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Abstract

An uncountable, crowded, separable Tychonoff sub-
maximal space is constructed, and the existence of a
submaximal space which is not the countable union
of discrete spaces is shown to be equivalent to the
existence of a crowded Baire Space which is not the
union of disjoint dense sets. Both of these results
are in response to questions posed in a 1995 paper by
Arhangel’skii and Collins.

A topological space X is submazimal if every dense sub-
set of X is open in X. Obviously, every discrete space is
submaximal, and it is not hard to see that every space hav-
ing only one non-isolated point is submaximal. More gener-
ally, any space X whose set of non-isolated points is discrete
is submaximal. What is less clear is that there are crowded
spaces, that is, spaces having no isolated points, that are sub-
maximal. Examples of such spaces are mazimal spaces, which
are crowded topological spaces which have no strictly stronger
crowded topologies. Maximal spaces were first studied by He-

witt in [H]. In [AC], Arhangel’skii and Collins ask if there is an
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uncountable, crowded, separable Hausdorff (or Tychonoff) sub-
maximal space. In this note, we show that there is such a space.
Arhangel’skii and Collins also ask if every [crowded] submax-
imal space is [strongly] o-discrete, where a space is [strongly|
o-discrete if it is the union of a countable family of [closed]
discrete subsets. We show that the existence of a submaximal
space which is not o-discrete is equivalent to the existence of
a crowded Baire space which is not the union of disjoint dense
subsets.

1 Some known results

One of our goals is to construct a Tychonoff space X which
is uncountable, separable, crowded, and submaximal. As is
pointed out in [AC], the complement of every dense subset of
X is discrete and closed in X, so X must be the union of
a dense, open, countable subset, and an uncountable closed,
discrete subset. If we were not looking for a crowded space, we
could settle for a Mrowka-Isbell W-space. To get our example,
we simply replace each isolated point of such a space with a
crowded maximal space. Of course, we must do this in a way
that we keep the space Tychonoff and submaximal. We will
need some building blocks, and some basic facts.

Proposition 1.1 (van Douwen[vD]) There is a countable reg-
ular (hence, normal) mazimal space. Furthermore, given any
such space, no point s an accumulation point of disjoint sub-
sets.

Van Douwen pointed out in [vD] that Proposition 1.1 says
more than that there is a regular crowded space with no stronger
regular crowded topology. Such spaces are easily constructed
using Zorn’s Lemma. The point of Proposition 1.1 is that there
is a regular crowded space with no stronger crowded topology,
regular or not. Constructing such a thing is quite non-trivial.
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The necessary conditions of the following result were ap-
parently first observed by Hewitt in [H] and the sufficiency of
the conditions was established by Katétov in [K].

Proposition 1.2 A crowded Ty space is mazimal if and only
if it is extremally disconnected and submazimal.

2 TUncountable submaximal separa-
ble spaces

As mentioned above, if we were merely interested in an un-
countable separable submaximal Hausdorff space, a Mrowka-
Isbell space would work. If we add the rquirement that the
space be crowded, the situation becomes only a little trickier.
We only sketch a construction because we will give a Tychonoff
example below.

Pre-Example 2.1 There is an uncountable separable submaz-
imal crowded Hausdorff space.

Outline of construction. Let € be an uncountable almost-
disjoint family on w and let Y be a countable Hausdorff max-
imal space (such as the space in Proposition 1.1). As a set,
let X = (wxY)UE. Declare w x Y to be open and have
the product topology. For E € &, let a neighborhood of F
be {E} U Unemrp)({n} x U,) where U, is dense in Y and F
is a finite subset of K. The fact that X with this topology is
Hausdorff follows from the almost-disjointness of £, and the
submaximality of X follows from the submaximality of Y.

d

The space in 2.1 is not regular because if p € Y, the subset
K = wx{p} is closed in X but the closure of any neighborhood
of K contains £. Therefore, if £ € £, there are not disjoint
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open subsets of X containing E and K respectively. The prob-
lem is obviously that neighborhoods of elements of £ are too
large. We circumvent this problem by taking neighborhoods of
elements of £ to be elements of a free clopen ultrafilter. This
is done after establishing some notation and observing some
preliminaries.

Preliminaries 2.2 Let Z be a regular extension of a count-
able discrete subspace denoted as w such that Z\w is discrete.
the topology on Z is denoted as 7(Z). Here are some observa-
tions that are easy to verify:

(a) the space Z is zero-dimensional.

(b) The space Z is normal if and only if disjoint sets of Z\w
are contained in disjoint open sets of Z.

(c) If Z is normal and o is a finer topology on the underlying
set of Z, then (Z,0) is also normal.

(d) For each point ¢ € Z\w, let U, be an ultrafilter on w
containing {UNw : ¢ € U € 7(Z)}. Let o be the finer topology
on the underlying set of Z defined by T' € o whenever r € T\w
implies T Nw € U,. The space (Z, o) is also a zero-dimensional
extension of w and is normal if Z is normal. Moreover, every
subspace of (Z, o) is extremally disconnected.

Example 2.3 There is an uncountable separable Tychonoff
mazimal space.

Construction. Let ¥ be the space in 1.1, p€ Y and Y =
Y\{p}. Note that a discrete subset of Y is also discrete and,
therefore, a closed subset of ¥ by 1.2 in [AC]. In particular, if
D is a dense subset of Y, there is a clopen subset U of Y such
that U € D and p €clyU.

Let Z be a regular extension of a countable discrete sub-
space denoted as w such that Z\w is discrete. As noted in 2.2,
we can assume that Z is an extremally disconnected space, i.e.,
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for each ¢ € Z\w, U, = {UNw : q € U € 7(Z)} is an ultrafilter
on w.

As aset, let X = (Z\w)U(wxY). Let wxY be open in X
where w has the discrete topology and w x Y has the product
topology. A basic neighborhood of ¢ € Z\w is {q} U U{{n} x
Up,:n € A} where A € U, and U, = U.\{p} where U, is a
clopen neighborhood of p € Y, i.e., U, is a clopen set in Y such
that p € clgU,. It is immediate that X is Hausdorff and {n} x
Y is clopen in X for each n € w. Note that X is uncountable
as Z\w is uncountable and X is separable and crowded as Y is
separable and crowded. We will use this easily proven result:
if M CwxY and p(M) = {n € w: (n,p) €cl,, 7 (MN({n} x
Y))}, then, for ¢ € Z\w,

q € clx M if and only if p(M) € U,. (*)
Also, for M C X and n € w, let M, = M N ({n} X w).

Since Y is zero-dimensional, each point in w X Y has a
neighborhood base of sets clopen in X. Also, a basic neighbor-
hood of ¢ € Z\w is clopen in X. Thus, X is zero-dimensional.
To show that X is submaximal, let D be a dense subset of X.
Then for each n € w, DN ({n} X Y) is dense in {n} x Y. It
follows that DN (wx Y) is open in X. Suppose ¢ € (Z\w)ND.
Then p(D N (w x Y)) € U,. For n € p(D N (w x Y)), there is
a clopen set U, in Y such that p €clyU, and {n} x U, C D.
Thus, {g} UU{{rn} x U, :n € p(DN(wxY))} CD. This
completes the proof that D is open in X and that X is sub-
maximal.

Next, to show that X is extremally disconnected, let U and
V be disjoint open sets in X. Since clxU =clx(U N (w x Y)),
we can assume that UUV Cw X Y. Asw x Y is extremally
disconnected, it follows that cl_,3UN cl 3V = 0. Using this
statement and (*), it follows that clxUN clxV = 0.. This com-
pletes the proof that X is extermally disconnected. It follows
by 1.2 that X is maximal space.

O
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Corollary 2.4 There is an uncountable, separable normal maz-
imal space if and only if 2% = 2“1,

Proof: Suppose that F is an uncountable separable normal
maximal space with D being the countable dense subset. By
submaximality, D is open and E\D is an uncountable closed
discrete subset of E. By Jones Lemma, |P(E\D)| < |P(D)].
As E\D is uncountable, then 2«1 < 2AE\D} < 9w Tt follows
that 2¢¥ = 2“1,

The set theoretic axiom 2¥ = 2“1 guarantees that the Stone-
Cech compactification Bw; (where w; has the discrete topology)
of w; can be embedded in fw\w. The subspace Z = w; Uw
of fw is normal as w; is C*-embedded in Sw; and therefore in
Bw. By 2.2, the extension Z of w is extremally disconnected.
Starting with a separable normal maximal space Y, construct
X as in the proof of 2.3. By 2.3, X is an uncountable, separable
Tychonoff maximal space.

It remains to show that X is normal. Let F : X — Z
be the map which fixes each element of X\(w x Y) and takes
(n,z) to n for each (n,z) € w x Y. Let H and K be disjoint
closed subsets of X. Since Z is normal and strongly zero-
dimensional, there exists a clopen subset A of Z such that
F[H\w C A and F[K]\w C Z\A. Let Xg = F<[A] and
X = F—[Z\A]. Then Xy and Xk partition X into clopen
sets with the property that Xy N (X\(w x Y))N K = § and
Xk N(X\(wxY))NH = §. If we can find disjoint open subsets
Uy and Vj of Xy containing HN Xy and KN Xy, and KN Xk,
we will have shown that H and K are contained in disjoint open
subsets of X. We show how to find the sets Uy and Vg, the
construction of Ux and Vi being analogous. For each n € w
such that F(n) € A and (n,p) € cli 7 (KN({n} xY)), let W,
be a clopen subset of {n}x Y such that p € W,, and W,NK = 0,
and let W, = W,\{(n,p)}. For all other n € w such that
F(n) € A, let W, = 0. Since no element of Xgy\(w x Y) is
an element of the closed set K, and since Xy N (w X Y) is
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dense in Xg, every element of Xp\(w X Y) is an element of
the closure in Xg of HUU,¢,W,. Since w x Y is normal, there
exists a continuous function f : Xy N (w X Y) — [0,1] such
that f(z) = 0if 2 € HU Upe,W, and f(z) = 1if z € K.
Since Xy is extremally disconnected, and every dense subset
of an extremally disconnected space is C*-embedded, there is
a continuous extension f* : Xy — [0,1] of f. Let Uy =
(f)"[(=o0,3)] and Vg = (f*)=[(3,00)]. Then, since every
element of Xg\(w x Y) is in the closure of a set on which f* is
identically 0, (Xg\(w xY))U H C Uy, and Xy N K C Vy by
the definition of f. This completes the proof that X is normal.

a

Remarks 2.5 1. Actually, we have proved more than what
is stated in 2.4. The following are equivalent:

(i) Thereis an uncountable, separable normal maximal space
in which every subset is Gj.

ii) There is an uncountable, separable normal submaximal
) P
space.

(iif) 2¢ = 2+,

2. Another way of generating an uncountable, separable
crowded Hausdorff submaximal space is to start with an un-
countable separable crowded Hausdorff space X (e.g., R€ where
¢ = 2¥) with S a countable dense subset. Let D= {D C X : D
is dense in X } and F C D be a maximal D-filter containing S.
Then the underlying set of X with the topology 7 generated
by 7(X) U F is a separable crowded Hausdorff submaximal
topology on X. That S is dense in (X,0) and that (X, o) is
submaximal and crowded follow from results of Bourbaki (see
[B]). It is clear that (X, o) is uncountable and Hausdorff. We
observe that if X is a space of cardinality 2€, then (X, o) will
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be a separable submaximal Hausdorff space having as large a
cardinal as possible. In particular, (X, o) has a closed discrete
subset of cardinality 2€. Since a separable Tychonoff space
has weight at most ¢, there can be no such example which is

Tychonoff.

3. The referee has kindly supplied the following simpler
construction of spaces having the properties of the spaces in
2.3 and 2.4. Let X be the space described in 1.1. Since X
is Lindel6f but not compact, it is not pseudocompact, so it
has a closed, discrete, infinite, countable C*-embedded subset
D. Then clgx D is homeomorphic to the Stone-Cech compact-
ification fw of w and therefore has an uncountable relatively
discrete subset S. Furthermore, if 2“1 = 2¥ S may be taken
to be C* in clgx D. Then the space X U S is maximal, separa-
ble, uncountable, and Tychonoff, and if S is C*-embedded in
clgx D, it is also normal.

3 The question of o-discreteness

In this section, we discuss some other questions raised in [AC].
Arhangel’skii and Collins ask whether every submaximal space
is o-discrete and whether every crowded submaximal space is
strongly o-discrete, where a space is o-discrete if it is the union
of countably many discrete subsets, and strongly o-discrete if
it is the union of countably many closed discrete subsets. We
show that the consistency of the existence of a measurable
cardinal implies the consistency of the existence of a crowded
submaximal space which is not o-discrete. More precisely, we
show that there exists such a space if and only if there is a
crowded irresolvable Baire space, where a space is irresolvable
it if does not have disjoint dense subsets. The consistency
result then follows from [KST]|, where it is shown that the
consistency of the existence of a measurable cardinal implies



Submaximal Spaces 151

the existence of a (Tychonoff) crowded irresolvable space each
of whose subsets is Baire.

A space is hereditarily irresolvable if every subset is irresolv-
able. It is known (see [vD] or [KST]) that every irresolvable
space has a non-empty hereditarily irresolvable open subset.
The main tool is the following Proposition.

Proposition 3.1 The following are equivalent.

(i) There exists a submazimal Hausdorff space which is not
o-discrete.

(11) There exists a crowded submazimal Hausdor(f space which
s not o-discrete.

(iit) There ezxists a mazimal Hausdorff space which is not o-
discrete.

(iv) There ezista a crowded submazimal Hausdorff space which
is not strongly o-discrete.

(v) There exists a mazimal Hausdorff space which is not
strongly o-discrete.

(vi) There ezists a crowded irresolvable Hausdorff Baire space.

Proof: The implications (ii) = (i), (iii) = (ii) = (iv), and
(iii) = (v) = (iv) are trivial.

(i) = (i1). We first note that a scattered submaximal space
has Cantor-Bendixsen height at most two, since if the set of
limit points have a limit point p, then {z|z is isolated} U {p}
would be a dense subset which is not open. Therefore, any
scattered submaximal space is o-discrete. (This observation
was made in [AC].) Let Z be a submaximal Hausdorff space
which is not o-discrete. Let X =clz(U{A C Z|A is crowded}).
Then X is a crowded submaximal Hausdorff space, and since
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Z\X is scattered, it is o-discrete. Since Z is not o-discrete,
neither is X.

(iv) = (vi). Suppose that there exists a crowded submax-
imal space Y which is not strongly o-discrete. The property
of being submaximal is hereditary, so it suffices to show that
Y has a crowded Baire subset. Since in a submaximal space
every nowhere-dense subset is closed and discrete, Y is second
category in itself. Therefore, ¥ has a non-empty open, and
therefore crowded, subset X which is Baire.

(vi) = (iii). Let Y be a Hausdorff crowded irresolvable
Baire space. Let H be an open hereditarily irresolvable subset
of Y and denote the topology on X by 7. Then X is Baire,
and since it is hereditarily irresolvable, every somewhere-dense
subset of X contains a non-empty open subset of X. Let 7 be
a maximal topology on X which strengthens 7, and let X be X
with the topology 7. Since X is Hausdorff, so is X. Suppose X
were o-discrete, say X = Uge, Dy where each set Dy is discrete
as a subset of X. Since X = Uge, Dy, there exists kg € w such
that Dy, is somewhere-dense in X. Therefore, there exists a
non-empty open subset U of X such that U C Dy,. Since
7 C 7, U is also open in X. Therefore, Dy, contains a non-
empty open subset of X, and since Dy, is discrete, X has an
isolated point, contradicting the fact that X is crowded.

O

The significance of Proposition 3.1 lies in the fact, shown
in [M], that condition (vi) in the Proposition is known to be
equivalent to an affirmative answer to the old question, due
to Katétov, which asks if there is a crowded Hausdorff space
with the property that every real-valued function defined on
the space is somewhere continuous. A consistent answer to
Katétov’s question was given in [KST] assuming the consis-
tency of the existence of a measurable cardinal. Therefore, we
get the following corollary.



Submaximal Spaces 153

Corollary 3.2 If it is consistent that there is a measurable
cardinal, then it is consistent that there is a crowded submaz-
imal Hausdorff space (in fact, a crowded mazimal Hausdorff
space) which is not o-discrete.
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