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Abstract 
The remainder of a compactification aX of a space 

X is the space aX - X. The residue of X is the set 
of all points in X which do not possess compact neigh­
borhoods. It is shown that the following conditions 
are equivalent: X is rimcompact; X is the residue of 
a space having a strongly O-dimensional remainder; X 
is a remainder of a strongly O-dimensional space. Sim­
ilar characterizations are given for almost rimcompact 
spaces. 

The rimcompact residue RCR(X) of X is the set of 
points which do not have a base of neighborhoods with 
compact boundaries. Conditions on RCR(X) are pro­
vided which preclude any remainder of X from being 
O-dimensional. 

Introduction 

The remainder of a compactification aX of a space X is the 
space aX - X. A major problem in the theory of compact­
ifications is to determine when, for each X in a certain class 
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of spaces, there is a member of another class of spaces which 
can serve as a remainder of X. (See [1], [2], [6], [8], [9], and 
[13], for example.) Herein all spaces are completely regular 
and Hausdorff and all compactifications are Hausdorff. Re­
call that a space X is O-dimensional if it has a base of clopen 
sets and X is strongly O-dimensional whenever its Stone-Cech 
compactification (3X is totally disconnected, or equivalently, 
when disjoint zero sets in X can be separated by a clopen set. 
A space X is a O-space if it possesses a compactification with 
O-dimensional remainder. Any O-space has a compactification 
</JX which is maximal with respect to the property that the 
remainder is O-dimensional (cf. [3], for example). 

An open set 0 in a space X is called 1r- open if its boundary 
FrxO is compact and a space is rimcompact if it has a base of 
7r-open sets. Every rimcompact space is a O-space, but not con­
versely. For rimcompact spaces ¢JX is called the Freudenthal 
compactification of X. 

In this paper we show that the class of rimcompact spaces 
is precisely the class of spaces which can serve as remainders 
of strongly O-dimensional spaces. 

A space X is almost rimcompact if X admits a compact­
ification aX such that each point of aX - X has a base of 
aX-neighborhoods with boundaries in X. Internal characteri­
zations of almost rimcompact spaces and development of their 
properties may be found in [3] and [4]. We show that almost 
rimcompact spaces are exactly the class of spaces which can 
serve as remainders of O-dimensional spaces. 

The residue R(X) of X is the set of points in X which do 
not possess compact neighborhoods. We also prove that X is 
rimcompact if and only if X is the residue of a space having 
a strongly O-dimensional remainder and that X is almost rim­
compact whenever it is the residue of a O-space. It follows that 
if a O-space Y has a nonrimcompact residue, then Y has no 
strongly O-dimensional remainder. 
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Since rimcompact spaces are always O-spaces, it is clear that 
it is the presence of a non-empty set RCR(X) of points of X 
which do not possess a base of 1r-open neighborhoods which 
may cause X to fail to be a O-space. In section 3 we provide 
conditions on RCR(X) which preclude X from being O-space. 
However, it is also shown that when X is a O-space every open 
set in X contains a non-trivial 1r-open set. 

2 The main results 

We begin by listing some definitions, results and notation. Let 
o be an open set in X and aX any compactification of X. The 
extension of 0 to aX is the set ExaO == aX - (Cla(X - 0)) 
which is the largest open subset of aX whose trace on X is O. 
See [4] for properties of ExaO. 

A compactification aX of X is perfect whenever f-I(z) is 
connected, for all z E aX, where f is the natural mapping of 
f3X onto aX. If aX is perfect and 0 is open in X, Theorems 
1 and 2 of [12] show that Clax(FrxO) == Frax(ExaO). Thus, 
for a 1r-open set 0 in X, ExaOn(aX-X) and Exa(X -ClxO)n 
(aX - X) partition aX - X. Additional results concerning 
perfect compactifications are available in [9],[10], and [12]. 

We denote the space of countable ordinals by W, and jJW == 
W*, where W* == W U {WI} and WI is the first uncountable 
ordinal. 

2.1 Theorem For any space X, the following are equzva­
lent: 

(A) X is almost rimcompact. 

(B) X is a remainder of a O-dimensional space. 

(C) X is the residue of some O-space. 
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Proof: (A) implies (B). Suppose X is almost rimcompact. 
For each x E </JX, let Nx be a countable discrete space and 
let Z == </JX U [u{Nxlx E </JX}]. A base for the topology on 
Z consists of the following: points of each Nx are open in 
Z and for y E </JX a base for the open neighborhoods of y 
consists of the sets Oy U [u{Nxlx E Oy} - S], where Oy is 
an open </JX-neighborhood of y and S is any finite subset of 
u{Nxlx E Oy}. It is clear that equipped with this topology Z 
is a compact Hausdorff space and Z - X is dense in Z. We next 
show Z - X is O-dimensional. Obviously, points of Z - </JX are 
clopen in Z. Let y E </JX - X and My be any neighborhood 
of y in Z - X and let My be a Z-neighborhood of y for which 

My n (Z - X) == My. If Uy is a basic open Z-neighborhood of y 

satisfying Uy ~ My, then since X is almost rimcompact, there 
is a cjJX-open neighborhood Oy of y for which Oy ~ Uy n cjJX 
and Fr4>Oy ~ X. 

Set A == Oy, B == </JX - CI4>Oy and C == Fr4>Oy. Thus, 
cjJX == A U B U C, where C is compact and A and B are open 
in </JX. Take A == [AU(U{Nxlx E A})]nUy • Since Uy is a basic 
open Z-neighborhood of y, it follows that A is a basic open Z­
neighbor~ood of y. Thus An (z - X) is open in Z - X and 
satisfies An(Z-X) ~ Uyn(Z-X) ~ Myn(Z-X) ~ My. Also, 
(Z - X) - A = [(B U (u{Nxlx E B})) n(Z - X)J U [u{Nxlx E 
C}] U [u{Nxlx E A} - Uy ]. Thus, (Z - X) - A is also open 
in Z - X so that An (Z - X) is clopen in Z - X, as desired. 
Hence Z - X is O-dimensional and Z is a compatification of 
Z - X having X as its remainder. 

(B) implies (C). Suppose Y is O-dimensional anq aY - Y == 
X, for some compactification aY of Y. Take S == W* X aY ­
{WI} X Y. Evidently S is a O-space and R( S) == X. 

(C) implies (A). Suppose Y is a O-space and R(Y) == X. Let 
!{ ==CI4>Y X. We show that each point z of K - X has a base of 
!{-open neighborhoods having boundaries which lie in X. Let 
M z be any K-neighborhood of z and set T = (</JY -Y)UX. Let 
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Mz be any T-neighborhood of z for which Mz n!{ == Mz . Let 
Nz be a T-neighborhood of z satisfying ClTNz ~ Mz. Since 
</JY - Y is O-dimensional, there is a </JY - Y clopen neighborhood 
Oz of z such that Oz ~ Nz. Now ExTOz ~ Mz and since Oz 
and (( </JY - Y)-Oz are disjoint, the sets EXTOz and EXT( (cjJY ­
Y) - Oz) are disjoint in T and cover </JY - Y. Thus, EXTOz n!{ 
and EXT( (cjJY - Y) - Oz) n!{ are disjoint ~pen sets in !{ which 
cover!( -X. Now [ClK(ExTOzn!{)]n[ExT((</JY -Y)-Oz)] == 
0, so that FrK[ExTOz n !{] ~ X. Clearly ExTOz n !( ~ Mz, 
so X is almost rimcompact and the proof is complete. 

We define X to be a strong O-space (S.O.S.) iff X has a 
strongly O-dimensional remainder. 

2.2 Theorem For any space X J the following are equzva­
lent: 

(A) X is rimcompact. 

(B) X is a remainder of a strongly O-dimensional space. 

(C) X is a residue of a strong O-space. 

Proof: (A) implies (B). Since X is rimcompact, </JX exists. 
Let Z be the space defined in the proof of (A) implies (B) 
of Theorem 2.1 and let Y == Z - X. Now Z is a compact­
ification of Y, and, accordingly, let t be the canonical map­
ping of j3Y into Z which is the identity on Y. Suppose!( 
is a component of f3Y - Y. Then t(!{) c X. If t(p) =1= t(q) 
in t(!{), separate t(p) and t(q) by a 1r-open set Npq ~ X, 
where t(p) E Npq and t(q) fj.ClxNpq . Take A == Ex¢xNpq and 
B == Ex¢x(X-ClxNpq ). Set A == Au [u{Nxlx E A}] and 
B == B U [u{Nxlx E B}] U [u{Nyly E FrxNpq}]. Since cjJX 
is perfect, A and B determine a partition of cjJX - X (cf.[10], 
for example). It follows that C == AnY and D == B n Yare 
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clopen sets which partition Y. But p ECI13C and q ECI13 D, 
where CI13C and CI13D partition f3Y into clopen sets, contra­
dicting the fact that 1< is connected. Hence t(K) is a singleton 
for each component 1< of f3Y - Y. 

Since Y is O-dimensional, so is cPY. Recall that cPY is ob­
tained from f3Y by identifying components of f3Y - Y to points 
(cf. [3], for example). Let 9 be the natural projection of f3Y 
onto cPY. Thus t is single-valued on fibres of 9, so there is a 
continuous mapping 1 of cPY onto Z which is iderltity on Y 
and carries </>Y - Y onto X. We note that 1 is one-one on 
R(Y) == ¢JX - X. 

Next, let S == W* x ¢JY - {WI} x (¢>Y - Y). Then f3S == W* x 
¢JY and f3S is O-dimensional since W* and cPY are, hence S is 
strongly O-dimensional. But 1 induces a continuous mapping 
of CI13s(f3 S - S) onto cPX which is one-one on R( S) == {WI} x 
R(Y) == {WI} X (¢>X - X). Hence, according to Theorem 1.1 
of [11], X is a remainder of the strongly O-dimensional spac,e 
S. 

(B) implies (C). This is similar to (B) implies (C) of The­
orem 2.1. 

(C) implies (A). If X is a residue of a S.O.S., it is then a 
remainder of a strongly O-dimensional space Y also. Thus, let 
aY - Y == X. There is a continuous mapping f of cPY == f3Y 
onto aY which is identity on Y. Let x E X and let (; be 
an open X-neighborhood of x. Choose aY-open U such that 
U n X == U. Now!{ == f-l(x) is compact and 1-1(U) is a 
cPY-open neighborhood of K. Since ¢JY is O-dimensional, !{ 
can be covered by a cPY-clopen set V such that V ~ f-1(U). 
Let V == V n Y. Then V is clopen in Y, so FraExaV ~ X. 
Hence EX a V n X is 7r-open in X. 

Next, we show that EX a Vn X is an X-neighborhood of x 
contained in U. Note that f(V) is compact and V ~ f(V). 
Thus, EXaV ~Cla V ~ f(V) ~ U. Also, I<nCt/>y(Y - V) == 0, 
hence x ~ f(CI¢y(Y - V)) == Claf(Y - V) ==Cla(Y - V). Thus, 
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x E ExaV ~ U and ExaV n X is 1r-open in X so that X is 
rimcompact and the proof is complete. 

It follows from 2.1 that if X is almost rimcompact but not 
rimcompact, then X is the residue of some O-space Y. Thus 
Y is not rimcompact and by 2.2 Y cannot have any strongly 
O-dimensional remainder. Also, 5.3 of [8] affords an example 
of a non-rimcompact S.O.S. 

3 The rimcompact residue of X 

Recall that every rimcompact X is a O-space and that when 
X is metric then the two conditions are equivalent (cf. [9], 
for example). We define the rimcompact residue of a space to 
be the set RCR(X) of points which do not possess a base of 
1r-open sets. While RCR(X) is contained in R(X), we note 
that, unlike R(X), RCR(X) need not be closed. Clearly, it is 
the presence of a non-empty RCR(X) which may cause X to 
fail to be a O-space. In this section we provide conditions on 
RCR(X) which preclude X from being a O-space. IfaX is 
any compactification of X, following [3], for p E aX we set 
G(aX,p) == n{ClaxUIU is 1r-open in X and p E ExaxU}. 
In case aX = f3X we denote G(f3X,p) by Gp • Lemma 2.2 of 
[3] shows that any G(aX, p) is connected and obviously it is 
compact. From the definitions and the proof of 2.5 of [5] the 
following remark is easily established. 

3.1 Remark For p E X and any perfect aX,G(aX,p) == {p} 
if and only if p ~ RCR(X). 

3.2 Theorem For a non-rimcompact X, if RCR(X) is totally 
disconnected and locally compact, then X has no compactijica­
tion with totally disconnected remainder. 

Proof: Suppose X has a compactification with totally discon­
nected remainder. Then there is a compactification aX of X 
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which is maximal with respect to this property, hence is per­
fect (cf. [3] and [12]). Take x E RCR(X). Then G(aX,x) 
is not a singleton. Now H(x) == G(aX, x) n X is a locally 
compact and totally disconnected subset of RCR(X). Thus, 
x has a compact neighborhood Nx in H(x). But H(x) is dense 
in G(aX, x) so that N x is a G(aX, x )-neighborhood of x. Since 
Nx is compact and O-dimensional, this disconnects G(aX~ x) ~ 

a contradiction. 
This completes the proof. 

3.3 Corollary If RCR(X) contains an RCR(X)-isolated point, 
then no remainder of X is totally disconnected. 

Proof: Let p be an isolated point of RCR(X) and F an X­
closed neighborhood of p such that F n RCR(X) == {p}. Now 
RCR(F) == {p} and by 3.2 F cannot have a compactification 
with a totally disconnected remainder, hence neither can X. 

This completes the proof. 

The next result show that when R( X) is totally discon­
nected, then the properties of rimcompactness and almost rim­
compactness are equivalent. From the proof it follows that if 
RCR(X) is non-empty and totally disconnected, X cannot be 
almost rimcompact. 

3.4 Theorem If X is almost rimcompact and R(X) is totally 
disconnected, then X is rimcompact. 

Proof: Suppose RCR(X) =I 0. If p E RCR(X) and X 
is almost rimcompact, then G(<p(X),p) ~ RCR(X). Since 
RCR(X) is totally disconnected and </JX is a perfect compact­
ification, it follows that G( </JX, p) == {p}, in contradiction to 
3.1. 

This completes the proof. 
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Next we show that, in the presence of almost rimcompact­
ness, if each point of X has a base of neighborhoods with locally 
compact boundaries, then X is rimcompact. 

3.5 Theorem Let X be almost rimcompact. Then X is rim­
compact if and only if each point of X has a base of neighbor­
hoods having locally compact boundaries. 

Proof: Only sufficiency requires proof. Let p E X and let 
Np be any X -open neighborhood of p. Choose an X -open 
neighborhood Mpof p for which Mp ~ Npand Frx Mp is locally 
compact. Then D ==Clr/>x Frx Mp - Frx Mp is compact. Since 
X is almost rimcompact D can be covered by a collection of 
¢>X-open sets M1, ... , Mk such that p ~Cl¢>Mi and Fr¢>x Mi ~ 

X, for i == 1, ... , k. Set Qi == ¢>X -Cl¢>Mi, i == 1, ... , k, and 
take 0 == Mpn01n .. .nOk. Clearly, 0 is X-open and 0 ~ Np. 

Let x E FrxO. If x tJ. Oi, for so~e i, then x E Fr¢>xMi. 
If x tJ. Mp, then x E Frx Mp and x tJ. Mi, i == 1, ... , k. Thus 
x E (FrxMp - u{Mili == 1, ... , k}) U {Fr¢>xMili == 1, ... , k}, 
a compact set. Hence FrxO is compact and the proof is com­
plete. 

Not every O-space is rimcompact, but the following result 
shows that some amount of "rimcompactness" is present in 
every O-space. 

3.6 Theorem If X is a O-space) then every non-empty open 

subset of X contains a non-empty 1r-open set. 

Proof: It suffices to consider non-empty X-open sets 0 such 
that 0 ~ R(X). Then Ex¢>Q is open in ¢>X and meets ¢>X - X 
since (¢>X -X)UR(X) is a compactification of ¢>X -x. Choose 
a non-empty ¢>X - X clopen set U ~ (¢>X - X) n Ex¢>O. Let V 
be a ¢>X-open set such that Vn(¢>x -X) == U and V ~ EXfj>O. 
Since U is clopen in ¢>X - X, it follows that Frx(V n X) ~ X 
is compact. This completes the proof. 
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From 2.2 it is clear that if X is a S.O.S, then either X 
contains a point having a compact neighborhood or X is rim­
compact. Also, in view of 3.6, it is natural to ask whether 
some rimcompactness condition at points of X is necessary' 
in order that X be a O-space. It can be shown that either 
X -	 RCR(X) is dense in any O-space X or there is a O-space 
which is nowhere rimcompact. We also note that if a O-space 
X == RCR(X) exists, then X must be almost rimcompact yet 
by the proof of 3.5 it follows that no point of X can have a 
base of open neighborhoods with locally compact boundaries. 

In view of the above we state the open question: Can X == 
RCR(X) be a O-space? 
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