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Abstract 

We obtain results connected with the recent studies 
of Ciesielski and Jasinski [CJ]. An ideal I on a set X 
is called i-meager if the i-meager sets are exactly the 
sets in I. Using a modified method of the classical 
Sierpinski duality theorem [S], we show that (under 
some set-theoretical assumptions) sever'al ideals on X 
with IXI == c are i-meager where i is a topology on 
X homeomorphic to the natural topology on lR, or to 
the density topology on JR. We also prove that, if I is 
a ~~-supported ccc a-ideal containing all singletons in 
a Polish space X, then there exists a Polish topology 
i on X which makes I meager and has the same Borel 
sets as the original topology. That improves the earlier 
result of the second author [R]. 

1 Introduction 

We use the standard set-theoretical notation (see [K]). By c 
we denote the cardinality of the continuum. For an ideal I of 
subsets of a fixed nonempty set X, we say that a topology i on 
X makes I meager (nowhere dense) if I is exactly the family 
of all i-meager (i-nowhere dense) sets. In [CJ] the authors 
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considered the question how to find the "best" possible topol­
ogy T with the above properties when I is a' fixed given ideal. 
The answers are obtained in several general and more partic­
ular cases. In the present paper we show some new results of 
that type. We only study the situation when IXI == c and I 
contains all singletons. Of course, I is assumed proper, i.e. I 
is different from P(X) (the power set of X). 

Recall some observations and results of Ciesielski and 
Jasinski [CJ]: 

(1) For each a-ideal I on X, the family T == {X \ A : A E 
I} U {0} is a topology making I meager and powhere dense; 
then T is TI but not T2 . See [CJ, Facts 1.1 and 1.6]. It is a 
simple exercise. 

(2) Under CH, for each a-ideal I on a set X of cardinality 
c, there exists a Hausdorff topology T on X making I meager 
[CJ, Th.3.11]. The proof is based on the existence of a Luzin 
space (under CH). 

(3) M A+-,CH implies that there is no uncountable Haus­
dorff space X whose topology makes the ideal of all countable 
sets in X meager [CJ, Fact 3.7]. It is due to Kunen [Kl]. 

(4) Under CH, for each a-ideal I on IR having cofinality 
WI, there exists a zero-dimensional Hausdorff topology (thus 
T3 .S) on IR. making I meager and nowhere dense [CJ, Corollary 
4.2]. This follows from a deep result of Ciesielski and Jasinski 
[CJ, Th.3.12] proved by the technique of forcing. 

2	 Application of the Sierpinski dual­
ity theorem 

In this section, we fix a set X with IXI == c. For an ideal I on 
X, we define 

add(I) min{IFI F ~ I & UF (j. I}, 



3 Meager Ideals 

cof(I) = min{IFI : F ~ I & (VA E I) (3B E F) (A ~ B)}. 

(See e.g. [F] or [V].) We say that a family F ~ I forms a 
base of I if each A E I is contained in aBE :F such that 
A ~ B. So, cof (I) is the minimal cardinality of a base of I. 
We say that two ideals I and J on X are isomorphic if there 
is a bijection f from X onto X such that EEl iff f[E] E J, 
for each E ~ X. We shall say that an ideal I on X admits a 
c- towe'r if there is a family F = {Ba : Q < c} ~ I (called a 
c-tower for I) such that: 

(i) UF = X, 

(ii) Bry ~ Ba for any, < Q < C, 

(iii) IBol = IBa+1 \ Bal = c for each Q, 0 < Q < C, 

(iv) Ba = Ury<a Bry for each limit ordinal Q, 0 < Q < c, 

(v) F is a base of I. 

Note that, if an ideal I admits a c-tower, then it forms a (J'­

ideal. Our notion of c-tower is different from the usual notion 
of a tower used in combinatorics on w (cf. [V]). 

The origins of ideas presented in Propositions 2.1 and 2.2 
(given below) come from the classical theorem of Sierpinski 
[S] about duality between small sets in the sense of measure 
and category, when CHis assumed. (See also [0] where the 
Sierpinski-Erdos theorem is shown.) Some years ago, the first 
author learnt from L. Bukovsky (Kosice) about assumptions 
weaker than CHin theorems of that type. Some modifica­
tions and extensions of the Sierpinski-Erdos duality theorem 
can be found in [BJ], [CKW], [M], [B]. Our version contained 
in Proposition 2.2 uses the notion of c-tower. For recent appli­
cations of c-towers, see [BR]. 

Proposition 2.1 If I is an ideal on X such that: 
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(a) UI = X, 

(b) add(I) = cof(I) = c, 

(c) (VA E I)(3D E I)(D n A = 0& IDI = c), 

then I admits a c-tower. If c is regular, the converse is also 
true. 

Proof: Since (by (b)) cof(I) = c, we can pick a base {A a : 

a < c} of I. We define sets Ba , a < c, as follows. Let 
Bo = AD U Do where Do is the respective set D choosen in (c) if 
A = AD. Assume that 0 < a < c and that the sets B~, I < Q', 

are defined. If a is a limit ordinal, we put Ba = U~<a B~. 

Otherwise, let B a = B a - 1 U Aa - 1 U Aa U D a where D a is the 
respective set D chosen in (c) if A = Ba - 1 U Aa -- 1 U Aa . In 
any case, B a E I since add(I) = c. It is easy to check that 
{Ba : a < c} forms a c-tower for I. 

To show the converse, observe that (a) follows from (i), 
and (c) follows from (iii). Also, add(I) :::; cof(I) :::; c is clear. 
From (ii) and the regularity of c it is not hard to infer that 
add(I) = c. 0 

Remark 2.1 Assume that X is an uncountable Polish space 
and I is a a-ideal on X such that I has a base consisting of 
coanalytic sets, and each perfect set in X contains a perfect 
set from I. Then I fulfils (c) from Proposition 2.1. Indeed, 

if A E I, there is a coanalytic set B ~ I in a base of I such 
that A ~ B. Then X \ B is an uncountable analytic set, and 
thus, by the Souslin theorem [I(u, §39 IJ, it contains a perfect 
set P. So, it suffices to pick a perfect set D ~ P belonging to 
I. Since WI ::; add(I) ::; cof(I) ::; c therefore condition (b) of 
Proposition 2.1 holds, if one assumes CH. 

Proposition 2.2 If two ideals I and J on X admit c-towers, 
then they are isomorphic. 
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Proof: Let F(1) == {B;; a < c} and F(J) == {B~; a < c} 
be c-towers for 1 and J. Fix bijections f-l : Bg ~ Bg and 
fa : (B~+1 \ B~) ~ (B~+1 \ B~) for each a < c. Then f == 
f-l U Ua<c fa shows that 1 and J are isomorphic. 0 

Let II( and IL denote the ideals of meager and of Lebesgue 
null sets in JR., respectively. For information about the density 
topology we refer the reader to [CLO]. 

Theorem 2.1 Let 1 be an ideal on X which admits a c-tower. 
(I) If add(OC) == cof(OC) = c, there exists a topology on 

X, homeomorphic to the natural topology on lR, and making 1 
meager. 

(II) If add(IL) == cof(IL) == c, there exists a topology on X 
homeomorphic to the density topology on JR (thus T3 .S), and 
making I meager and nowhere dense. 

Proof: We may assume that X = JR. Note that II( and IL admit 
c-towers, provided that add(IK) == cof(II() == c and add(IL) = 
cof(IL) = c, since condition (a) in Proposition 2.1 is evident, 
and (c) follows from Remark 2.1. Thus, by Proposition 2.2, 
there are bijections f : lR ~ JR and 9 : JR ~ JR witnessing 
that the ideals in the pairs IK, 1 and IL, 1 are isomorphic. Let 
Tn and Td denote the natural and the density top,ologies on JR. 
Note that Td makes IL meager and nowhere dense, and Td is T3.S 

(see [CLO, Th.1.2.3]). Now, it is clear that {f[U]: U E Tn} 

and {g[U]: U E Td} are topologies good for (I) and (II), 
respectively (the functions f and 9 form the corresponding 
homeomorphisms). 0 

Remark 2.2 Both assumptions add(II() = cof(II() == c and 
add(IL) = cof(IL) = c are somewhat weaker than CH or M A 
(see [F] and [BJ]). Thus, comparing Theorem 2.1 (II) with the 
fact (4) quoted in Section 1, we see that our set-theoretical as­
sumptions are different and our topology T is not zero­
dimensional (since the density topology is not zero-dimensional). 
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Note that it is impossible to prove in ZFC the existence of an 
ideal I on X with IXI == c, fulfilling UI == X and add(I) == 
cof(I) == c. Indeed, it is enough to consider a model of ZFC 
in 'lohich c is singular. Since add(I) is always regular (see e.g. 
[BJ}) , in that model we have add(I) < c. 

If C H holds, we derive from Remark 2.1 a simple applica­
tion of Theorem 2.1. 

Corollary 2.1 Assume CH. Let I be a a-ideal on an u'n­
countable Polish space X, containing all singletons, possessing 
a base of coanalytic sets, and such that each perfect subset of X 
contains a perfect set in I. Then there are topologies 71 qnd 72 

on X homeomorphic (respectively) to the natural topology onIR 
and to the density topology on IR, and making I (respectively) 
meager, and meager nowhere dense. 

Example 2.1 Let I be the a-ideal of all a-porous sets in IR. 
Recall (cf. [Z]) that a subset of IR is called a-porous if it is a 
countable union of porous sets. A set E ~ IR is called porous if 
limsuPr~o+C,(E,x,r)/r) > 0 for each x E E where ,(E,x,r) 
is the length of the longest interval (a, b) ~ (x - r, x +r) \ E (or, 
1'(E, x, r) == 0 if there is no such interval). Note that I has a 
base consisting of Borel sets [FH]. It is easy to check that each 
perfect subset of IR contains a perfect porous set. (See also 
[BW] where a stronger result is shown.) Thus, if C H holds, I 
fulfils the assertion of Corollary 2.1. Observe that here CH is 
really needed to get add(I) == cof(I) since Brendle [Br] proved 
(in ZFC) that add(I) == WI and cof(I) == c. 

An example of a a-ideal I where an application of Theorem 
2.1 deos not need CH will be given at the end of Section 3. 

3 ~g-supported ccc o--ideals 

In this section we assume that X is an uncountable Polish space 
(thus IXI == c). For the basic facts and notation concerning 
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descriptive set theory we refer the reader to [Mo] or [Ku]. An 
ideal I on X is called ~g-supported if I has a base consisting of 
Fa sets (i.e. of sets from the class ~g, according to the notation 
from [Mo]). In [KS], the authors obtained a deep theorem 
classifying ~~-supported a-ideals containing all singletons on 
X. Here we will work only with ~~-supported ccc a-ideals. 
Recall that I fulfils the countable chain condition (or is a ccc 
ideal) if each disjoint family of Borel sets in X that are not in I 
is countable. For a nonempty family F ~ P(X) let MGR(F) 
consist of all sets E ~ ~ such that EnF is meager in F for each 
F E F. The following proposition can be derived immediately 
from the above-mentioned theorem of Kechris and Solecki [KS, 
Th.2]. 

Proposition 3.1 A a-ideal I containing all singletons on X 
forms a ~~-supported ccc a-ideal if and only if I == MGR(F) 
for a countable family F == {F,,: ,,< Q}, Q < WI, of 
nonempty closed sets in X such that F" ~ F{3 whenever (3 < 
, < Q, and F,,+l is nowhere dense in F" for, + 1 < Q. 

Corollary 3.1 If I is a ccc ~g-supported a-ideal containing all 
singletons in X, then I == MGR(F*) where F* == {F;+I : ,< 
Q}, a < c, is a countable family of dense-in-itself uncountable 
sets of type Fa and Gs, pairwise disjoint, contained in X and 
such that X \ UF* is of type Fu and Gs. 

Proof: We may assume that I == MGR(F) where F == {F" : 
, < Q} satisfies all requirements given in Proposition 3.1. We 
will modify the family F as follows. Let additionally Fa == 0. 
Define Do == X; D,,+I == F" if , .::; Q, and D).. == n,,<>.. F" 
if A :s is a limit ordinal. Note that D" ~ D-{3 wheneverQ 

(3 < , :s a + 1, and all sets D" are closed (which follows from 
the properties of the sets F,,). Put F; == D" \ D,,+I for all 
, :s Then the sets F; are of type Fa and G8, pairwiseQ. 

disjoint, and U,,~a F; == X. Let F* == {F;+I : ,< a}. Fix 
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, < a. Since Fry =I 0 and Fry+l is nowhere dense in Fry, we 
have F;+l == Dry+l \ Dry+2 == Fry \ Fry+l =I 0. Next, observe 
that Fry is perfect. Indeed, if x is an isolated point of Fry, then 
{x} ~ I since {x} is nonmeager in Fry by the Baire category 
theorem. It yields a contradiction since we have assumed that 
I contains all singletons. As Fry is perfect, Fry \ Fry+l is dense 
in itself of size c. Further, note that X \ UF* == U{F;: I ~ 

a, , is a limit ordinal} is of type Fq (as a countabl~ union of 
Fq sets) and of type Gs (as the complement of the set UF* of 
type Fq ). Since F;+l == Fry \ Fry+l and Fry+l is nowhere dense in 
Fry (for each, < a), we have An Fry is meager in Fry iff AnF;+l 
is meager in F;+l' for any A ~ X and I < a. Conseq\lently, 
MGR(F*) == MGR(F) == I. 0 

Remark 3.1 The converse of the implication given in Corol­

lary 3.1 is also true. Indeed, let I == MGR(F*). Since F* U 
{X \ F*} is a countable partition of X consisting of Fq sets; 
and each meager set is countained in an Fq meager set, there­
fore I forms a ~g- supported a-ideal (note that X \ UF* E I). 
Also I is a ccc ideal because F* is a countable family of Gs sets 
(thus Polish spaces) and the ideal of meager sets in a Polish 
space zs ccc. 

Theorem 3.1 For each ~~ -supported ccc a-ideal I contai'ni'ng 
all singletons in an uncountable Polish space X, there exists a 
Polish topology T on X making I meager and having the same 
Borel sets as the original topology on X. 

Proof: We may assume that I == MGR(F*) where F* == 
{F;+l : I < a}, a < c, satisfies all conditions given in Corol­
lary 3.1. Let E == X \ UF*. Since Ft is an uncountable Borel 
set (by Corollary 3.1), we can pick a closed set D ~ Ft home­
omorphic to the Cantor set and nowhere dense in Ft (see [Ku, 
§37, Th.3]). Consider a Borel isomorphism 9 from E U D onto 
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D [Ku, §37, IIJ. Then define f : E U Ft ----t Ft by 

f(x)== {g(x), ifxE~UD 
x, otherwIse. 

It is clear that I is a bijection and I[E U D] == D. Additionally 
I forms a Borel isomorphism which maps E U Ft onto F1*. 

Let p denote the original (complete and separable) metric 
on X. Since each set F;+l' , < a, is of type Gs in (X,p), 
we can change the original metric on F;+l to an equivalent 
metric P-y+l making F;+l a complete space (by the Alexandrov 
theorem [Ku, §33, VI]). Plainly, we may assume that P-y+l :::; 1 
for each, < a. Finally, we define a new metric p* on X by 

pl(/(x),/(Y)), if x,y E E U Ft; 
p*(x,y)== P-y+l(X,y), if x,yEF;+l' O<,<a;

{ 1 otherwise. 

Then (X, p*) is a direct sum [E, Th.4.2.1] of sets E U Ft and 
F;+l (for 0 < , < a) which with the respective metrics form 
complete and separable spaces. Thus (X, p*) is complete and 
separable, and the topology T generated by p* is Polish. 

If A ~ X then A == (A n E) U U-y<a A-Y+l where A-Y+l == 
A n F;+l for, < a. From the choice of p* it follows that A-Y+l 
(for, < a) is meager in (X, p*) iff A-y+l n F;+l is meager in 
F;+l with the metric p. This and the choice of D show that 
I == MGR(:F*) equals the family of all meager sets in (X, p*). 
Since the partition {EUFt}U{F;+l : 0 < , < a} of X consists 
of sets that are Borel in both spaces (X,p) and (X,p*), and 
f is a Borel isomorphism, one can easily check that the above 
two spaces have the same Borel sets. 0 

Remark 3.2 (aJ Theorem 3.1 improves the former result of 
the second author [R] where the completeness of a new topology 
on X is not obtained, and Borel sets in both topologies were not 
compared. The present proof is different. 
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(b) Facts (2) and (3) quoted in Section 1 show that the exis­
tence of a Hausdorff topology making the (J-ideal ~~-supportedJ 

not ccc) of all countable sets on lR meager is independent of 
ZFC. 

Example 3.1 Let I denote the (J-ideal of all sets E ~ IR 
that can be included in Fq Lebesgue null sets. Then I is ~~­
supported but it does not fulfil ccc. It was shown in [BS] 
that add(I) == add(lK) and cof(I) == cof(OC). Thus, by The­
orem 2.1(1) and Remark 2.1, condition add(lK) == cof(lK) == c 
(weaker than CH) implies that there is a topology on IR, home­
omorphic to the natural one, making I meager. From Cichon's 
diagram (see [F],[BJ] or [CKW]) it follows that add(lL) == 
cof(lL) implies add(lK) == cof(lK) (thus also add(I) == cof(I)). 
Hence, if add(lL) == cof(lL) == c holds (which is weaker than 
CH), then, by Theorem 2.1(11) and Remark 2.1, there is a 
topology on IR, homeomorphic to the density topology, making 
I meager and nowhere dense. 

Problem Let I be as in Example 3.1. Does there exist 
(within ZFC) a Hausdorff (T3 , T3.S, ••• , metric) topology on IR 
making I meager? 
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