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Abstract 
The remainder of a compactification aX of a space 

X is the space aX - X. The residue of X is the set 
of all points in X which do not possess compact neigh
borhoods. It is shown that the following conditions 
are equivalent: X is rimcompact; X is the residue of 
a space having a strongly O-dimensional remainder; X 
is a remainder of a strongly O-dimensional space. Sim
ilar characterizations are given for almost rimcompact 
spaces. 

The rimcompact residue RCR(X) of X is the set of 
points which do not have a base of neighborhoods with 
compact boundaries. Conditions on RCR(X) are pro
vided which preclude any remainder of X from being 
O-dimensional. 

Introduction 

The remainder of a compactification aX of a space X is the 
space aX - X. A major problem in the theory of compact
ifications is to determine when, for each X in a certain class 

*This research was partially supported by a grant from Moorhead State 
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of spaces, there is a member of another class of spaces which 
can serve as a remainder of X. (See [1], [2], [6], [8], [9], and 
[13], for example.) Herein all spaces are completely regular 
and Hausdorff and all compactifications are Hausdorff. Re
call that a space X is O-dimensional if it has a base of clopen 
sets and X is strongly O-dimensional whenever its Stone-Cech 
compactification (3X is totally disconnected, or equivalently, 
when disjoint zero sets in X can be separated by a clopen set. 
A space X is a O-space if it possesses a compactification with 
O-dimensional remainder. Any O-space has a compactification 
</JX which is maximal with respect to the property that the 
remainder is O-dimensional (cf. [3], for example). 

An open set 0 in a space X is called 1r- open if its boundary 
FrxO is compact and a space is rimcompact if it has a base of 
7r-open sets. Every rimcompact space is a O-space, but not con
versely. For rimcompact spaces ¢JX is called the Freudenthal 
compactification of X. 

In this paper we show that the class of rimcompact spaces 
is precisely the class of spaces which can serve as remainders 
of strongly O-dimensional spaces. 

A space X is almost rimcompact if X admits a compact
ification aX such that each point of aX - X has a base of 
aX-neighborhoods with boundaries in X. Internal characteri
zations of almost rimcompact spaces and development of their 
properties may be found in [3] and [4]. We show that almost 
rimcompact spaces are exactly the class of spaces which can 
serve as remainders of O-dimensional spaces. 

The residue R(X) of X is the set of points in X which do 
not possess compact neighborhoods. We also prove that X is 
rimcompact if and only if X is the residue of a space having 
a strongly O-dimensional remainder and that X is almost rim
compact whenever it is the residue of a O-space. It follows that 
if a O-space Y has a nonrimcompact residue, then Y has no 
strongly O-dimensional remainder. 
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Since rimcompact spaces are always O-spaces, it is clear that 
it is the presence of a non-empty set RCR(X) of points of X 
which do not possess a base of 1r-open neighborhoods which 
may cause X to fail to be a O-space. In section 3 we provide 
conditions on RCR(X) which preclude X from being O-space. 
However, it is also shown that when X is a O-space every open 
set in X contains a non-trivial 1r-open set. 

2 The main results 

We begin by listing some definitions, results and notation. Let 
o be an open set in X and aX any compactification of X. The 
extension of 0 to aX is the set ExaO == aX - (Cla(X - 0)) 
which is the largest open subset of aX whose trace on X is O. 
See [4] for properties of ExaO. 

A compactification aX of X is perfect whenever f-I(z) is 
connected, for all z E aX, where f is the natural mapping of 
f3X onto aX. If aX is perfect and 0 is open in X, Theorems 
1 and 2 of [12] show that Clax(FrxO) == Frax(ExaO). Thus, 
for a 1r-open set 0 in X, ExaOn(aX-X) and Exa(X -ClxO)n 
(aX - X) partition aX - X. Additional results concerning 
perfect compactifications are available in [9],[10], and [12]. 

We denote the space of countable ordinals by W, and jJW == 
W*, where W* == W U {WI} and WI is the first uncountable 
ordinal. 

2.1 Theorem For any space X, the following are equzva
lent: 

(A) X is almost rimcompact. 

(B) X is a remainder of a O-dimensional space. 

(C) X is the residue of some O-space. 
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Proof: (A) implies (B). Suppose X is almost rimcompact. 
For each x E </JX, let Nx be a countable discrete space and 
let Z == </JX U [u{Nxlx E </JX}]. A base for the topology on 
Z consists of the following: points of each Nx are open in 
Z and for y E </JX a base for the open neighborhoods of y 
consists of the sets Oy U [u{Nxlx E Oy} - S], where Oy is 
an open </JX-neighborhood of y and S is any finite subset of 
u{Nxlx E Oy}. It is clear that equipped with this topology Z 
is a compact Hausdorff space and Z - X is dense in Z. We next 
show Z - X is O-dimensional. Obviously, points of Z - </JX are 
clopen in Z. Let y E </JX - X and My be any neighborhood 
of y in Z - X and let My be a Z-neighborhood of y for which 

My n (Z - X) == My. If Uy is a basic open Z-neighborhood of y 

satisfying Uy ~ My, then since X is almost rimcompact, there 
is a cjJX-open neighborhood Oy of y for which Oy ~ Uy n cjJX 
and Fr4>Oy ~ X. 

Set A == Oy, B == </JX - CI4>Oy and C == Fr4>Oy. Thus, 
cjJX == A U B U C, where C is compact and A and B are open 
in </JX. Take A == [AU(U{Nxlx E A})]nUy • Since Uy is a basic 
open Z-neighborhood of y, it follows that A is a basic open Z
neighbor~ood of y. Thus An (z - X) is open in Z - X and 
satisfies An(Z-X) ~ Uyn(Z-X) ~ Myn(Z-X) ~ My. Also, 
(Z - X) - A = [(B U (u{Nxlx E B})) n(Z - X)J U [u{Nxlx E 
C}] U [u{Nxlx E A} - Uy ]. Thus, (Z - X) - A is also open 
in Z - X so that An (Z - X) is clopen in Z - X, as desired. 
Hence Z - X is O-dimensional and Z is a compatification of 
Z - X having X as its remainder. 

(B) implies (C). Suppose Y is O-dimensional anq aY - Y == 
X, for some compactification aY of Y. Take S == W* X aY 
{WI} X Y. Evidently S is a O-space and R( S) == X. 

(C) implies (A). Suppose Y is a O-space and R(Y) == X. Let 
!{ ==CI4>Y X. We show that each point z of K - X has a base of 
!{-open neighborhoods having boundaries which lie in X. Let 
M z be any K-neighborhood of z and set T = (</JY -Y)UX. Let 
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Mz be any T-neighborhood of z for which Mz n!{ == Mz . Let 
Nz be a T-neighborhood of z satisfying ClTNz ~ Mz. Since 
</JY - Y is O-dimensional, there is a </JY - Y clopen neighborhood 
Oz of z such that Oz ~ Nz. Now ExTOz ~ Mz and since Oz 
and (( </JY - Y)-Oz are disjoint, the sets EXTOz and EXT( (cjJY 
Y) - Oz) are disjoint in T and cover </JY - Y. Thus, EXTOz n!{ 
and EXT( (cjJY - Y) - Oz) n!{ are disjoint ~pen sets in !{ which 
cover!( -X. Now [ClK(ExTOzn!{)]n[ExT((</JY -Y)-Oz)] == 
0, so that FrK[ExTOz n !{] ~ X. Clearly ExTOz n !( ~ Mz, 
so X is almost rimcompact and the proof is complete. 

We define X to be a strong O-space (S.O.S.) iff X has a 
strongly O-dimensional remainder. 

2.2 Theorem For any space X J the following are equzva
lent: 

(A) X is rimcompact. 

(B) X is a remainder of a strongly O-dimensional space. 

(C) X is a residue of a strong O-space. 

Proof: (A) implies (B). Since X is rimcompact, </JX exists. 
Let Z be the space defined in the proof of (A) implies (B) 
of Theorem 2.1 and let Y == Z - X. Now Z is a compact
ification of Y, and, accordingly, let t be the canonical map
ping of j3Y into Z which is the identity on Y. Suppose!( 
is a component of f3Y - Y. Then t(!{) c X. If t(p) =1= t(q) 
in t(!{), separate t(p) and t(q) by a 1r-open set Npq ~ X, 
where t(p) E Npq and t(q) fj.ClxNpq . Take A == Ex¢xNpq and 
B == Ex¢x(X-ClxNpq ). Set A == Au [u{Nxlx E A}] and 
B == B U [u{Nxlx E B}] U [u{Nyly E FrxNpq}]. Since cjJX 
is perfect, A and B determine a partition of cjJX - X (cf.[10], 
for example). It follows that C == AnY and D == B n Yare 
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clopen sets which partition Y. But p ECI13C and q ECI13 D, 
where CI13C and CI13D partition f3Y into clopen sets, contra
dicting the fact that 1< is connected. Hence t(K) is a singleton 
for each component 1< of f3Y - Y. 

Since Y is O-dimensional, so is cPY. Recall that cPY is ob
tained from f3Y by identifying components of f3Y - Y to points 
(cf. [3], for example). Let 9 be the natural projection of f3Y 
onto cPY. Thus t is single-valued on fibres of 9, so there is a 
continuous mapping 1 of cPY onto Z which is iderltity on Y 
and carries </>Y - Y onto X. We note that 1 is one-one on 
R(Y) == ¢JX - X. 

Next, let S == W* x ¢JY - {WI} x (¢>Y - Y). Then f3S == W* x 
¢JY and f3S is O-dimensional since W* and cPY are, hence S is 
strongly O-dimensional. But 1 induces a continuous mapping 
of CI13s(f3 S - S) onto cPX which is one-one on R( S) == {WI} x 
R(Y) == {WI} X (¢>X - X). Hence, according to Theorem 1.1 
of [11], X is a remainder of the strongly O-dimensional spac,e 
S. 

(B) implies (C). This is similar to (B) implies (C) of The
orem 2.1. 

(C) implies (A). If X is a residue of a S.O.S., it is then a 
remainder of a strongly O-dimensional space Y also. Thus, let 
aY - Y == X. There is a continuous mapping f of cPY == f3Y 
onto aY which is identity on Y. Let x E X and let (; be 
an open X-neighborhood of x. Choose aY-open U such that 
U n X == U. Now!{ == f-l(x) is compact and 1-1(U) is a 
cPY-open neighborhood of K. Since ¢JY is O-dimensional, !{ 
can be covered by a cPY-clopen set V such that V ~ f-1(U). 
Let V == V n Y. Then V is clopen in Y, so FraExaV ~ X. 
Hence EX a V n X is 7r-open in X. 

Next, we show that EX a Vn X is an X-neighborhood of x 
contained in U. Note that f(V) is compact and V ~ f(V). 
Thus, EXaV ~Cla V ~ f(V) ~ U. Also, I<nCt/>y(Y - V) == 0, 
hence x ~ f(CI¢y(Y - V)) == Claf(Y - V) ==Cla(Y - V). Thus, 



Rimcompact Remainders 119 

x E ExaV ~ U and ExaV n X is 1r-open in X so that X is 
rimcompact and the proof is complete. 

It follows from 2.1 that if X is almost rimcompact but not 
rimcompact, then X is the residue of some O-space Y. Thus 
Y is not rimcompact and by 2.2 Y cannot have any strongly 
O-dimensional remainder. Also, 5.3 of [8] affords an example 
of a non-rimcompact S.O.S. 

3 The rimcompact residue of X 

Recall that every rimcompact X is a O-space and that when 
X is metric then the two conditions are equivalent (cf. [9], 
for example). We define the rimcompact residue of a space to 
be the set RCR(X) of points which do not possess a base of 
1r-open sets. While RCR(X) is contained in R(X), we note 
that, unlike R(X), RCR(X) need not be closed. Clearly, it is 
the presence of a non-empty RCR(X) which may cause X to 
fail to be a O-space. In this section we provide conditions on 
RCR(X) which preclude X from being a O-space. IfaX is 
any compactification of X, following [3], for p E aX we set 
G(aX,p) == n{ClaxUIU is 1r-open in X and p E ExaxU}. 
In case aX = f3X we denote G(f3X,p) by Gp • Lemma 2.2 of 
[3] shows that any G(aX, p) is connected and obviously it is 
compact. From the definitions and the proof of 2.5 of [5] the 
following remark is easily established. 

3.1 Remark For p E X and any perfect aX,G(aX,p) == {p} 
if and only if p ~ RCR(X). 

3.2 Theorem For a non-rimcompact X, if RCR(X) is totally 
disconnected and locally compact, then X has no compactijica
tion with totally disconnected remainder. 

Proof: Suppose X has a compactification with totally discon
nected remainder. Then there is a compactification aX of X 
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which is maximal with respect to this property, hence is per
fect (cf. [3] and [12]). Take x E RCR(X). Then G(aX,x) 
is not a singleton. Now H(x) == G(aX, x) n X is a locally 
compact and totally disconnected subset of RCR(X). Thus, 
x has a compact neighborhood Nx in H(x). But H(x) is dense 
in G(aX, x) so that N x is a G(aX, x )-neighborhood of x. Since 
Nx is compact and O-dimensional, this disconnects G(aX~ x) ~ 

a contradiction. 
This completes the proof. 

3.3 Corollary If RCR(X) contains an RCR(X)-isolated point, 
then no remainder of X is totally disconnected. 

Proof: Let p be an isolated point of RCR(X) and F an X
closed neighborhood of p such that F n RCR(X) == {p}. Now 
RCR(F) == {p} and by 3.2 F cannot have a compactification 
with a totally disconnected remainder, hence neither can X. 

This completes the proof. 

The next result show that when R( X) is totally discon
nected, then the properties of rimcompactness and almost rim
compactness are equivalent. From the proof it follows that if 
RCR(X) is non-empty and totally disconnected, X cannot be 
almost rimcompact. 

3.4 Theorem If X is almost rimcompact and R(X) is totally 
disconnected, then X is rimcompact. 

Proof: Suppose RCR(X) =I 0. If p E RCR(X) and X 
is almost rimcompact, then G(<p(X),p) ~ RCR(X). Since 
RCR(X) is totally disconnected and </JX is a perfect compact
ification, it follows that G( </JX, p) == {p}, in contradiction to 
3.1. 

This completes the proof. 
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Next we show that, in the presence of almost rimcompact
ness, if each point of X has a base of neighborhoods with locally 
compact boundaries, then X is rimcompact. 

3.5 Theorem Let X be almost rimcompact. Then X is rim
compact if and only if each point of X has a base of neighbor
hoods having locally compact boundaries. 

Proof: Only sufficiency requires proof. Let p E X and let 
Np be any X -open neighborhood of p. Choose an X -open 
neighborhood Mpof p for which Mp ~ Npand Frx Mp is locally 
compact. Then D ==Clr/>x Frx Mp - Frx Mp is compact. Since 
X is almost rimcompact D can be covered by a collection of 
¢>X-open sets M1, ... , Mk such that p ~Cl¢>Mi and Fr¢>x Mi ~ 

X, for i == 1, ... , k. Set Qi == ¢>X -Cl¢>Mi, i == 1, ... , k, and 
take 0 == Mpn01n .. .nOk. Clearly, 0 is X-open and 0 ~ Np. 

Let x E FrxO. If x tJ. Oi, for so~e i, then x E Fr¢>xMi. 
If x tJ. Mp, then x E Frx Mp and x tJ. Mi, i == 1, ... , k. Thus 
x E (FrxMp - u{Mili == 1, ... , k}) U {Fr¢>xMili == 1, ... , k}, 
a compact set. Hence FrxO is compact and the proof is com
plete. 

Not every O-space is rimcompact, but the following result 
shows that some amount of "rimcompactness" is present in 
every O-space. 

3.6 Theorem If X is a O-space) then every non-empty open 

subset of X contains a non-empty 1r-open set. 

Proof: It suffices to consider non-empty X-open sets 0 such 
that 0 ~ R(X). Then Ex¢>Q is open in ¢>X and meets ¢>X - X 
since (¢>X -X)UR(X) is a compactification of ¢>X -x. Choose 
a non-empty ¢>X - X clopen set U ~ (¢>X - X) n Ex¢>O. Let V 
be a ¢>X-open set such that Vn(¢>x -X) == U and V ~ EXfj>O. 
Since U is clopen in ¢>X - X, it follows that Frx(V n X) ~ X 
is compact. This completes the proof. 
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From 2.2 it is clear that if X is a S.O.S, then either X 
contains a point having a compact neighborhood or X is rim
compact. Also, in view of 3.6, it is natural to ask whether 
some rimcompactness condition at points of X is necessary' 
in order that X be a O-space. It can be shown that either 
X -	 RCR(X) is dense in any O-space X or there is a O-space 
which is nowhere rimcompact. We also note that if a O-space 
X == RCR(X) exists, then X must be almost rimcompact yet 
by the proof of 3.5 it follows that no point of X can have a 
base of open neighborhoods with locally compact boundaries. 

In view of the above we state the open question: Can X == 
RCR(X) be a O-space? 
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