l)) i= 0. 
Let p E Bd(f(Qi)) n Bd(f(Qi+l)) and consider f-l(p). Then 
f-l(p) contains the points ai and ai+l in Qi and Qi+l' respec­
tively, as well as a continuum cOlltaining both these points, 
since f is monotone. We again ta1.~e a chain of crosscuts {Ri } 

in Int(M3 
), using the definition of bubble domain, as in the 

above paragraph, such that the p1rime end induced by {Ri } 

has p as its principal point. Let ai,j and ai+l,j be points in 
Bd(f(Qi)) n Bd(Rj) and Bd(f(Q;~+I)) n Bd(Rj) respectively, 
for j == 1,2, .... Then {j-l(ai,j)} arid {j-l(ai+l,j)} converge to 
ai and ai+l, respectively, which are a positive distance apart. 
Therefore we have a contradiction similar to that in the above 
paragraph. This completes the proof of Condition (1) of the 
definition of C -transformation. 

Since the collection {f- 1 (Ti )} is a collection of I-dimensional 
ti-triangulations of Bd(U), the set of images of small cross­
cuts and their complementary donlains which are induced by 
j and {Ti }, clearly satisfies Con<lition (3) of the definition 
of C -transformation. This completes the proof of Theorem 
3.8. D 
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Corollary 3.3. (Induced Homeomorphism Theorem for Bub­
ble Domains) Let (U, f, M 3 

) be a bubble triple (that is, U is· a 
bubble domain and f is its associated homeomorphism onto the 
interior of the compact 3-manifold-with-nonempty-boundary, 
M 3 ). If h is a homeomorphism of Cl(U) onto itself, then the 
induced homeomorphism, fhf-l, of Int(M3 ) onto itself can be 
extended to a homeomorphism fhf-l of M 3 onto itself. 

Proof: By the definition of bubble triple, U is an admissible 
domain and by Theorem 3.8, f is a C-transformation of U onto 
the interior of the compact 3-manifold, M3. Thus, by Theorem 
3.6, the Induced Homeomorphism Theorem holds. D 

4. OPEN PROBLEMS 

The results of this paper lead to the following interesting 
and important open questions: 

(1) Let U be a bounded, simply connected, 1-ULC domain 
in E 3

. Does there necessarily exist a C-transformation 
f : U ~ Int(B3 )? That is, is every bounded, simply 
connected, 1 - ULC domain in E 3 admissible? 
By work of L. Husch [Hu2], C.H. Edwards [Ed], and C. 
T. C. Wall [Wa], we know that U is homeomorphic to 
the interior of the unit 3-ball, B 3

• Also by work of L. 
Husch [Hu2], if we omit the simply connected hypothe­
sis and add some other conditions, U is homeomorphic 
to the interior of a compact 3-manifold. Therefore we 
have the same question as above: Is such a domain ad­
missible? 

(2)	 In general, let U be a bounded, 1- ULC domain in E 3
• 

Must U be admissible? That is, is 1 - ULC sufficient? 
Note that there are domains which admit C-transforma­
tions and are not 1 - ULC (See Figure 3.2(c)), so that 
the 1 - ULC property is not necessary. 

(3)	 Characterize the admissible domains in E3. 
(4)	 Characterize those domains which have a prime end 

structure. 
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