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Abstract

The remainder of a compactification aX of a space
X is the space aX — X. The residue of X is the set
of all points in X which do not possess compact neigh-
borhoods. It is shown that the following conditions
are equivalent: X is rimcompact; X is the residue of
a space having a strongly 0-dimensional remainder; X
is a remainder of a strongly 0-dimensional space. Sim-
ilar characterizations are given for almost rimcompact
spaces.

The rimcompact residue RC R(X ) of X is the set of
points which do not have a base of neighborhoods with
compact boundaries. Conditions on RC R(X) are pro-
vided which preclude any remainder of X from being
0-dimensional.

1 Introduction

The remainder of a compactification aX of a space X is the
space X — X. A major problem in the theory of compact-
ifications is to determine when, for each X in a certain class
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of spaces, there is a member of another class of spaces which
can serve as a remainder of X. (See [1], [2], [6], [8], [9], and
[13], for example.) Herein all spaces are completely regular
and Hausdorff and all compactifications are Hausdorff. Re-
call that a space X is 0-dimensional if it has a base of clopen
sets and X is strongly 0-dimensional whenever its Stone-Cech
compactification SX is totally disconnected, or equivalently,
when disjoint zero sets in X can be separated by a clopen set.
A space X is a 0-space if it possesses a compactification with
0-dimensional remainder. Any 0-space has a compactification
#X which is maximal with respect to the property that the
remainder is 0-dimensional (cf.[3], for example).

An open set O in a space X is called 7-open if its boundary
FrxO is compact and a space is rimcompact if it has a base of
m-open sets. Every rimcompact space is a 0-space, but not con-
versely. For rimcompact spaces ¢X is called the Freudenthal
compactification of X.

In this paper we show that the class of rimcompact spaces
is precisely the class of spaces which can serve as remainders
of strongly 0-dimensional spaces.

A space X is almost rimcompact if X admits a compact-
ification aX such that each point of aX — X has a base of
aX-neighborhoods with boundaries in X. Internal characteri-
zations of almost rimcompact spaces and development of their
properties may be found in [3] and [4]. We show that almost
rimcompact spaces are exactly the class of spaces which can
serve as remainders of 0-dimensional spaces.

The residue R(X) of X is the set of points in X which do
not possess compact neighborhoods. We also prove that X is
rimcompact if and only if X is the residue of a space having
a strongly 0-dimensional remainder and that X is almost rim-
compact whenever it is the residue of a 0-space. It follows that
if a 0-space Y has a nonrimcompact residue, then Y has no
strongly 0-dimensional remainder.
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Since rimcompact spaces are always 0-spaces, it is clear that
it is the presence of a non-empty set RCR(X) of points of X
which do not possess a base of 7m-open neighborhoods which
may cause X to fail to be a 0-space. In section 3 we provide
conditions on RC R(X) which preclude X from being 0-space.
However, it is also shown that when X is a 0-space every open
set in X contains a non-trivial m-open set.

2 The main results

We begin by listing some definitions, results and notation. Let
O be an open set in X and X any compactification of X. The
extension of O to aX is the set Ez,0 = aX — (Cly(X — 0))
which is the largest open subset of X whose trace on X is O.
See [4] for properties of Ez,O.

A compactification aX of X is perfect whenever f~!(z) is
connected, for all z € aX, where f is the natural mapping of
BX onto aX. If aX is perfect and O is open in X, Theorems
1 and 2 of [12] show that Cl,x(FrxO) = Frox(Ez,0). Thus,
for a m-open set O in X, Ez,0N(aX—X) and Ez,(X—-ClxO)N
(aX — X) partition aX — X. Additional results concerning
perfect compactifications are available in [9],{10], and [12].

We denote the space of countable ordinals by W, and gW =
W=*, where W* = W U {w;} and wy is the first uncountable

ordinal.

2.1 Theorem For any space X, the following are equiva-
lent:

(A) X is almost rimcompact.
(B) X is a remainder of a 0-dimensional space.

(C) X is the residue of some 0-space.
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Proof: (A) implies (B). Suppose X is almost rimcompact.
For each z € ¢X, let N, be a countable discrete space and
let Z = ¢X U[U{N;|lz € ¢X}]. A base for the topology on
Z consists of the following: points of each N, are open in
Z and for y € ¢X a base for the open neighborhoods of y
consists of the sets O, U [U{N |z € O,} — S|, where O, is
an open ¢X-neighborhood of y and S is any finite subset of
U{N;|z € O,}. Tt is clear that equipped with this topology Z
is a compact Hausdorff space and Z — X is dense in Z. We next
show Z — X is 0-dimensional. Obviously, points of Z — ¢ X are
clopen in Z. Let y € X — X and M, be any neighborhood
of yin Z — X and let My be a Z-neighborhood of y for which
M,N(Z—X) = M,. If U, is a basic open Z-neighborhood of y
satistfying U, C My, then since X is almost rimcompact, there
is a ¢.X-open neighborhood O, of y for which O, C U, N ¢X
and Fry,0, C X.

Set A =0, B =¢X—- Cly0, and C = Frys0,. Thus,
¢X = AU BUC, where C is compact and A and B are open
in ¢X. Take A = [AU(U{N;|z € A})]NU,. Since U, is a basic
open Z-neighborhood of v, it follows that A is a basic open Z-
neighborhood of y. Thus An (Z —X) is open in Z — X and
satisfiess AN(Z—X) C U,N(Z—-X) C MyN(Z—X) C M,. Also,
(Z—X)—A=[(BU(U{N,|z € B})) N(Z - X)]U[U{N,|z €
CHU [U{N,|z € A} = U,]. Thus, (Z — X) — A is also open
in Z — X so that AN (Z — X) is clopen in Z — X, as desired.
Hence Z — X is 0-dimensional and Z is a compatification of
Z — X having X as its remainder.

(B) implies (C). Suppose Y is 0-dimensional and aY —Y =
X, for some compactification aY of Y. Take S = W* x aY —
{w1} x Y. Evidently S is a 0-space and R(S) = X.

(C) implies (A). Suppose Y is a 0-space and R(Y) = X. Let
K =Clsy X. We show that each point z of K — X has a base of
K-open neighborhoods having boundaries which lie in X. Let
M, be any K-neighborhood of z and set T' = (¢Y —Y)UX. Let
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Mz be any T-neighborhood of z for which Mz NK = M,. Let
N, be a T-neighborhood of z satisfying ClzN, C Mz. Since
#Y —Y is 0-dimensional, there is a Y —Y clopen neighborhood
O, of z such that O, C N,. Now Ez70, C MZ and since O,
and ((¢Y —Y')—O0, are disjoint, the sets Ez70, and Ez7((¢Y —
Y)—0,) are disjoint in T" and cover ¢Y —Y. Thus, EzrO,NK
and Ezr((¢Y —Y)—0,)N K are disjoint open sets in K which
cover K— X. Now [Clg(EzrO,NK)|N[Ezr((¢Y =Y )-0,)] =
0, so that Frg[FzrO, N K] C X. Clearly Ez70,N K C M,,

so X is almost rimcompact and the proof is complete.

We define X to be a strong 0-space (S.0.S.) iff X has a
strongly 0-dimensional remainder.

2.2 Theorem For any space X, the following are equiva-
lent:

(A) X is rimcompact.
(B) X is a remainder of a strongly 0-dimensional space.

(C) X is a residue of a strong 0-space.

Proof: (A) implies (B). Since X is rimcompact, ¢X exists.
Let Z be the space defined in the proof of (A) implies (B)
of Theorem 2.1 and let Y = Z — X. Now Z is a compact-
ification of Y, and, accordingly, let ¢ be the canonical map-
ping of BY into Z which is the identity on Y. Suppose K
is a component of 3Y — Y. Then t(K) C X. If t(p) # t(q)
in t(K), separate t(p) and t(q) by a m-open set N,, C X,
where t(p) € N, and ¢(q) €Clx Np,. Take A = Ezyx N,y and
B = Exz,x(X—CIxN,,). Set A = AU[U{N,|z € A}] and
B = BU[U{N.|z € B}YJU[U{N,|ly € FrxNy}]. Since ¢X
is perfect, A and B determine a partition of ¢X — X (cf.[10],
for example). It follows that C = ANY and D = BNY are
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clopen sets which partition Y. But p €ClgC and ¢ €ClgD,
where ClgC and ClgD partition SY into clopen sets, contra-
dicting the fact that K is connected. Hence ¢(K) is a singleton
for each component K of gY —Y.

Since Y is 0-dimensional, so is ¢Y. Recall that ¢Y is ob-
tained from BY by identifying components of 3Y —Y to points
(cf. [3], for example). Let g be the natural projection of AY
onto ¢Y. Thus t is single-valued on fibres of g, so there is a
continuous mapping f of ¢Y onto Z which is identity on Y
and carries ¢Y — Y onto X. We note that f is one-one on
R(Y)=9¢X - X.

Next, let S = W*x ¢Y —{w1} x(¢Y =Y). Then S = W*x
@Y and 3S is 0-dimensional since W* and ¢Y are, hence S is
strongly 0-dimensional. But f induces a continuous mapping
of Clgs(BS — S) onto ¢.X which is one-one on R(S) = {w;} X
R(Y) = {w1} X (X — X). Hence, according to Theorem 1.1
of [11], X is a remainder of the strongly 0-dimensional space

S.

(B) implies (C). This is similar to (B) implies (C) of The-
orem 2.1.

(C) implies (A). If X is a residue of a S.0.S., it is then a
remainder of a strongly 0-dimensional space Y also. Thus, let
aY — Y = X. There is a continuous mapping f of ¢Y = gY
onto oY which is identity on Y. Let ¢ € X and let U be
an open X-neighborhood of z. Choose aY-open U such that
UNX =U. Now K = f7!(z) is compact and f~}(U) is a
@Y -open neighborhood of K. Since ¢Y is 0-dimensional, K
can be covered by a ¢Y-clopen set V' such that V' C f’l( ).
Let V =V n Y. Then V is clopen in Y, so FraE;caV C X.
Hence E:caV N X is m-open in X.

Next, we show that Exaf/ N X is an X-neighborhood of z
contained in U Note that f(V) is compact and vV C f(V).
Thus, Ez,V CCl,V C f( ) C U. Also, KNClgy (Y = V) = 0,
hence z & f(Clgy (Y =V)) = Clo f(Y = V) =Clo(Y = V). Thus,
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z € Ex,V C U and E:I:af/ N X is m-open in X so that X is
rimcompact and the proof is complete.

It follows from 2.1 that if X is almost rimcompact but not
rimcompact, then X is the residue of some 0-space Y. Thus
Y is not rimcompact and by 2.2 Y cannot have any strongly
0-dimensional remainder. Also, 5.3 of [8] affords an example
of a non-rimcompact S.0.S.

3 The rimcompact residue of X

Recall that every rimcompact X is a 0-space and that when
X is metric then the two conditions are equivalent (cf. [9],
for example). We define the rimcompact residue of a space to
be the set RCR(X) of points which do not possess a base of
m-open sets. While RCR(X) is contained in R(X), we note
that, unlike R(X), RCR(X) need not be closed. Clearly, it is
the presence of a non-empty RC R(X) which may cause X to
fail to be a 0-space. In this section we provide conditions on
RCR(X) which preclude X from being a 0-space. If aX is
any compactification of X, following [3], for p € aX we set
G(aX,p) = N{ClyxU|U is m-open in X and p € Ez,xU}.
In case aX = X we denote G(BX,p) by Gp. Lemma 2.2 of
[3] shows that any G(aX,p) is connected and obviously it is
compact. From the definitions and the proof of 2.5 of [5] the
following remark is easily established.

3.1 Remark For p € X and any perfect o X,G(aX,p) = {p}
if and only if p ¢ RCR(X).

3.2 Theorem For a non-rimcompact X, if RCR(X) is totally
disconnected and locally compact, then X has no compactifica-
tion with totally disconnected remainder.

Proof: Suppose X has a compactification with totally discon-
nected remainder. Then there is a compactification aX of X
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which is maximal with respect to this property, hence is per-
fect (cf. [3] and [12]). Take z € RCR(X). Then G(oX, x)
is not a singleton. Now H(z) = G(aX,z) N X is a locally
compact and totally disconnected subset of RCR(X). Thus,
z has a compact neighborhood N, in H(z). But H(z) is dense
in G(aX, z) so that N, is a G(aX, z)-neighborhood of z. Since
N, is compact and 0-dimensional, this disconnects G(aX, z),
a contradiction.
This completes the proof.

3.3 Corollary If RC R(X) contains an RC R(X)-isolated point,
then no remainder of X is totally disconnected.

Proof: Let p be an isolated point of RCR(X) and F an X-

closed neighborhood of p such that F N RCR(X) = {p}. Now

RCR(F) = {p} and by 3.2 F cannot have a compactification

with a totally disconnected remainder, hence neither can X.
This completes the proof.

The next result show that when R(X) is totally discon-
nected, then the properties of rimcompactness and almost rim-
compactness are equivalent. From the proof it follows that if

RCR(X) is non-empty and totally disconnected, X cannot be
almost rimcompact.

3.4 Theorem If X is almost rimcompact and R(X) is totally
disconnected, then X is rimcompact.

Proof: Suppose RCR(X) # 0. If p € RCR(X) and X
is almost rimcompact, then G(¢(X),p) € RCR(X). Since
RCR(X) is totally disconnected and ¢.X is a perfect compact-
ification, it follows that G(¢X,p) = {p}, in contradiction to
3.1.

This completes the proof.
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Next we show that, in the presence of almost rimcompact-
ness, if each point of X has a base of neighborhoods with locally
compact boundaries, then X is rimcompact.

3.5 Theorem Let X be almost rimcompact. Then X is rim-
compact if and only if each point of X has a base of neighbor-
hoods having locally compact boundaries.

Proof: Only sufficiency requires proof. Let p € X and let
N, be any X-open neighborhood of p. Choose an X-open
neighborhood M, of p for which M,, C N, and Frx M, is locally
compact. Then D =Clyx FrxM, — FrxM, is compact. Since
X is almost rimcompact D can be covered by a collection of
¢ X-open sets My, ..., My such that p gCl,M; and Fryx M; C
X,for:=1,...,k. Set O; = ¢X—-ClyM;, + = 1,...,k, and
take O = M,NO1N...NOk. Clearly, O is X-open and O C N,,.

Let z € FrxO. If « € O;, for some ¢, then z € FryxM,.
If 2 ¢ M, then € FrxM, and = ¢ M;,» = 1,...,k. Thus
T E (FT)(MP - U{Mili = 1,,]{2}) U {FT¢XMi‘i = 1,...,k},
a compact set. Hence FrxO is compact and the proof is com-
plete.

Not every 0-space is rimcompact, but the following result
shows that some amount of “rimcompactness” is present in
every 0-space.

3.6 Theorem If X s a 0-space, then every non-empty open
subset of X contains a non-empty m-open set.

Proof: It suffices to consider non-empty X-open sets O such
that O C R(X). Then Ez40 is open in ¢X and meets ¢ X — X
since (¢ X — X )UR(X) is a compactification of ¢X —X. Choose
a non-empty ¢X — X clopenset U C (¢X —X)NEz40. Let V
be a ¢ X-open set such that VN(¢X—X) =U and V C Ez,0.
Since U is clopen in ¢X — X it follows that Frx(VNX) C X
i1s compact. This completes the proof.
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From 2.2 it is clear that if X is a S.0.S, then either X
contains a point having a compact neighborhood or X is rim-
compact. Also, in view of 3.6, it is natural to ask whether
some rimcompactness condition at points of X is necessary
in order that X be a 0-space. It can be shown that either
X — RCR(X) is dense in any 0-space X or there is a 0-space
which is nowhere rimcompact. We also note that if a 0-space
X = RCR(X) exists, then X must be almost rimcompact yet
by the proof of 3.5 it follows that no point of X can have a
base of open neighborhoods with locally compact boundaries.

In view of the above we state the open question: Can X =

RCR(X) be a 0-space?
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