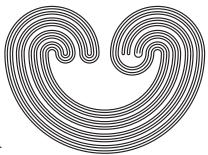
Topology Proceedings



Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

WEAK NORMALITY IN DOWKER SPACES

PAUL J. SZEPTYCKI

ABSTRACT. It is shown that the product of Rudin's Dowker space with the closed unit interval is weakly normal. This answers a question of Arhangel'skii and gives further evidence for his conjecture that weak normality is preserved under products with a compact second countable factor. Also, an analogue to Dowker's Theorem for weakly normal spaces is proven.

A space X is said to be weakly normal (over R^{ω}) if for each pair of disjoint closed subsets A and B there is a continuous function $F: X \to R^{\omega}$ such that $F(A) \cap F(B) = \emptyset$. The concept of weak normality was introduced by A.V. Arhangel'skii in [A] where one may find the basic results on weakly normal spaces.

N denotes the set of natural numbers and throughout this note we let X denote M.E. Rudin's Dowker space [R1]:

$$X = \{ x \in \prod_{i \in N} (\omega_i + 1) : \exists n \in N \ \forall i \in N \ \omega < \operatorname{cof}(x(i)) < \omega_n \}.$$

The box product topology on $\prod_{i \in N} (\omega_i + 1)$ is denoted $\prod_{i \in N} \omega_i + 1$ and $X \subseteq \prod_{i \in N} \omega_i + 1$ inherits the subspace topology. X is zerodimensional and is a P-space (i.e., countable intersections of open sets are open).

Theorem 1. $X \times [0,1]$ is weakly normal.

was motivated by the following conjecture of A.V. Arhangel'skii.

Conjecture 2. (Arhangel'skii): If Y is normal, then $Y \times [0, 1]$ is weakly normal.

Even the stronger conjecture that weak normality is preserved under products with a compact second countable space is open.

Conjecture 3. (Arhangel'skii): If Y is weakly normal, then $Y \times [0,1]$ is weakly normal.

Note that it is easy to prove that the product of a weakly normal space with any countable Tychonoff space is weakly normal. In particular, if Y is weakly normal, then $Y \times (\omega + 1)$ is weakly normal.

We will say that a space Y is strongly-Dowker if it is normal, while $Y \times [0,1]$ is not weakly normal. Any stronger topology on a subspace of R^{ω} is weakly normal (the identity map uniformly separates all pairs of disjoint closed sets). Therefore the Dowker spaces constructed by refining the Euclidean topology on a set of reals are not strongly-Dowker. Likewise it is easy to see that Dowker spaces with the property that any two uncountable closed subsets intersect are not strongly-Dowker. Therefore, the deCaux type Dowker spaces are not strongly-Dowker. See Rudin's survey article [R2] or for a more recent survey of Dowker spaces see [SW]. Recently Z. Balogh has constructed another ZFC Dowker space [B]. We don't know whether this space is strongly-Dowker.

Before we prove Theorem 1.1 need some notation. For any space Y, any set $A \subseteq Y \times [0,1]$ and any $r \in [0,1]$ let

$$A_r = \{ y \in Y : (y, r) \in A \}$$

For $i \in N$ let π_i denote the projection map $\pi_i : X \to \omega_i + 1$. For any open set $U \subseteq X$, $t_U \in \prod_{i \in N} \omega_i + 1$ is defined by

$$\forall i \in N, t_U(i) = \sup\{x(i) : x \in U\}.$$

For functions $f, g \in \prod_{i \in N} \omega_i + 1$, f < g means that f(i) < g(i)for each $i \in N$ and $f \leq g$ means that $f(i) \leq g(i)$ for each $i \in N$. The half open interval (f,g] denotes the set $\{h \in X : f < h \leq g\}$, a basic open subset of X. **Lemma 4.** Let X be Rudin's Dowker space. For any pair of disjoint closed sets A and $B \subseteq X \times [0,1]$ there is a disjoint clopen cover \mathcal{U} of X such that

- (1) $|\mathcal{U}| \leq 2^{\omega}$.
- (2) For each $U \in \mathcal{U}$ and each $r \in [0,1]$ either $U \cap A_r = \emptyset$ or $U \cap B_r = \emptyset$.

Proof: The proof is similar to Rudin's proof that X is collectionwise normal. For each $\alpha < \omega_1$ we define a pairwise disjoint clopen cover T_{α} of X such that

- (a) $|T_{\alpha}| \leq 2^{\omega}$.
- (b) For each $\beta < \alpha < \omega_1$ and each $V \in T_{\alpha}$, there is a $U \in T_{\beta}$ such that
 - (1) $V \subseteq U$.
 - (2) If there is an $r \in [0, 1]$ such that both $V \cap A_r \neq \emptyset$ and $V \cap B_r \neq \emptyset$ then $t_U \neq t_V$.
 - (3) If for each $r \in [0, 1]$ either $U \cap A_r = \emptyset$ or $U \cap B_r = \emptyset$ then U = V.

The T_{α} are defined by induction on $\alpha < \omega_1$. Let $T_0 = \{X\}$ and suppose that for each $\beta < \alpha$, T_{β} has been defined.

Case 1: α is a limit.

For each $x \in X$ and each $\beta < \alpha$ let $U_x(\beta)$ be the unique element of T_β containing x. For each $x \in X$ let $U_x = \bigcap_{\beta < \alpha} U_x(\beta)$. Since X is a P-space, if we let

$$T_{\alpha} = \{U_x : x \in X\}$$

then T_{α} is a pairwise disjoint clopen cover of X. It is easy to verify that the inductive hypotheses (a) and (b) are preserved (see [R]).

Case 2: $\alpha = \beta + 1$.

For each $U \in T_{\beta}$ we define T_U , a disjoint clopen cover of Uof size 2^{ω} such that for each $V \in T_U$, U and V satisfy (1)– (3) of inductive hypothesis (b). Having done this we will let $T_{\alpha} = \bigcup \{T_U : U \in T_{\beta}\}$. If for each $r \in [0, 1]$ either $U \cap A_r = \emptyset$ or $U \cap B_r = \emptyset$, then we must let $T_U = \{U\}$. So suppose that U intersects both A_r and B_r for some $r \in [0, 1]$ and consider t_U . As in [R1] our proof depends on the cofinalities of the range values of t_U . If there is an $i \in N$ such that $cof(t_U(i)) = \omega$, then we fix such an i and fix an increasing sequence of ordinals $(\alpha_n)_{n \in \omega}$ cofinal in $t_U(i)$. Let

$$T_U = \{U \cap (\pi_i^{-1}((\alpha_n, \alpha_{n+1}])) : n \in \omega\}$$

Since $t_V(i) < t_U(i)$ for each $V \in T_U$, the family T_U is as required.

Therefore we may assume that $\operatorname{cof}(t_U(i)) > \omega$ for each $i \in N$. One may take care of this case as in Rudin's proof of Lemma 5 in [R1]. However, the following elementary submodel proof distills the essential closing off argument in that proof. The survey [D] is a good reference for the reader unfamiliar with elementary submodel techniques. Fix θ a regular cardinal large enough so that any relevant properties are absolute for $V, H(\theta)$ ($\theta = 2^{2^{\aleph \omega}}$ suffices). For each $n \in N$ fix an elementary submodel $\mathcal{M}_n \prec H(\theta)$ of size ω_n containing X, A, B, U and anything else relevant. We also require that \mathcal{M}_n is ω -covering, i.e., for each countable subset $D \subseteq \mathcal{M}_n$ there is a countable $E \in \mathcal{M}_n$ such that $D \subseteq E$. Define a function h_n on N by

$$h_n(i) = \sup(t_U(i) \cap \mathcal{M}_n).$$

Notice that for each $i \in N$,

$$\omega < \operatorname{cof}(h_n(i)) \le \omega_n.$$

The first inequality holds since \mathcal{M}_n is ω -covering, and the second is true since ω_n is both an element and a subset of \mathcal{M}_n . Therefore $h_n \in X$. Also, for each $i \in N$ if $\operatorname{cof}(t_U(i)) \leq \omega_n$ then $h_n(i) = t_U(i)$. For each $r \in [0,1]$, h_n is not in both A_r and B_r . Therefore there is a finite open cover \mathcal{W} of [0,1] and for each $W \in \mathcal{W}$ a function $g_W < h_n$ such that for each $W \in \mathcal{W}$ either $A \cap ((g_W, h_n] \times W) = \emptyset$ or $B \cap ((g_W, h_n] \times W) = \emptyset$. Note that the g_W 's may be chosen so that $g_W(i) \in \mathcal{M}_n$ for each $i \in N$. Now let g_n be defined by $g_n(i) = \max\{g_W(i) : W \in \mathcal{W}\}$. Then $g_n < h_n$ and for each $r \in [0, 1]$ either $(g_n, h_n] \cap A_r = \emptyset$ or $(g_n, h_n] \cap B_r = \emptyset$. We now claim that there is a function g'_n satisfying the previous statement which is an element of \mathcal{M}_n . To see this, use ω -covering to fix a countable set $D \in \mathcal{M}_n$ containing g_n and let g'_n be defined by $g'_n(i) = \sup\{\alpha < t_U(i) : (i, \alpha) \in D\}$ for each $i \in N$. Then $g'_n \in \mathcal{M}_n$ and since each $h_n(i)$ has uncountable cofinality $g_n(i) \leq g'_n(i) < h_n(i)$ for each $i \in N$. We need one more bit of notation: for each $Y \subseteq X$ and each $n \in N$ let $(Y)^n = \{f \in Y : \forall i \in N \operatorname{cof}(f(i)) \leq \omega_n\}$. Notice that $h_n(i) = t_U(i)$ whenever $\operatorname{cof}(t_U(i)) \leq \omega_n$ and that $[h_n(i), t_U(i)) \cap \mathcal{M}_n = \emptyset$ whenever $\operatorname{cof}(t_U(i)) > \omega_n$. Therefore $\mathcal{M}_n \cap \{f \in (X)^n : g'_n < f \leq t_U\} = \mathcal{M}_n \cap \{f \in (X)^n : g'_n < f \leq t_M\}$ and

$$\mathcal{M}_n \models \forall r \in [0,1] \text{ either } (g'_n, t_U] \cap (A_r)^n = \emptyset \text{ or } (g'_n, t_U] \cap (B_r)^n = \emptyset.$$

By elementarity this statement is true. Therefore, if we let $g = sup(g'_n)_{n \in \mathbb{N}}$, then $\forall r \in [0,1]$ either $(g, t_U] \cap A_r = \emptyset$ or $(g, t_U] \cap B_r = \emptyset$. Now we are ready to define T_U . For each $S \subseteq N$ let

$$U_S = \{ x \in U : x(i) \le g(i) \iff i \in S \}.$$

Then $T_U = \{U_S : S \subseteq N\}$ is a disjoint clopen cover of U. Clearly $t_U \neq t_{U_S}$ for each nonempty $S \subseteq N$ and $U_{\emptyset} = (g, t_U] \cap U$. U. Furthermore for each $r \in [0,1]$ either $U_{\emptyset} \cap A_r = \emptyset$ or $U_{\emptyset} \cap B_r = \emptyset$. Therefore T_U is as required.

We now define the clopen cover \mathcal{U} from the sequence of covers $(T_{\alpha})_{\alpha < \omega_1}$. For $x \in X$ and $\alpha < \omega_1$ fix $U_{\alpha}^x \in T_{\alpha}$ such that $x \in U_{\alpha}^x$. If $\beta < \alpha$ then $t_{U_{\alpha}^x} \leq t_{U_{\beta}^x}$. If in addition U_{α}^x meets both A_r and B_r for some $r \in [0,1]$, then there is an $i \in N$ such that $t_{U_{\alpha}^x}(i) < t_{U_{\beta}^x}(i)$. By well foundedness, for each $x \in X$ there is an $\alpha_x < \omega_1$ such that $U_{\alpha_x}^x \cap A_r \neq \emptyset$, then $U_{\alpha_x}^x \cap B_r = \emptyset$ whenever $r \in [0,1]$. Therefore $U_{\alpha}^x = U_{\alpha_x}^x$ for each $\alpha \geq \alpha_x$. Letting $\mathcal{U} = \{U_{\alpha_x}^x : x \in X\}$ completes the proof of Lemma 4. \Box

Proof of Theorem 1: Fix A and B disjoint closed subsets of

 $X \times [0,1]$. Fix \mathcal{U} given by Lemma 4. Since $|\mathcal{U}| \leq 2^{\omega}$, there is a countable point separating family of functions for \mathcal{U} . I.e. there is a family $\{g_n : n \in N\}$ such that

- (c) for each $n \in N$, $g_n : \mathcal{U} \to 2$, and
- (d) for each $U \neq V$ from \mathcal{U} there is an $n \in N$, $g_n(U) \neq g_n(V)$.

For example, if for each $s \in 2^{<\omega} f_s : 2^{\omega} \to 2$ is defined by $f_s(x) = 1$ iff $\forall i < |s|, x(i) = s(i)$, then $\{f_s : s \in 2^{<\omega}\}$ is a countable point separating family for 2^{ω} .

Note that each g_n defines a partition of X into two clopen sets $\bigcup g_n^{-1}(0)$ and $\bigcup g_n^{-1}(1)$. From the family $\{g_n : n \in N\}$ we define for each $n \in \omega$ functions $f_n : X \times [0,1] \to [0,1]$.

- n = 0: For each $x \in X$ and $r \in [0,1]$ let $f_0((x,r)) = r$.
- n > 0: For each $x \in X$ and $r \in [0,1]$ let $f_n((x,r)) = g_n(x)$.
- Clearly for $n \in \omega$ each f_n is continuous. Now define $F: X \times [0,1] \to [0,1] \times 2^N$ by $F = \prod_{n \in \omega} f_n$. Then F is continuous.

The next claim completes the proof of Theorem 1.

Claim 5. $F(A) \cap F(B) = \emptyset$.

Proof: Fix $(x,r) \in A$ and $(y,s) \in B$.

Case 1: $r \neq s$.

Then $f_0((x,r)) = r \neq s = f_0((y,s))$, therefore $F((x,r)) \neq F((y,s))$.

Case 2: r = s.

Let $U, V \in \mathcal{U}$ such that $x \in U$ and $y \in V$. Since $x \in A_r$ and $y \in B_r$, Lemma 4(2) implies that $U \neq V$. Therefore by (d) there is an n > 0 such that $g_n(U) \neq g_n(V)$. This implies that $f_n((x,r)) \neq f_n((y,r))$ and therefore $F((x,r)) \neq F((y,r))$. \Box

A similar proof yields the following lemma.

Lemma 6. Suppose that Y is weakly normal and suppose that for any two disjoint closed subsets A and B of $Y \times [0,1]$ there is a point finite open cover \mathcal{U} of Y such that

(1) $|\mathcal{U}| \leq 2^{\omega}$, and

(2) for each $U \in \mathcal{U}$ and each $r \in [0,1]$, either $U \cap A_r = \emptyset$ or $U \cap B_r = \emptyset$.

Then $Y \times [0,1]$ is weakly normal.

Proof: Since $|\mathcal{U}| \leq 2^{\omega}$ there is a countable finitely separating family of functions for \mathcal{U} . I.e., there is a family $\{g_n : n \in N\}$ such that

- (e) for each $n \in N$, $g_n : \mathcal{U} \to 2$, and
- (f) for each pair of disjoint finite subsets $F, G \subseteq \mathcal{U}$ there is an $n \in N$ such that either $g_n(F) = 0$ and $g_n(G) = 1$ or $g_n(F) = 1$ and $g_n(G) = 0$.

For each n let $F_n = X \setminus \bigcup g_n^{-1}(0)$ and let $G_n = X \setminus \bigcup g_n^{-1}(1)$. Then F_n and G_n are disjoint possibly empty closed subsets of X. As \mathcal{U} is point finite and $\{g_n : n \in N\}$ is finitely separating, (2) implies that for any $r \in [0, 1]$ and any pair of points $x \in A_r$ and $y \in B_r$ there is an $n \in N$ such that $x \in G_n$ and $y \in F_n$. By weak normality, for each n there is a continuous function $f_n : Y \to [0, 1]$ such that $f_n(G_n) \cap f_n(F_n) = \emptyset$. As in the proof of Theorem 1 this implies that $Y \times [0, 1]$ is weakly normal. \Box

One proof that $X \times [0, 1]$ is normal assuming X is normal and countably metacompact entails defining a countable open cover of X that satisfies (2) of Lemma 6 (this involves no assumptions on X-see [E]). Therefore we have the proven the following.

Theorem 7. If X is weakly normal and countably metacompact, then $X \times [0, 1]$ is weakly normal.

References

- [A] A.V. Arhangel'skii, Divisibility and cleavability of spaces, Recent Developments of General Topology and its Applications, Mathematical Research 67 Akademie Verlag (1992), 13-26.
- [B] Z. Balogh, A small Dowker space in ZFC, Proc. Amer. Math. Soc., 124 (1996), 3155-3160.
- [D] A. Dow, An introduction to applications of elementary submodels in topology, Top. Proc., 13 (1988), 17-72.
- [E] R. Engelking, General Topology, Heldermann Verlag, Berlin, (1989).
- [R1] M.E. Rudin, A normal space X for which $X \times [0, 1]$ is not normal, Fund. Math., 73 (1971), 179-186.

- [R2] M.E. Rudin, Dowker Spaces. In The Handbook of Set Theoretic Topology, K.Kunen and J. Vaughan, eds., North-Holland. Amsterdam, the Netherlands (1984) 761-780.
- [SW] P.J. Szeptycki and W.A.R. Weiss, *Dowker Spaces*. In The Work of Mary Ellen Rudin, Ed. F.D. Tall, The New York Academy of Sciences, (1993), 119-130.

Ohio University Athens, OH 45701 *e-mail:* szeptyck@bing.math.ohiou.edu