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Abstract 

An uncountable, crowded, separable Tychonoff sub­
maximal space is constructed, and the existence of a 
submaximal space which is not the countable union 
of discrete spaces is shown to be equivalent to the 
existence of a crowded Baire Space which is not the 
union of disjoint dense sets. Both of these results 
are in response to questions posed in a 1995 paper by 
Arhangel'skii and Collins. 

A topological space X is submaximal if every dense sub­
set of X is open in X. 0 bviously, every discrete space is 
submaximal, and it is not hard to see that every space hav­
ing only one non-isolated point is submaximal. More gener­
ally, any space X whose set of non-isolated points is discrete 
is submaximal. What is less clear is that there are crowded 
spaces, that is, spaces having no isolated points, that are sub­
maximal. Examples of such spaces are maximal spaces, which 
are crowded topological spaces which have no strictly stronger 
crowded topologies. Maximal spaces were first studied by He­
witt in [H]. In [AC], Arhangel'skii and Collins ask if there is an 
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uncountable, crowded, separable Hausdorff (or Tychonoff) sub­
maximal space. In this note, we show that there is such a space. 
Arhangel'skii and Collins also ask if every [crowded] submax­
imal space is [strongly] a-discrete, where a space is [strongly] 
a-discrete if it is the union, of a countable family of [closed] 
discrete subsets. We show that the existence of a submaximal 
space which is not a-discrete is equivalent to the existence of 
a crowded Baire space which is not the union of disjoint dense 
subsets. 

1 Some known results 

One of our goals is to construct a Tychonoff space X which 
is uncountable, separable, crowded, and submaximal. As is 
pointed out in [AC], the complement of every dense subset of 
X is discrete and closed in X, so X must be tIle union of 
a dense, open, countable subset, and an uncountable closed, 
discrete subset. If we were not looking for a crowded space, we 
could settle for a Mrowka-Isbell \If-space. To get our example, 
we simply replace each isolated point of such a space with a 
crowded maximal space. Of course, we must do this in a way 
that we keep the space Tychonoff and submaximal. We will 
need some building blocks, and some basic facts. 

Proposition 1.1 (van Douwen[vD]) There is a countable reg­
ular (hence) normal) maximal space. Furthermore) given any 
such space) no point is an accumulation point of disjoint sub­
sets. 

Van Douwen pointed out in [vD] that Proposition 1.1 says 
more than that there is a regular crowded space with no stronger 
regular crowded topology. Such spaces are easily constructed 
using Zorn's Lemma. The point of Proposition 1.1 is that there 
is a regular crowded space with no stronger crowded topology, 
regular or not. Constructing such a thing is quite non-trivial. 
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The necessary conditions of the following result were ap­
parently first observed by Hewitt in [H] and the sufficiency of 
the conditions was established by Katetov in [K]. 

Proposition 1.2 A crowded T1 space is maximal if and only 
if it is extremally disconnected and submaximal. 

2	 Uncountable submaximal separa­
ble spaces 

As mentioned above, if we were merely interested in an un­
countable separable submaximal Hausdorff space, a Mrowka­
Isbell space would work. If we add the rquirement that the 
space be crowded, the situation becomes only a little trickier. 
We only sketch a construction because we will give a Tychonoff 
example below. 

Pre-Example 2.1 There is an uncountable separable submax­
imal crowded Hausdorff space. 

Outline of construction. Let E be an uncountable almost­
disjoint family on wand let Y be a countable Hausdorff max­
imal space (such as the space in Proposition 1.1). As a set, 
let X == (w X Y) U E. Declare w x Y to be open and have 
the product topology. For E E E, let a neighborhood of E 
be {E} U UnE(E\F)( {n} X Un) where Un is dense in Y and F 
is a finite subset of E. The fact that X with this topology is 
Hausdorff follows from the almost-disjointness of E, and the 
submaximality of X follows from the submaximality of Y. 

o 

The space in 2.1 is not regular because if p E Y, the subset 
!{ == w X {p} is closed in X but the closure of any neighborhood 
of !{ contains E. Therefore, if E E £, there are not disjoint 
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open subsets of X containing E and 1< respectively. The prob­
lem is obviously that neighborhoods of elements of £ are too 
large. We circumvent this problem by taking neighborhoods of 
elements of £, to be elements of a free clopen ultrafilter. This 
is done after establishing some notation and observing some 
preliminaries. 

Preliminaries 2.2 Let Z be a regular extension of a count­
able discrete subspace denoted as w such that Z\w is discrete. 
the topology on Z is denoted as r(Z). Here are some observa­
tions that are easy to verify: 

(a) the space Z is zero-dimensional. 

(b) The space Z is normal if and only if disjoint sets of Z\w 
are contained in disjoint open sets of Z. 

(c) If Z is normal and a is a finer topology on the underlying 
set of Z, then (Z, a) is also normal. 

(d) For each point q E Z\w, let Uq be an ultrafilter on w 

containing {Unw : q E U E r(Z)}. Let a be the finer topology 
on the underlying set of Z defined by TEa whenever r E T\w 
implies Tn w E Ur . The space (Z, a) is also a zero-dimensional 
extension of wand is normal if Z is normal. Moreover, every 
subspace of (Z, 0-) is extremally disconnected. 

Example 2.3 There is an uncountable separable TychonofJ 
maximal space. 

Construction. Let Y be the space' in 1.1, p E Y and Y == 
Y\ {p}. Note that a discrete subset of Y is also discrete and, 
therefore, a closed subset of Y by 1.2 in [AC]. In particular, if 
D is a dense subset of Y, there is a clopen subset U of Y suc'h 
that U ~ D and p EclyU. 

Let Z be a regular extension of a countable discrete sub­
space denoted as w such that Z\w is discrete. As noted in 2.2, 
we can assume that Z is an extremally disconnected space, i.e., 
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for each q E Z\w, Uq == {Unw :q E U E r(Z)} is an ultrafilter 
on w. 

As a set, let X == (Z\w) U (w X V). Let w x Y be open in X 
where w has the discrete topology and w x Y has the product 
topology. A basic neighborhood of q E Z\w is {q} U U{ {n} x 
Un : n E A} where A E Uq and Un == Un \ {p} where Un is a 
clopen neighborhood of p E Y, i.e., Un is a clopen set in Y such 
that p E clyUn. It is immediate that X is Hausdorff and {n} x 
Y is clopen in X for each nEw. Note that X is uncountable 
as Z\w is uncountable and X is separable and crowded as Y is 
separable and crowded. We will use this easily proven result: 
if M ~ w x Y and p(M) == {n E w : (n,p) Ecl{n}xy(Mn( {n} x 
V))}, then, for q E Z\w, 

q E clx M if and only if p(M) E Uq • (*) 
Also, for M ~ X and nEw, let Mn == M n ({n} X w). 

Since Y is zero-dimensional, each point in w x Y has a 
neighborhood base of sets clopen in X. Also, a basic neighbor­
hood of q E Z\w is clopen in X. Thus, X is zero-dimensional. 
To show that X is submaximal, let D be a dense subset of X. 
Then for each nEw, D n ({n} X Y) is dense in {n} X Y. It 
follows that D n (w x Y) is open in X. Suppose q E (Z\w) nD. 
Then p(D n (w x V)) E Uq • For n E p(D n (w x V)), there is 
a clopen set Un in Y such that p EclyUn and {n} X Un ~ D. 
Thus, {q} U U{{n} X Un : n E p(D n (w x V))} ~ D. This 
completes the proof that D is open in X and that X is sub­
maximal. 

Next, to show that X is extremally disconnected, let U and 
V be disjoint open sets in X. Since clxU ==clx(U n (w x V)), 
we can assume that U U V ~ w X Y. As w x Y is extremally 
disconnected, it follows that clwxyUn clwxY V == 0. Using this 
statement and (*), it follows that clxUn clxV == 0.. This com­
pletes the proof that X is extermally disconnected. It follows 
by 1.2 that X is maximal space. 

o 
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Corollary 2.4 There is an uncountable, separable normal max­
2W1imal space if and only if 2W == • 

Proof: Suppose that E is an uncountable separable normal 
maximal space with D being the countable dense subset. By 
submaximality, D is open and E\D is an uncountable closed 
discrete subset of E. By Jones Lemma, IP(£\V)I :::; IP(V)I. 
As E\D is uncountable, then 2W1 ~ 2IE\DI :s; 2W 

• It follows 
2W1that 2W == • 

2W1The set theoretic axiom 2W == guarantees that the Stone­
Cech compactification f3WI (where WI has the discrete topology) 
of WI can be embedded in j3w\w. The subspace Z == WI U W 

of j3w is normal as WI is C*-embedded in {3wI and therefore in 
{3w. By 2.2, the extension Z of w is extremally disconnected. 
Starting with a separable normal maximal space Y, construct 
X as in the proof of 2.3. By 2.3, X is an uncountable, separable 
Tychonoff maximal space. 

It remains to show that X is normal. Let F : X --t Z 
be the map which fixes each element of X\ (w x Y) and takes 
(n,x) to n for each (n,x) E w x Y. Let Hand!< be disjoint 
closed subsets of X. Since Z is normal and strongly zero­
dimensional, there exists a clopen subset A of Z such that 
F[H]\w ~ A and F[!<]\w ~ Z\A. Let X H == F+-[A] and 
X K = F+-[Z\A]. Then X H and X K .partition X into clopen 
sets with the property that XH n (X\(w x Y)) n !< == 0 and 
X K n (X\(w x Y)) nH == 0. If we can find disjoint open subsets 
UR and VH of X H containing HnXH and !<nxH , and !<nx/{, 
we will have shown that Hand !< are contained in disjoint open 
subsets of X. We show how to find the sets UH and VB, the 
construction of UK and VK being analogous. For each nEw 
such that F(n) E A and (n,p) f/ cl{n}xy(Kn( {n} X V)), let Wn 

be a clopen subset of {n}xY such that p E Wnand Wnn!< == 0, 
and let Wn == Wn \ { ( n, p) }. For all other nEw such that 
F(n) E A, let Wn == 0. Since no element of XH\(w x Y) is 
an element of the closed set !<, and since X H n (w x Y) IS 
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dense in X H, every element of X H \ (w x Y) is an element of 
the closure in X H of H U UnEw Wn • Since w x Y is normal, there 
exists a continuous function f : X H n (w X Y) ---+ [0,1] such 
that f(x) == 0 if x E Hu UnEwWn and f(x) == 1 if x E !{. 
Since X H is extremally disconnected, and every dense subset 
of an extremally disconnected space is C*-embedded, there is 
a continuous extension f* : X H ---+ [0; 1] of f. Let UH == 
(f*)~[( -00, !)] and VH == (f*)~[(!, 00 )]. Then, since every 
element of X H \ (w x Y) is in the closure of a set on which f* is 
identically 0, (XH\(w ~ V)) U H ~ UH, and X H n!{ ~ VH by 
the definition of f. This completes the proof that X is normal. 

o 

Remarks 2.5 1. Actually, we have proved more than what 
is stated in 2.4. The following are equivalent: 

(i)	 There is an uncountable, separable normal maximal space 
in which every subset is G8 • 

(ii)	 There is an uncountable, separable normal submaximal 
space. 

2. Another way of generating an uncountable, separable 
crowded Hausdorff submaximal space is to start with an un­
countable separable crowded Hausdorff space X (e.g., R C where 
C = 2W

) with S a countable dense subset. Let V == {D ~ X : D 
is dense in X } and F ~ V be a maximal V-filter containing S. 
Then the underlying set of X with the topology r generated 
by r(X) U F is a separable crowded Hausdorff submaximal 
topology on X. That S is dense in (X, a) and that (X, a) is 
submaximal and crowded follow from results of Bourbaki (see 
[B]). It is clear that (X; a) is uncountable and Hausdorff. We 
observe that if X is a space of cardinality 2c , then (X, 0-) will 
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be a separable submaximal Hausdorff space having as large a 
cardinal as possible. In particular, (X, u) has a closed discrete 
subset of cardinality 2c . Since a separable Tychonoff space 
has weight at most c, there can be no such example which is 
Tychonoff. 

3. The referee has kindly supplied the following simpler 
construction of spaces having the properties of the spaces in 
2.3 and 2.4. Let X be the space described in 1.1. Since X 
is Lindelof but not compact, it is not pseudocompact, so it 
has a closed, discrete, infinite, countable C*-embedded subset 
D. Then cl,exD is homeomorphic to the Stone-Cech compact­
ification f3w of wand therefore has an uncountable relatively 
discrete subset S. Furthermore, if 2W1 == 2w

, S may be taken 
to be C* in cl,exD. Then the space XU S is maximal, separa­
ble, uncountable, and Tychonoff, and if S is C*-embedded in 
cl,ex D, it is also normal. 

The question of a-discreteness 

In this section, we discuss some other questions raised in [AC]. 
Arhangel'skii and Collins ask whether every submaximal space 
is o--discrete and whether every crowded submaximal space is 
strongly u-discrete, where a space is u-discrete if it is the union 
of countably many discrete subsets, and strongly u-discrete if 
it is the union of countably many closed discrete subsets. We 
show that the consistency of the existence of a measurable 
cardinal implies the consistency of the existence of a crowded 
submaximal space which is not u-discrete. More precisely, we 
show that there exists such a space if and only if there is a 
crowded irresolvable Baire space, where a space is irresolvable 
it if does not have disjoint dense subsets. The consistency 
result then follows from [KST], where it is shown that the 
consistency of the existence of a measurable cardinal implies 
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the existence of a (Tychonoff) crowded irresolvable space each 
of whose subsets is Baire. 

A space is hereditarily irresolvable if every subset is irresolv­
able. It is known (see [vD] or [KST]) that every irresolvable 
space has a non-empty hereditarily irresolvable open subset. 
The main tool is the following Propositi9n. 

Proposition 3.1 The following are equivalent. 

(i)	 There exists a su.bmaximal Hausdorff space which is not 
a-discrete. 

(ii)	 There exists a crowded submaximal Hausdorff space which 
is not a-discrete. 

(iii)	 There exists a maximal Hausdorff space which is not a­
discrete. 

(iv)	 There exista a crowded submaximal Hausdorff space which 
is not strongly a-discrete. 

(v)	 There exists a maximal Hausdorff space which '/,s not 
strongly a-discrete. 

(vi)	 There exists a crowded irresolvable Hausdorff Baire space. 

Proof: The implications (ii) => (i), (iii) =? (ii) :::} (iv), and 
(iii)	 => (v) => (iv) are trivial. 

(i) => (ii). We first note that a scattered submaximal space 
has Cantor-Bendixsen height at most two, since if the set of 
limit points have a limit point p, then {x Ix is isolated} U {p} 
would be a dense subset which is not open. Therefore, any 
scattered submaximal space is a-discrete. (This observation 
was made in [AC].) Let Z be a submaximal Hausdorff space 
which is not a-discrete. Let X =clz(U{A ~ ZIA is crowded}). 
Then X is a crowded submaximal Hausdorff space, and since 
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Z\X is scattered, it is a-discrete. Since Z is not a-discrete, 
neither is X. 

(iv) =} (vi). Suppose that there exists a crowded submax­
imal space Y which is not strongly a-discrete. The property 
of being submaximal is hereditary, so it suffices to show that 
Y has a crowded Baire subset. Since in a submaximal space 
every nowhere-dense subset is closed and discrete, Y is second 
category in itself. Therefore, Y has a non-empty open, and 
therefore crowded, subset X which is Baire. 

(vi) =} (iii). Let Y be a Hausdorff crowded irresolvable 
Baire space. Let jj be an open hereditarily irresolvable subset 
of Y and denote the topology on X by 7. Then X is Baire, 
and since it is hereditarily irresolvable, every somewhere-dense 
subset of X contains a non-empty open subset of X. Let T be 
a maximal topology on X which strengthens 7, and let X be X 
with the topology T. Since X is Hausdorff, so is X. Suppose X 
were a-discrete, say X = UkEwDk where each set Dk is discret~ 

"'" 
as a subset of X. Since X == UkEwpk, there exists ko E w such 
that Dko is somewhere-dense i~ X. Therefore, there exists a 
non-empty open subset U of X such that U ~ Dko . Since 
7 ~ T, U is also open in X. Therefore, Dko contains a non­
empty open subset of X, and since Dko is discrete, X has an 
isolated point, contradicting the fact that X is crowded. 

o 

The significance of Proposition 3.1 lies in the fact, shown 
in [M], that condition (vi) in the Proposition is known to be 
equivalent to an affirmative answer to the old question, due 
to Katetov, which asks if there is a crowded Hausdorff space 
with the property that every real-valued function defined on 
the space is somewhere continuous. A consistent answer to 
Katetov's question was given in [KST] assuming the consis­
tency of the existence of a measurable cardinal. Therefore, we 
get the following corollary. 
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Corollary 3.2 If it is consistent that there is a measurable 
cardinal) then it is consistent that there is a cro7.vded submax­
imal Hausdorff space (in fact) a crowded maximal Hausdorff 
space) which is 'not a-discrete. 
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