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WHEN IS ONE GRAPH THE WEAKLY
 
CONFLUENT IMAGE OF ANOTHER?
 

SCOTT A. SMITH 

ABSTRACT. A graph is a continuum which can be writ­
ten as the union of finitely many arcs, the intersection of 
any pair of which is at most two points. A continuous 
map of continua I : X --+ Y is said to be weakly con­
fluent provided that if A is a subcontinuum of Y, then 
some component of 1-1 [A] maps onto A under I. C. A. 
Eberhart, J. B. Fugate, and G. R. Gordh proved that the 
weakly confluent image of a graph is a graph and, more­
over, the set of branchpoints of the range is covered by 
the image of the set of branchpoints of the domain. This 
paper extends these results by showing that if f : X --+ Y 
is a weakly confluent map of graphs and 1< is a subcon­
tinuum of Y, then there is a sub continuum A of X such 
that ord(A, X) ~ ord(I<, Y) and I[A] = 1<. A method 
for determining if a given continuous map of graphs is 
weakly confluent and for determining if there is a weakly 
confluent map from one given graph to another given 
graph is developed. 

1. INTRODUCTION 

The goal of this paper is to answer the question posed by 
the title as a first step in answering the question asked by 
C. A. Eberhart, J. B. Fugate, and G. R. Gordh in [EFG]: 
Given a graph X, is there an algorithm for listing those graphs 
which are weakly confluent images of X? We start off with 
some definitions and a lemma about graphs then move to the 
definitions of monotone and weakly confluent maps. 
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Definition 1.1. A graph is a continuum which is the union of 
finitely many arcs, the intersection of any pair of which is at 
most two points. 

We use standard terminology for graphs which we include 
here for completeness: 

Definition 1.2. Let G be a graph and A a subcontinuum of 
G. The order of A inG, denoted ord(A, G), is defined to be the 
least integer n such that for each open set U of G such that 
A c U, there is an open set V such that A eVe U and 
Ibd(V) I = n. In the case of degenerate subcontinua, we denote 
ord ({ x}, G) by ord(x, G). We say x is a branchpoint of G 
provided ord(x, G) 2: 3. We say x is an endpoint of G pro­
vided ordx, G) = 1. A vertex set of G is any finite subset of G 
that contains all of the branchpoints and endpoints of G. An el­
ement of a vertex set is called a vertex of G. The edge set of G 
corresponding to a vertex set V is the collection of the clo­

sures of the components of G - V. Each of the elements of 
an edge set is called an edge of G. A subdivision of G is 
an ordered pair (V, Ev ) consisting of a vertex set of G and 
its corresponding edge set. The standard subdivision of G is 
the subdivision (Va, EVa) whose vertex set consists only of the 
branchpoints and endpoints of G. 

Remark 1. In this paper, all graphs have the standard sub­
division unless explicitly stated otherwise. In fact, the only 
exceptions to graphs having the standard subdivision occurs in 
Theorem 3.3 and its applications. 

Lemma 1.3. Let G be a graph and A a subcontinuum of G. 
Then 

ord(A,G) = E[ord(w,G) - ord(w, A)]. 
wEA 

Proof: Let G be a graph and A a subcontinuum of G. First note 
that if A is degenerate, say A = {a}, then the equality holds 
since ord(a, A) = O. If A is nondegenerate, then we interpret 
the summation L: [ord(w, G) - ord(w, A)] to be equal to the 

wEA 
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finite summation L: [ord(w, G) - ord(w, A)]. This is be­
webd(A) 

cause, if y E int (A), then we may restrict, without loss of gen­
erality, the open sets used to compute ord(y, G) to those which 
are subsets of int (A); consequently, ord(y, G) - ord(y, A) == 0 
for any y E int (A). 

We now show that ord(A, G) == L: [ord(w, G)-ord(w, A)]. 
webd(A) 

Let U be an open set in G such that A cU. For each w E 
bd(A), there is an open set Uw C U such that ord(w, G) == I 
bd (Uw)1 and ord(w, A) == Ibd(Uw) n AI. Thus, 
ord(w, G)- ord(w, A) == Ibd(Uw)I-lbd(Uw) n AI == Ibd(Uw)­
AI. Let 
T == int (A)U U Uw . Clearly, T C U. Moreover, Ibd(T)1 == 

webd(A) 
L: Ibd(Uw)-AI == L: [ord(w, G)-ord(w, A)]. There­

webd(A) webd(A) 
fore, ord(A, G) == L: ord(w, G)- ord(w, A)]. D 

webd(A) 

Definition 1.4. A continuous map of continua f : X --+ Y 
is called monotone provided for every subcontinuum A of Y, 
f-I[A] is a subcontinuum of X. A continuous map of continua 
f : X --+ Y is called weakly confluent provided for every sub­
continuum A of Y, some component of f-I[A] maps onto A 
under f. Such a component will be called an onto component 
of f-I[A]. 

The following three results come from [EFG]. The theorems 
numbered here as Theorems 1.5 and 1.6 are called branchpoint 
covering theorems; this paper will extend Theorem 1.6 to a 
subcontinuum covering theorem (Corollary· 2.9). 

Theorem 1.5. If f : X --+ Y is a weakly confluent map from 
a hereditarily locally connected continuum X onto a continuum 
Y, then Y is hereditarily locally connected and the branchpoints 
of Y and covered under f by the closure of the branchpoints in 
x. 
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Theorem 1.6. Suppose f : X ---+ Y is a light weakly conflu­
ent map from a graph X onto a compactum Y. Then if p is 
the vertex of an n-od contained in Y J then there is an n-od 
contained in X with vertex q such that f(q) == p. 

Corollary 1.7. The image of a graph under a weakly confluent 
map is a graph. 

2. A SUBCONTINUUM COVERING THEOREM 

We start this section with two lemmas about the number 
of disjoint "large" subcontinua of a continuum. Then we de­
fine comparable components for two subcontinua in the range 
of a weakly confluent map and prove two lemmas about com­
parable components; the second of which will be. used in the 
proof of Lemma 2.7. Lemma 2.7 then leads directly to the 
subcontinuum covering theorem. 

Lemma 2.1. Let c > 0 and let X be a graph. There exists 
a positive integer N such that if {]{i} 1<i<N is a collection of 
subcontinua of X each of diameter greate~ than c, then two of 
the ]{i'S have a non-empty intersection. 

Proof: Let c > 0 and let X be a graph. There is a finite 
collection {Cq }l<q<m of subcontinua of X such that for each q, 
diam(Cq ) < C a~d- U Cq == X from [N, Theorem 8.4]. Let 

l~q~m 

{I{i}l~i~n be a collection of disjoint subcontinua of X each 
with diameter greater than c. Each !{i must intersect at least 
two distinct Cq's. Further, no !{i is a subset of any Cq. Thus, 
if for some i and some q, ]{i n Cq =I 0, then ](inbd(Cq) =1= 0. 
Hence, each Cq meets at most Ibd(Cq)1 ]{i'S; this is a finite 
number since Xis a graph. Therefore, n must be no greater 

than L Ibd~cq)l. Let N be a positive integer greater than 
l<q<m 

this sum~ D 

Lemma 2.2. Let f : X ---+ Y be a continuous surjection of 
graphs and let c > o. ThenJ there exists a positive integer N 
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such that if K is a subcontinuum of Y and diam(I{) > e then 
I{A: A is an onto component of f- 1 [I{]}1 :::; N. 

Proof: By Lemma 2.1, it suffices to show that there is a 8 > 0 
such that if K is a subcontinuum of Y and diam(I{) > e then 
every onto component A of f- 1 [I<] has diameter no less than 
8. This, however, is an immediate consequence of the uniform 
continuity of f. D 

Definition 2.3. Let f : X --+ Y be a weakly confluent map of 
continua. A pair of subcontinua A C B of Y is said to have 
comparable components provided there are onto components 
CA and CB of f-l[A] and f- 1 [B], respectively, such that CAlC 

CB. 

Lemma 2.4. Let X be a hereditarily locally connected contin­
uum. Let f : X --+ Y be a weakly confluent map and A ~ B 
subcontinua of Y. Then there is a subcontinuum C of Y such 
that A ~ C C B and the pair A and C has comparable compo­
nents. 

Proof: Let B 1 = B. For i ~ 2, choose subcontinua B i of Y such 
that A ~ Bi C B and A = limBi . (The limit is in the sense of 
[N, Definition 4.9].) For each i, let Ci be an onto component 
of f- 1 [Bi ]. Without loss of generality, we may suppose that 
the sequence {Ci } converges to a continuum D in X. Note 
that f[D] = f[limCi ] = limf[Ci ] = limBi = A. Since X has 
no continua of convergence by [N, Theorem 10.4], there is a 
positive integer k such that D n Ck =I- 0. Hence, DeCk since 
f[Ck ] = Bk and f[D] = A c Bk . Therefore, let C = Bk . D 

Definition 2.5. Let X be a space. We denote the set of com­
ponents of X by Comp (X). 

Lemma 2.6. Let X be a hereditarily locally connected contin­
uum and Y a graph. Let f : X --+ Y be a weakly confluent map. 
Let A ~ B be subcontinua ofY. Then there is a subcontinuum 
C of Y such that 

(1) A ~ C c B, 
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(2) the pair A and G has comparable components) and 
(3) IGomp(G - A)I ~, IGomp(B - A)I. 

Proof: The proof is the same as for Lemma 2.4 except, for 
i ~ 2, we choose B i so that B i intersects each component of 
B - A. Hence, IComp(Bi - A)I ~ IComp(B - A)I. D 

Lemma 2.7. Let f : X ~ Y be a weakly confluent map of 
graphs. Suppose]( is a subcontinuum of Y such that for all 
y E K) ord(y, Y) - ord(y, K) ~ 1. Then) there is an onto 
component A of f-1[/{] such that for all y E /() 

(2.1) 

E [ord(w, X) - ord(w, A)] ~ ord(y, Y) - ord(y, /(). 
wEj-l[y]nA 

Proof: Let f : X ~ Y be a weakly confluent map of graphs 
and suppose ]{ is a subcontinuum of Y such that for all y E ](, 
ord(y,Y) - ord(y, /() :::; 1. We first note that as in the proof 
of Lemma 1.3, we interpret the summation to be the finite 
summation L: [ord(w, X) -ord(w, A)] ~ ord(y, Y)­

wEj-l[y]nbd(A) 

ord(y, ](). Secondly, the inequality is clearly satisfied if ]{ is 
degenerate, so, for the rest of the proof, we suppose diam(!() > 
o. 

Assume the conclusion is false; that is, assume that there is 
a subcontinuum /{ of Y such that for all y E !(, ord(y, Y) ­
ord(y, ]() ~ 1 but for each onto component A of j-1[!{], 
there is an x E ]( such that ord(x, Y) - ord(x, ]() == 1, while 

L: [ord(w, X) -ord(w,A)] == o. We seek a contradic­
wEj-l[x]nA 
tion. 

For each point q E bd(K), let Tq be an ord(q, Y)-od about q 
in Y such that each edge of Tq is a proper subset of an edge of 
Y. Let L be the subcontinuum of Y formed by unioning the Tq 

's and !{. Thus, Comp(L - ]()I == ord(!{,L) == ord(!(,Y) == 
ord(L, Y). By Lemma 2.6, there is a subcontinuum L1 of Y 
such that 
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(1) !{ ~ Lt c L, 
(2) the pair !{ and L t has comparable components, and 
(3) IComp(Lt - !{)I ~ IComp(L - !{)I· 

Note that 1 and 2 imply that L t is constructed in the same 
manner as L but with, potentially, smaller Tq's. Since, by the 
construction of L, IComp(Lt - !{)I cannot be greater than 
IComp(L - !{)I, we obtain the equation IComp(Lt - !{)I == 
IComp(L - ]{}I. Let At and B t be a pair of {:omparable onto 
components of f- t [!{] and f-t[L t ], respectively. 

By the assumption that the conclusion is false, there is an 
Xt E !( such that the left-hand side of inequality 2.1 is zero for 
At and the right-hand side is one. Since the summation is zero, 
f-t(Xt) cannot meet the boundary of At. Therefore, j-t(Xt)n 
At C int(At ). Hence, f-t(Xt) - At is closed; consequently, 
there are open sets Ut about At and VI about f-t(Xt) - At 
whose closures do not intersect. Without loss of generality, we 
may suppose that Ut is connected and that bd(Ut ) C B t ­
f-t[!{]. 

There is, therefore, a component of Lt - f[bd(Ut )] containing 
!{ . Applying Lemma 2.6 to this component and !(, we obtain 
a subcontinuum L2 of Lt such that ord(!(, L2 ) == ord(!(, Lt ), 
K ~ L2 C Lt , and the pair !( and L2 has comparable compo­
nents, say A2 and B 2 respectively. 

Proof of Claim: Assume A 2 == AI. The only preimages of Xl 

in B 2 are in int(At ) since the rest are in VI, At C Ut , and 
f-t[L 2] n bd(Ut ) == 0. However, ord(xt, L2 ) - ord(xt, !() == 
ord(xt, Y) - ord(xt, !() == 1. Let J be the component of L 2 ­

!{ whose closure intersects ]( at Xt. Since J is open in L2 , 

f- t IB2[J] is open in B 2 0 Moreover, j- t 
IB2 [L 2 - J] is also open 

in B2 since int (L 2 - J) == (L 2 - J) - {Xt} and j- t 
IB2 (Xt) C 

int(At ). Therefore, the connected set B 2 is the union of two 
disjoint open sets. This is a contradiction. Hence, A2 fAt. 

By the assumption that the conclusion is false, we obtain 
a point X2 E !( such that the left-hand side of inequality 
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2.1 is zero for X2 and A2 while the right-hand side is 1 for 
X2. Repeating the arguments above, we obtain a subcontin­
uum L3 of L2 and comparable onto components A3 and B3 

of f-l[K] and f- 1 [L 3 ], respectively, such that no two of AI, 
A2 , and A3 are equal. In fact, we can repeat these argu­
ments inductively to obtain infinitely many distinct onto com­
ponents AI, A2 , A3 , •••of f-l[]{]. This contradicts Lemma 2.2 
since diam(]() > O. D 

We now consider the case of a general subcontinuum of the 
range. 

Theorem 2.8. Let f : X --+ Y be a weakly confluent map 
of graphs. There exists a weakly confluent map 9 : X ---+ Y 
such that if K is a subcontinuum of Y, there exists an onto 
component A of g-I[]{] such that for all y E K, 
(2.2) 

L: [ord(w, X) - ord(w, A)] ~ ord(y, Y) - ord(y, ](). 
wEg-1 [y]nA 

Proof: Let f : X --+ Y be a weakly confluent map of aphs. For 
each branchpoint v of Y, let Tv be a simple ord(v, Y)-od in Y 
with branchpoint v and satisfying that the intersection of Tv 
with the vertex set of Y is {v}. Let m : Y -4 Y be a monotone 
map which collapses each Tv to its corresponding {v}. Let 
9 == m 0 f. Since 9 is the composition of weakly confluent 
maps, it is itself weakly confluent. We now show that 9 has 
the desired properties. Note that once again we interpret the 
summation to be the finite summation of w's in the boundary 
of A. 

Let ]( be a subcontinuum of Y. Then L == m-1 [!{] is a 
subcontinuum of Y with the properties: 

(1)	 For z E L, ord(z, Y) - ord(z, L) ~ 1 and 
(2)	 For y E !(, there are at least [ord(y, Y) - ord(y, ]()] 

points z E L such that ord( z, Y) - ord(z, L) == 1 and 
m(z) == y. 
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By Lemma 2.7, there is an onto component A of f-1[L] such 
that for z E L, 
(2.3) 

E [ord(w,X) - ord(w, A)] ~ ord(z, Y) - ord(z, L) 
wEj-l(z)nA 

Moreover, A is an onto component of g-l[/<]. Thus, for y E K, 

E [ord(w,.X) - ord(w,A)] 
wEg-1 (y)nA 

> ([ord(y, Y)- ord(y, !()]) E [ord(x, X)- ord(x, A)] 
xEj-l(z)nA 

m(z)=y 

~ ord(y, Y) - ord(y, !(). 

The first inequality comes from the fact that, for each y E 
!(, there are at least [ord(y, Y) - ord(y, !()] points z in L 
such that m(z) == y and ord(z, Y) - ord(z, L) == 1. The sec­
ond inequality comes from Inequality 2.3 and the fact that 
ord(z, Y) - ord(z, L) == 1. D 

Corollary 2.9. Let f : X --+ Y be a weakly confluent map 
of graphs. There exists a weakly confluent map 9 : X --+ Y 
such that if !( is a subcontinuum of Y J there exists an onto 
component A of g-l[/{] such that ord(A, X) ~ ord(!{, Y). 

Proof: Let f : X --+ Y be a weakly confluent map of graphs. 
Let !( be a subcontinuum of Y. Let 9 == ma f as in the proof of 
Theorem 2.8 and let A be one of the onto components of 9-1 [K] 
satisfying the conclusion of that theorem. Then, ord(A, G) == 

L: [ L: [ord(w,X) -Ord(W,A)]] from Lemma 1.3 since 
xEK wEg-1 (x)nA 

g[A] == !{. From Theorem 2.8, we obtain 
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E [ E [ord(w, X) - ord(w, A)]] 
xEK wEg-1 (x)nA 

~ E [ord(x, Y) - ord(x, ]<)]. 
xEK 

The right-hand side of this inequality equals ord(I<, Y) by 
Lemma 1.3 D 

An example of the application of this theorem is now given. 

Example 2.10. Consider the graphs in Figure 1. We will 
show that neither is the weakly confluent image of the other. 
We first attempt to construct a map going from Z (right) to· 
A (left). Note that in Z, any subcontinuum of order 5 must 
contain two adj acent edges from the edges labelled x, y, and 
z. 

b 

y 
a c 

z 

A 

Figure 1 
Thus, given any three such subcontinua, the intersection of 

some pair must contain either the edges x and yor the edges 
y and z. According to Corollary 2.9, if there were a weakly 
confluent map f : Z ---+ A , there must be three distinct sub­
continua of order at least 5; one each for a U b, bU c, and a U c. 
Thus, without loss of generality, the onto components of a U b 
and b U c both contain x U y. Thus, x and y must both map 
to b. However, every subcontinuum of order at least fouf in Z 
contains at least one of the edges x, y, and z. There must be a 

x 

z
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subcontinuum of order at least four to be an onto component 
of f-I[a], f-I[b], and f-I[C] from Corollary 2.9. But, with x 
and y both mapping to b, there is not enough room in Z for 
both f-I[a] and f-I[c] to have onto components. Thus there 
is no weakly confluent map from Z to A. 

We now attempt to find a weakly confluent map 9 : A ~ Z. 
Any subcontinuum of order at least four in A contains at least 
one of the edges u, b, or c. Thus, the onto components for 
f-I[X], j-I[y], and j-I[Z] each contain a different one of the 
edges a, b, and c; otherwise there would not be enough room 
in A to find three distinct subcontinua of order at least four 
that could serve as onto components for f-I[X], f-I[y], and 
f-I[z] as required by Corollary 2.9. However, now there is a 
continuity problem as the middle branchpoint of A is forced to 
try to map to both of the middle branchpoints of Z. 

3. A LABELLING THEOREM 

The goal of this section is to provide a theorem (Theorem 
3.3) relating a weakly confluent map of graphs to a vertex-edge 
function (or labelling) between the same two graphs. 

Lemma 3.1. Let f : X ~ Y be a weakly confluent map of 
graphs. There is another weakly confluent map 9 : X ~ Y 
such that if !{ is a subcontinuum of Y which is irreducible 
about a subset of the branchpoints of Y, then there is a.n onto 
component A ofg-I [!{] satisfying the condition: For each edge 
E of Y not contained in !{ but incident to a point y E bd (!{), 
there is an arc I C X and a point x E A such that x is an 
endpoint of 1, InA = {x}, g(x) == y, and g[1] C E. 

Proof: Let f : X ~ Y be a weakly confluent map of graphs. 
Let 9 == m 0 f as in the proof of Theorem 2.8. Let!{ be 
a subcontinuum of Y which is irreducible about some subset 
of the branchpoints of Y and E an edge of Y not contained 
in !{ but incident to a point y E bd (!(). There is a point 
z E m-I(y)n bd(m-I [!{]) such that z E m-I[E]. Let A be 
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an onto component of g-l [I{] which satisfies the conclusion of 
Theorem 2.8. 

If no arc I as described above exists, for every p E f-1(y) 
such that ord(p, X) - ord(p, A) 2:: 1 and for each c > 0, every 
arc J with p as one endpoint and diameter less than c satisfies 
f[J] n (E - {y}) =f 0 and f[J] n (Y - E) =I 0. Thus, the f­
preimage of the arc between z and y would have infinitely many 
distinct onto components. This contradicts Lemma 2.2. D 

Lemma 3.2. Let f : X --+ Y be a weakly confluent map of 
graphs. Then, there is another weakly confluent map 9 : X --+ 

Y which has the property that if E is an edge ofY, then g-l[E] 
has finitely many components whose images under 9 intersect 
int(E). 

Proof: Let f : X --+ Y be a weakly confluent map of graphs 
and let 9 == m 0 f as in the proof of Theorem 2.8. Assume 
E is an edge of Y such that there are infinitely many compo­
nents of g-l[E] which intersect int(E). The boundary points 
of each of these components must map to the endpoints of E, 
so infinitely many of them must map to the same endpoint, say 
p, of E. Without loss of generality, p is not an endpoint of Y 
since, ifit were, g-l[E] would have infinitely many components 
contradicting Lemma 2.2. 

Consider the arc m-1 (p)nE. Since there are infinitely many 
components of g-l [E] intersecting int(E) with boundary points 
mapping to p under f, the preimage of this arc under f has 
infinitely many onto components contradicting Lemma 2.2. D 

Remark 2. We have chosen the same alternative weakly con­
fluent map in the proofs of Theorem 2.8, Lemma 3.1, and 
Lemma 3.2. So, given a weakly confluent map f : X --+ Y 
of graphs, we may suppose, without loss of generality, that it 
satisfies the conclusions of those three results. 

We now consider the case of nondegenerate graphs without 
branchpoints (that is, arcs and simple closed curves). The only 
nondegenerate weakly confluent images of an arc or a simple. 
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closed curve are arcs and simple closed curves [EFG, Corollary 
1.2] and every nondegenerate graph maps weakly confluently 
onto either an arc or a simple closed curve. The next theorem 
considers the case when both domain and range graphs have 
at least one branchpoint. As this theorem is highly technical, 
examples will be supplied to illustrate the theorem. 

Theorem 3.3. Let X and Y be graphs which have at least one 
branchpoint. There exists a weakly confluent map f : X -+ Y 
if and only if there is a subdivision of X and a function 'P from 
a subset D of the vertices and edges of X to the set of the 
vertices and edges of Y such that: 

(1)	 if xED is a vertex of X J 'P(x) is a vertex ofY; 
(2)	 the function 'P preserves incidence of vertices and edgesJ 

adjacency of edgesJ and adjacency of vertices; and 
(3)	 for every subcontinuum !( of Y irreducible about a sub­

set of the branchpoints of Y J there is a set A C D of 
edges of X (if!( is degenerate J A may consist of a single 
vertex of X) such that: 

1.	 U e is connected) 
eEA 

2.	 U 'P(e) == !(J and 
eEA 

3.	 for each edge M of Y not in !( but incident to 
a point k in the boundar:y of !( J there is an edge 
BED and an endpoint b of B such that ( U e)n 

eEA 
B == {b}, <p(b) == k, and <p(B) == M. 

Proof: Let X and Y be 'graphs which have at least one branch­
point. 

Sufficiency: Suppose a labelling 'P exists. We construct a 
map f : X -+ Y as follows: 

Step 1: For xED such that x is a vertex of X, let 
f(x) == 'P(x). 

Step 2: For e E D such that e is an edge of X, if 'P( e) 
is a vertex of Y, then let f map e constantly to that 
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vertex. Otherwise, if e is an arc, let f map e onto 'P( e) 
such that the endpoints of e map to the endpoints of 
'P( e) subject to the assignments from Step 1. If e is a 
loop, let f map e onto 'P( e) such that the boundary 
point of e maps to a boundary point of 'P( e) subject 
to the assignments from Step 1. 

Step 3: Extend f continuously to X-D. 

By its construction and conditions 1 and 2 of 'P, f is con­
tinuous. We now show that f is weakly confluent. Let L be a 
subcontinuum of Y. Then, L is either contained in the interior 
of some edge of Y or is the union of some subcontinuum !< of 
Y which is irreducible about a subset of the branchpoints of 
Y and, possibly, some subedges of Y that intersect !< at one 
of their boundary points. In the first case, since every edge 
of Y is covered by some edge of X under f, L is covered by 
some subcontinuum of X. In the second case, condition 3 of 'P 
guarantees that L is covered by the U e from that condition 

eEA 
and the B's from part c of that condition. 

Necessity: Let f : X ~ Y be a weakly confluent map of 
graphs. Without loss of generality, we may suppose that f sat­
isfies the conclusions of Theorem 2.8, Lemma 3.1, and Lemma 
3.2. For each subcontinuum !< of Y irreducible about a sub­
set of the branchpoints of Y, let A K be an onto component of 
f- 1 [!<] satisfying the conclusion of Theorem 2.8. According to 
Lemma 3.2, it is possible to choose a finite vertex set V of X 
such that the standard vertex set is contained in V; for each 
AK , bd(AK ) C V; and every edge in the corresponding edge 
set maps into one edge or vertex of Y under f. 

Let D be the union of the edge set corresponding to V and 
the union of the boundaries of the AK's. For each xE VnD, let 
cp(x) == f(x). For each edgee of X in D, let cp(e) be the edge or 
vertex it maps to under f. Since f sends the boundary points 
of the AK's to vertices of Y, condition 1 holds. Condition 
2 holds since f is continuous. Parts a and b of condition 3 
hold since each AK is the union of a collection of edges of X 
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and f[AK ] == !{. Lemma 3.1 says condition 3c holds for the 
AK's. 0 

We provide two examples of the labelling techniques from 
Theorem 3.3. The first is an example of a labelling which sat­
isfies the conditions and, thus, a'weakly confluent map can be 
constructed between the graphs in that example. The second 
is a demonstration of how to show that no labelling, and conse­
quently no weakly confluent map, exists for two given graphs. 

yx 

Figure 2 
Example 3.4. Consider the graphs in Figure 2. The la­

belling on Y is for identification purposes; the labelling on X 
represents a function <.p as in Theorem 3.3. We check to see if 
this labelling on X satisfies the conditions of Theorem 3.3. It 
is easily verified that conditions 1 and 2 both hold. There are 
5 subcontinua of Y that are irreducible about a subset of the 
branchpoints of Y: {u}, {v}, and the edges a, b, and c. For 
{u}, the point of order 4 labelled u covers u under f; {u} has 
three edges, a, b, and c , coming off of it in Y and the order 
four point has three edges coming off it, one each labelled a, b, 
and c. Thus condition 3 is satisfied for the subcontinuum {u} 
of Y. The subcontinuum {v} is checked in a similar fashion. 

Now consider the edge a of Y. This edge is covered by the 
middle horizontal edge labelled a in X. There are two points 
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in the boundary of the edge a in Y, namely u and v. The 
order-four points labelled u and v in X map to these points 
respectively. Each of the points u and v in bd(a) have two 
edges coming off of them: band c. But, each of the order-four 
points in X have two edges coming off of them: one labelled b 
and one labelled c. Thus, condition 3 holds for edge a. 

The edge b is covered by the middle half of the rightmost 
vertical arc of X; call the union of these two edges A. The 
edge b in Y has two boundary points, u and v, and each of 
these has two edges coming off of it: a and c. The order-four 
point in bd(A) in X is labelled v and has an edge coming of it 
labelled a and one labelled c. The two endpoints of A are both 
labelled u; the upper one has an edge coming off of it labelled 
a, the lower an edge labelled c. Thus, condition 3 holds for the 
edge b. A similar argument shows that condition 3 holds for 
the edge c in Y. Thus the map f constructed as in the proof 
of Theorem 3.3 from this labelling is weakly confluent. 

Note that in the argument for edge b there were two points 
in X with one edge coming off of each one mapping to a single 
point, u, with two edges coming off of it in Y. This is an 
example of the summation in Theorem 2.8. 

Example 3.5 Example 2.10 is actually not only an application 
of Corollary 2.9 but also a demonstration that no labelling of 
the type described in Theorem 3.3 exists for the graphs in 
Example 2.10 and, hence, there is no weakly confluent from 
either of those graphs to the other. 
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