Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

Spaces Having σ -Compact-Finite k-Networks, and Related Matters

Chuan Liu* and Yoshio Tanaka

Introduction

Let X be a space, and let \mathcal{P} be a collection of subsets of X. We recall that \mathcal{P} is *point-countable* (resp. *star-countable*) if every $x \in X$ (resp, $P \in \mathcal{P}$) meets at most countably many $Q \in \mathcal{P}$. Also, \mathcal{P} is *compact-finite* (resp. *compact-countable*) if every compact subset of X meets at most finitely (resp. countably) many $P \in \mathcal{P}$. A collection $\cup \{\mathcal{P}_n : n \in N\}$ is σ -compact-finite if each \mathcal{P}_n is compact-finite. Clearly, every σ -compact-finite collection is compact-countable, and thus, point-countable.

Let X be a space, and let \mathcal{P} be a cover of X. Recall that \mathcal{P} is a *k*-network if whenever $K \subset U$ with K compact and U open in X, then $K \subset \cup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$. As is well-known, spaces with a countable (resp. σ -locally finite) k-network are called \aleph_0 -spaces (resp. \aleph -spaces).

Every CW-complex, more generally, every space dominated by locally separable metric subspaces has a star-countable knetwork. Also, every Lašnev space has a σ -hereditarily closure

^{*}Partially supported by NNSF of China. This work has been done during the first author's stay at Tokyo Gakugei University

preserving (briefly, σ -HCP) k-network, and every space dominated by Lašnev subspaces has a σ -compact-finite k-network.

We recall that spaces with a star-countable k-network, and spaces with a σ -HCP k-network have σ -compact-finite k-networks.

Spaces with a star-countable k-network are investigated in [9], [18], [20], and [26]. Spaces with a σ -HCP k-network are investigated in [16], and so are spaces with a compactcountable k-network in [19], and [20].

In this paper, we shall investigate spaces with a σ - compactfinite k-network as well as related spaces, and their examples and applications.

We assume that all spaces are regular, T_1 , and that all maps are continous and onto.

Results

Let X be a space, and let C be a cover of X. Then X is determined by C [7] (= X has the weak topology with respect to C in the usual sense), if $F \subset X$ is closed in X if and only if $F \cap C$ is closed in C for every $C \in C$. Every space is determined by its open cover. We recall that a space X is a k-space (resp. sequential space) if it is determined by a cover of compact subsets (resp. compact metric subsets) of X. A space has countable tightness if X is determined by a cover of countable subsets; cf. [22]. For a cover C of a space X, X is dominated by C if the union of any subcollection C' of C is closed in X, and the union is determined by C'. Every space is dominated by its σ -HCP closed cover. As is well-known, every CW-complex is dominated by a cover of compact metric subsets.

Lemma 1 Let X have a point countable k-network. Then (1) and (2) below hold, here (1); (2) is due to [2]; [7] respectively.

- (1) If X is compact, then X is metric.
- (2) If X is a k-space, then X is sequential, thus, of countable tightness.

Let \mathcal{P} be a colletion of subsets of X. Then \mathcal{P} is *cs*finite [15] if any convergent sequence meets only finitely many $P \in \mathcal{P}$. Let \mathcal{P} be a cover of X. Then \mathcal{P} is a *cs*-network [8], if whenever $L = \{x_n; n \in N\}$ is a sequence converging to a point $x \in X$ such that $x \in U$ with U open in X, then there exists $P \in \mathcal{P}$ such that $x \in P$, $P \subset U$, and P contains Leventually (i.e., P contains $\{x_n : n \geq m\}$ for some $m \in N$). If we replace "eventually" by "frequently (i.e., P contains a subsequence of L)", then \mathcal{P} is a cs^* -network [6]. Also, if we need not require " $x \in P$ " in the definition of a cs^{*}-network, then such a cover is a wcs^* -network [14]. Every cs-network and every k-network of closed subsets are cs^{*}-networks, and every cs^{*}-network is a wcs^{*}-network. Every quotient s-image of a metric space is characterized as a sequential space with a point-countable cs^{*}-network [32].

In view of the following, we see that, among sequential spaces, the theory of spaces with a σ -compact-finite k-network can be done by means of " convergent sequences" instead of "compact subsets". Here, a space has G_{δ} points if every point is a G_{δ} -set. We note that not every compact space with a cs-finite and star-countable cs-network has a point-countable k-network (hence, not a σ -compact-finite k-network); indeed, the Stone-Čech compactification $\beta(X)$ of a non-compact space X is such a space by Lemma 1(1).

Proposition 2 (1) For a cover \mathcal{P} of a space X, the following are equivalent.

- (a) \mathcal{P} is a σ -compact-finite k-network.
- (b) \mathcal{P} is a σ -cs-finite k-network.

(c) \mathcal{P} is a σ -cs-finite wcs^{*}-network, and each compact subset of X is sequentially compact.

(2) Let X be a sequential space, or a space with G_{δ} points. Then, a cover of X is a σ -compact-finite k-network if and only if it is a σ -cs-finite wcs^{*}-network.

Proof: For (1), obviously, (a) implies (b). (b) implies (c), because each compact subset of X is metric by Lemma 1(1), and thus, sequentially compact. So, we show that $(c) \Rightarrow (a)$ holds. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in N\}$ be a σ -cs-finite wcs*-network for X. Since \mathcal{P} is a point-countable wcs^{*}-network and any compact subset of X is sequentially compact, \mathcal{P} is a k-network by [32; Proposition 1.2(1)]. To show that \mathcal{P} is σ -compactfinite, suppose that some compact set K of X meets infinitely many $P \in \mathcal{P}_n$ for some $n \in N$. Then, there exist $\{x_n : n \in$ $N \subset K$ and $\{P_n : n \in N\} \subset \mathcal{P}_n$ such that $x_n \in P_n$, and the x_n are distinct, and so are the P_n . Since K is sequentially compact, there exists a convergent subsequence C of $\{x_n : n \in$ N. But the convergent sequence C meets infinitely many $P \in \mathcal{P}_n$. This is a contradiction. Thus, \mathcal{P} is a σ -compactfinite k-network. For (2), note that if X is a sequential space, or a space with G_{δ} points, then each compact subset of X is sequentially compact. Thus, (2) follows from (1).

Now, let us consider the operations: (i) Subsets; (ii) Domination; (iii) Countable products; (iv) Closed maps with k-space domain; and (v) Perfect maps.

The property of having a star-countable k-network is preserved by the all operations; see [9], [19], etc. However, the property of having a σ -HCP k-network need not be preserved by (ii); nor (iii); see [34]; [11] respectively. But, the property of having a σ -compact-finite k-network is preserved by the all operations in view of Theorem 3 below (for (iii), cf. [7; Theorem 7.1]). We note that every closed image of a space with a compact-finite k-network of singletons need not have even a point-countable k-network; see [25]. Thus, the additional assumptions on X in case (d) of Theorem 3 are essential.

Theorem 3 Each of the following (a) ~ (d) implies that Y has a σ -compact-finite k-network.

- (a) Y has a star-countable k-network.
- (b) Y has a σ -HCP k-network.
- (c) Y is dominated by spaces with a σ -compact-finite k-network.
- (d) Y is the closed image of a space X with a σ -compactfinite k-network, and one of the following properties holds.
- (i) X is a k-space.
- (ii) X is a space with G_{δ} points.
- (iii) X is a normal space, and each countably compact closed subset is compact.
- (iv) X is realcompact
- (v) Each $\partial f^{-1}(y)$ is Lindelöf.

Proof: For case (a); (b); or (c), the result is due to [18]; [15]; or [19] respectively. So, we show the result for (d) holds. Let $f: X \to Y$ be a closed map, and let X be a space with a σ -compact-finite k-network $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in N\}$. For each $y \in Y$, choose $x_y \in f^{-1}(y)$, and let $A = \bigcup \{x_y : y \in Y\}$. For each $n \in N$, let $\mathcal{C}_n = \{f(A \cap P) : P \in \mathcal{P}_n\}$. Then $\mathcal{C} = \bigcup \{\mathcal{C}_n : n \in N\}$ is σ -point-finite. Let us consider the following conditions (C_1) and (C_2) with respect to the closed map f.

 (C_1) : For any infinite compact subset K of Y, and any sequence S in $f^{-1}(K)$ with f(S) infinite, there exists a convergent subsequence of S.

 (C_2) : f is compact-covering (i.e., every compact subset of Y is the image of a compact subset of X), and for any sequence $\{y_n : n \in N\}$ in Y converging to $y \in Y$, and any points $x_n \in f^{-1}(y_n)$, a closed map f|F is also compact-covering, where $F = \partial f^{-1}(y) \cup \{x_n : n \in N\}$ which is closed in X.

Then, (C_1) holds for (i) & (ii) by Lemma 1(2) and [14: Lemma 2]. Also, (C_2) holds for (iii) & (v); and (iv) by [14; Lemma 4]; and [4; Theorem 3.4] respectively. But, (C_1) or (C_2) implies that each compact subset of Y is sequentially compact by Lemma 1(1), besides, C is a wcs^{*}-network. To show that C is σ -cs-finite, for some $n \in N$, suppose that an infinite convergent sequence K in Y meets infinitely many distinct members $f(A \cap$ P_k $\in \mathcal{C}_n$. Since \mathcal{C}_n is point-finite, we can assume that each point of K is contained in some of these $f(A \cap P_k)$. Then, there exists a sequence $S = \{x_m : m \in N\}$ in $A \cap f^{-1}(K)$ such that $x_m \in P_{k(m)} \in \mathcal{P}_n$, and the x_m are distinct, and also so are the $P_{k(m)}$. But, (C_1) or (C_2) implies that there exists a convergent subsequence C of S. Then C meets infinitely many elements of \mathcal{P}_n . This is a contradiction. Thus, \mathcal{C} is a σ -csfinite wcs^{*}-network for Y. Thus, by Proposition 2(1), C is a σ -compact-finite k-network for X.

For a space X, the character $\chi(X)$ of X is the smallest cardinal number of the form $|\mathcal{B}_x|$, here \mathcal{B}_x is a local base at $x \in X$. A space X is ω_1 -compact if every subset of cardinality ω_1 has an accumulation point in X.

Lemma 4 Let X be a k-space, and let $C = \bigcup \{C_n : n \in N\}$ be a σ -compact-finite collection in X. Then (1) and (2) below hold.

(1) If $\chi(X) \leq \omega_1$, then C is σ -locally countable.

(2) If X is locally ω_1 -compact, then C is locally countable.

Proof: For (1), let $x \in X$, and let $\{V_{\beta} : \beta < \omega_1\}$ be a local base at x in X. Then, for each $n \in N$, there exists some V_{β} such

that V_{β} meets only countably many $C \in C_n$. Indeed, for some $n \in N$, suppose not. Then, by induction, there exist a subset $S = \{x_{\beta} : \beta < \omega_1\}$ of X and a subcollection $\{C_{\beta} : \beta < \omega_1\}$ of C_n such that $x_{\beta} \in V_{\beta} \cap C_{\beta}$, where $x_{\beta} \neq x$, and the C_{β} are distinct. But, S has an accumulation point in X, so it can be assumed to be not closed in X. Then, since X is a k-space, there exists a compact subset K of X which contains infinitely many points in S. This shows that the compact set K meets infinitely many elements of C_n . This is a contradiction. Thus, for each $n \in N$, any point of X has a nbd V such that V meets only countably many $C \in C_n$. Hence, C is σ -locally countable. For (2), let $x \in X$, and let V be a nbd of x which is ω_1 -compact. Then V meets only countably many elements of C in view of the proof of (1). Thus, C is locally countable.

Remark 5 We note that not every k-space with a σ -compactfinite k-network has a σ -HCP k-network in view of [11] & [15], and not every space with a compact-finite and locally countable k-network consisting of singletons is a σ -space [25]. In [15], the first author shows that the following hold.

(1) Among Fréchet spaces, every σ -compact-finite k-network is σ -HCP. Thus, a space is Lašnev if and only if it is a Fréchet space with a σ -compact-finite k-network.

(2) Among k-spaces, every σ -compact-finite k-network of closed subsets is σ -locally finite. Thus, a k-space is an \aleph -space if and only if it has a σ -compact-finite k-network of closed subsets.

Theorem 6 (CH) Let X be a k-space with a σ -compact-finite k-network. Then X is locally separable if and only if X is the topological sum of \aleph_0 -spaces.

Proof: For $x \in X$, let V be a nbd of x which is separable. Then V is sequential by Lemma 1(2), and it has a σ -compact-finite k-network. Also, V is separable, so $\chi(V) \leq 2^{\omega} = \omega_1$ under (CH). Thus, V is a sequential space with a σ -locally countable k-network by Lemma 4(1). While, by [12; Proposition 1], every sequential space with a σ -locally countable k-network is meta-Lindelöf (i.e., every open cover has a point-countable refinement). Then the separable space V is meta-Lindelöf. But, every separable, meta-Lindelöf space is Lindelöf. Then V is Lindelöf, thus, ω_1 -compact. This shows that X is locally ω_1 -compact. Hence, X has a locally countable k-network by Lemma 4(2). Since X is a k-space, X is the topological sum of \aleph_0 -spaces by [12; Theorem 1] (or [9]).

We note that not every separable, \aleph -space with a compactfinite, locally countable k-network need be an \aleph_0 -space [9; Example 4.1]. And, not every separable, k-space with a pointcountable closed cs-network need be an \aleph_0 -space [7; Example 9.3]. Also, we note that not every cosmic, k-space with a pointcountable closed k-network need be an \aleph_0 -space [35; Example 1.6], where a space is *cosmic* if it has a countable network.

As for conditions for separable spaces to be \aleph_0 -spaces, the following holds. In (1), case (c) gives an affirmative answer to [20: Question 3.1] under (CH).

Theorem 7 (1) Let X be a separable space. Then each of the following implies that X is an \aleph_0 -space.

- (a) X is a Fréchet space with a point-countable k-network.
- (b) X is a k-space with a star-countable k-network.
- (c) (CH). X is a k-space with a σ -compact-finite k-network. (When X is meta-Lindelöf, or $\chi(X) \leq \omega_1$, (CH) can be omitted).

(2) Let X be a cosmic space. If X has a point-countable cs-network, then X is an \aleph_0 -space.

Proof: In (1), for case (a); (b), the result is respectively due to [7]; [26]. For case (c), the result holds in view of the proof

of Theorem 6. To see (2) holds, let \mathcal{P} be a point-countable cs-network for X. Since X is cosmic, it is easy to show that X has a countable subset D such that, for any $x \in X$, there exists a sequence in D converging to x. Let $\mathcal{P}' = \{P \in \mathcal{P} : P \cap D \neq \emptyset\}$. Then, \mathcal{P}' is countable. To see that \mathcal{P}' is a csnetwork for X, let $\{x_n : n \in N\}$ be a sequence converging to $x \in X$, U be a nbd of x. But, there exists a sequence $\{y_n; n \in N\}$ in D converging to the point x. Clearly, L = $\{x_1, y_1, x_2, y_2, \ldots, x_n, y_n, \ldots\}$ converges to the point x. Since \mathcal{P} is a cs-network, there exists $P \in \mathcal{P}$ such that P contains x, and L eventually, thus, $P \in \mathcal{P}'$. Then, \mathcal{P}' is countable cs-network. Thus, X is an \aleph_0 -space by [8; Theorem 1].

Lemma 8 Let \mathcal{P} be a point-countable cs^* -network for a space X. Let $K = \{x_n : n \in N\} \cup \{x\}$ be a sequence with a limit point x, and let U be an open set with $U \supset K$. Then there exists a finite $\mathcal{P}' \subset \mathcal{P}$ such that, for some $i \in N, \{x_n : n \ge i\} \cup \{x\} \subset \cup \mathcal{P}' \subset U$, and, for each $P \in \mathcal{P}', P \cap K$ is closed in K (thus, if $P \cap K$ is infinite then P contains the point x).

Proof: Let $\{P \in \mathcal{P} : P \subset U$, and $P \cap K$ is non-empty, closed in $K\} = \{P_n : n \in N\}$. Then, for some $i, j \in N, \{x_n : n \ge i\} \cup \{x\} \subset \cup \{P_n : n \le j\}$. Indeed, suppose not. Then there exists a subsequence $L = \{x_{n(i)} : i \in N\}$ of K such that $x_{n(i)} \in X - \cup \{P_n : n \le i\}$. Since $L \cup \{x\} \subset U$, there exists $P_0 \in \mathcal{P}$ such that $P_0 \subset U$, and P_0 contains the point x and Lfrequently. Thus, $P_0 \cap K$ is non-empty, closed in K, so $P_0 = P_m$ for some $m \in N$, hence P_m contains L frequently. This is a contradiction

Theorem 9 (1) Let X be a k-space with a σ -compact-finite k-network. Then X has a star-countable k-network if and only if every metric closed subset of X is locally ω_1 -compact.

(2) Let X be a sequential space with a σ -compact-finite (resp. compact-countable) cs^{*}-network. Then X is the topological sum of \aleph_0 -spaces (resp. k_{ω} -and- \aleph_0 -spaces) if and only

if every metric closed subset of X is locally ω_1 -compact (resp. locally compact). Here, a space is a k_{ω} -space [21] if it is determined by a countable cover of compact subsets.

Proof: The "only if" part of (1) holds, because every first countable space with a star-countable k-network is locally separable metric [9; Theorem 1.4]. For the "if" part of (1), let X have a σ -compact-finite k-network \mathcal{P} which is closed under finite intersections, and let every first countable closed subset of X be locally ω_1 -compact. Let K be a compact subset of X, and let $\mathcal{P}_K = \{P \in \mathcal{P}; P \cap K \neq \emptyset\}$, and let $\{\mathcal{P}_n : n \in N\}$ be the collection of all covers of K consisting of finite subcollection of \mathcal{P}_K . For each $n \in N$, let $\mathcal{C}_n = \{ \cap \{ P_i : P_i \in \mathcal{P}_i, i \leq n \} \}$, and $A_n = \bigcup C_n$. Then $\{A_n : n \in N\}$ is a decreasing sequence such that A_n are finite unions of elements of $\mathcal{P}, A_n \supset K$, and any open subset containing K contains some clA_m . Suppose that any clA_n is not ω_1 -compact in X. Then any clA_n contains a closed discrete subset D_n of X with cardinality ω_1 . Let $F = K \cup (\cup \{D_n : n \in N\})$. Then F is a closed subset of X which is a σ -space, and an M-space, for X is the perfect pre-image of a metric space F/K. Then, as is well-known, F is metric. (We can also see that F is metric by Lemma 13 below, because F is a first countable space, and it has a σ -compact-finite k-network by Proposition 2(2)). But, F is not locally ω_1 -compact. This is a contradiction. Then, for some $n \in N$, clA_n is ω_1 -compact. While, any open subset containing K contains some clA_m . This implies that, $\mathcal{P}^* = \{P \in \mathcal{P} : clP \text{ is } \omega_1 \text{-compact in } X\}$ is a k-network for X. Also, since each closure of elements of \mathcal{P}^* is ω_1 -compact, \mathcal{P}^* is star-countable in view of the proof of Lemma 4. Then, X has a star-countable k-network \mathcal{P}^* . For the "if" part of (2), let $K = \{x_n : n \in N\} \cup \{x\}$ be a sequence with a limit point x, and let $\mathcal{P}_K = \{ P \in \mathcal{P} : P \cap K \text{ is non-empty, closed in } K \}$, and let $\{\mathcal{P}_n : n \in N\}$ be the collection of all finite subcollections of \mathcal{P}_K such that any $\cup \mathcal{P}_n$ contains x, and K eventually. Then, replacing "k-network" by "cs*-network" in the above proof, \mathcal{P}^* is a σ -compact-finite cs*-network by Lemma 8, and \mathcal{P}^* is star-countable. Then, \mathcal{P}^* is a star-countable k-network for X by Proposition 2(2). But, since X is sequential, X is determined by \mathcal{P}^* . Thus, X is the topological sum of \aleph_0 -spaces by [9; Corollary 1.2]. For the parenthetic part, the "only if" holds, because, as is well-known, every first countable k_{ω} -space is locally compact (note that each point has a nbd which is contained in a finite union of compact subsets). For the "if" part, similarly, X is the topological sum of \aleph_0 -spaces $X_{\alpha}(\alpha \in A)$. Since every metric closed subset of X is locally compact, similarly, each X_{α} has a countable k-network of compact subsets. Then X_{α} is a k_{ω} -space, for it is a k-space. Then, X is the topological sum of k_{ω} -and- \aleph_0 -spaces.

Lemma 10 ([35]). Suppose that X is determined by a pointcountable cover C, or X is dominated by cover C. Let $\{A_n : n \in N\}$ be a collection of subsets of X such that if $x_n \in A_n$, then $\{x_n : n \in N\}$ has an accumulation point in X. Then, for some $m \in N$, A_m is contained in a finite union of elements of C.

Corollary 11 Suppose that X is determined by a point-countable cover of locally ω_1 -compact subsets, or dominated by a cover of locally ω_1 -compact subsets. Then (1) and (2) below hold.

(1) If X is k-space with a σ -compact-finite cs^{*}-network, then X has a star-countable k-network.

(2) If X is a sequential space with a σ -compact-finite cs^{*}network, then X is the topological sum of \aleph_0 -spaces (hence, X is an \aleph -space).

Under (CH), it is possible to replace "locally ω_1 -compact" by "locally separable".

Proof: Let F be a metric closed subset of X. Suppose that X is determined by a point-countable cover $\{X_{\alpha} : \alpha \in A\}$ of

locally ω_1 -compact subsets. Since F is closed, F is determined by a point-countable cover $\{F \cap X_\alpha : \alpha \in A\}$. Since each $F \cap X_\alpha$ is locally separable metric, $F \cap X_\alpha$ is determined by a point-countable cover $\{X_{\alpha\beta} : \beta \in B_\alpha\}$ of separable metric subsets. Hence, F is determined by a point-countable cover $\{X_{\alpha\beta} : \alpha \in A, \beta \in B_\alpha\}$ of separable metric subsets. Next, suppose that X is dominated by a cover $\{X_\alpha : \alpha \in A\}$ of locally ω_1 -compact subsets. Then, F is dominated by a cover $\{F \cap X_\alpha : \alpha \in A\}$ of locally separable metric subsets. Then, for any case, F is locally ω_1 -compact by Lemma 10. Then, every metric closed subset is locally ω_1 -compact. Then, (1) and (2) holds by Theorem 9. For the latter part holds by means of Theorem 6 and Corollary 7.

It is well-known that every quotient s-image of a locally compact metric space is precisely a space determined by a point-countable cover of compact metric subsets, and that every CW-complex is dominated by a cover of compact metric subsets. Also, recall that every space determined by a pointcountable cover of metric subsets has a point-countable cs^{*}network ([32]), and that every space X dominated by metric subsets X_{α} has a σ -compact-finite k-network (Theorem 3), and, in particular, X has a star-countable k-network if the X_{α} are locally separable ([9]). However, every CW-complex need not have a point-countable cs^{*}-network, also every CWcomplex determined by a point-finite cover of compact metric subsets need not have a point-countable cs-network ([18]). But, for spaces determined by locally separable metric subsets, we have the following theorem.

Theorem 12 (1) Suppose that X is determined by a pointcountable cover of locally separable metric subsets. If X has a σ -compact-finite k-network, then X has a star-countable knetwork.

(2) Suppose that X is determined by a point-countable cover

of locally separable (resp. locally compact) metric subsets, or X is dominated by a cover of locally separable (resp. locally compact) metric subsets. If X has a σ -compact-finite (resp. compact-sountable) cs^{*}-network, then X is the topological sum of \aleph_0 -spaces (resp. k_{ω} -and- \aleph_0 -spaces).

(3) (i) Suppose that X is determined by a point-countable closed cover of locally separable metric subsets (in particular, X is determined by a point-countable cover of locally compact metric subsets). If X has a point-countable cs-network, then X is a locally \aleph_0 -spaces. When X is meta-Lindelöf, X is the topological sum of \aleph_0 -spaces.

(ii) Suppose that X is dominated by a cover of locally separable metric subsets. If X has a point-countable cs-network, then X is the topological sum of \aleph_0 -spaces [18].

Proof: Since X is sequential, (1) and (2) holds by Corollary 11. For the parenthetic part of (2), suppose that X is determined by a point-countable cover of locally compact metric subsets. Since any locally compact metric space is determined by a point-finite cover of compact metric, X is determined by a point-countable cover of compact metric subsets. Thus, X is the topological sum of k_{ω} -and- \aleph_0 spaces by means Lemma 10 and the parenthetic part of Theorem 9(2). For (3), let \mathcal{P} be a point-countable cs-network for X which is closed under finite intersections. Let $K = \{x_n : n \in N\} \cup \{x\}$ be a sequence with a limit point x, and let $\mathcal{P}_K = \{P \in \mathcal{P} : P \ni x, \text{ and } P \text{ contains} \}$ K eventually $= \{P_n : n \in N\}$. Let $A_n = \cap \{P_i : i \leq n\}$ for each $n \in N$. Then $\{A_n : n \in N\}$ is a decreasing sequence such that $A_n \in \mathcal{P}, A_n \ni x, A_n$ contains K eventually, and any nbd of x contains some A_n . For (i), since any sequence $\{x_n : n \in N\}$ with $x_n \in A_n$ has an accumulation point in X, by Lemma 10, for some $i \in N$, A_i is contained in a locally separable metric space. Since A_i contains x and K eventually, for some $j \in N$ with $j \ge i$, A_j is separable metric. Then X is a sequential space with a point-countable cs-network of separable metric subsets. Thus, in view of the proof of Theorem 2.4 in [13], X has a locally \aleph_0 -space. When X is meta-Lindelöf, X has a point-countable open cover of \aleph_0 -spaces, thus, X is determined by this star-countable cover. Then, X is the topological sum of \aleph_0 -spaces by means of [9; Lemma 1.2]. For (ii), similarly, X is a locally \aleph_0 -space. But, as is well-known, every space dominated by metric subsets is paracompact, so X is paracompact. Thus, X is the topological sum of \aleph_0 -spaces.

Let us consider a canonical space dominatede by metric subsets (not every piece is locally separable).

Example 13 Let M be a metric space. For each $x \in M$, let L_x be a sequence converging to the point x such that $L_x \cap M = \emptyset$, and the L_x are pairwise disjoint. Let $S_x = M \cup L_x$, and let $X_x = L_x \cup \{x\}$. Let S be the space determined by a point-finite cover $\{M, X_x : x \in M\}$ of metric subsets. Equivalently, S is dominated by a cover $\{S_x : x \in M\}$ of metric subsets. When M is an infinite convergent sequence with a limit point x, a subspace $(S - L_x)$ of S is called the Arens' space S_2 .

M. Sakai [27] ask the following questions on the space S.

Questions (1) What are topological properties of S in terms of k-network?

(2) When does S have a point-countable cs-network? Also, if S has a point-countable cs-network, then is S an \aleph -space?

We shall give answers to (1) and (2), and give characterizations for S to have certain k-networks in terms of the metric space M. First, let us recall definitions. For a space X, let T_x be a collection of subsets of X such that any element of T_x contains x. The collection $T_X = \bigcup \{T_x : x \in X\}$ is a weak base [1] for X if it satisfies: The $T_1, T_2 \in T_x$, there exists $T_3 \in T_x$ with $T_3 \subset T_1 \cap T_2$; and, $U \subset X$ is open in X if and only if for each $x \in U$, there exists $T \in T_x$ with $T \subset U$. The T_x is a local weak base at x in X. Every weak base is a cs-network [14]. A space X is g-first countable [28] (or X satisfies the weak first axiom of countability [1]) if X has a weak base $T_X = \bigcup \{T_x : x \in X\}$ such that each T_x is countable.

Properties of the space S: (A) S is a g-first countable, paracompact, and σ -space. Besides, S has a σ -compact-finite knetwork, and a point-countable closed cs^{*}-network.

(B) S is metric \Leftrightarrow S is locally compact \Leftrightarrow S is Fréchet \Leftrightarrow M is discrete.

(C) S has a star-countable k-network $\Leftrightarrow M$ is locally separable.

(D) S has a locally countable k-network \Leftrightarrow S has a starcountable closed k-network \Leftrightarrow S is locally separable \Leftrightarrow M is the topological sum of countable subsets. In particular, S is an \aleph_0 -space \Leftrightarrow S is separable \Leftrightarrow M is countable.

(E) S has a star-countable (or locally countable) k-network of compact subsets $\Leftrightarrow S$ is a locally k_{ω} -space $\Leftrightarrow M$ is the topological sum of countable, compact subsets. In particular, S has a countable k-network of compact subsets $\Leftrightarrow S$ is a k_{ω} space $\Leftrightarrow M$ is countable, locally compact.

(F) S has a point-countable k-network of separable (resp. compact) subsets $\Leftrightarrow M$ is locally separable (resp. locally compact).

(G) The following (a) \sim (g) are equivalent, and (g) implies (h).

(a) S is an \aleph -space.

(b) S has a σ -locally countable k-network.

- (c) S has a σ -HCP k-network.
- (d) S has a σ -compact-finite cs^{*}-network.
- (e) S has a point-countable cs-network.

(f) M is the countable union of closed discrete subsets.

(g) M has a point-countable open cover \mathcal{V} satisfying (*): Each $V \in \mathcal{V}$ contains a point x(V) such that $\{x(V) : V \in \mathcal{V}\} = M$. (h) For any subspace A of M, $|A| = \omega(A)$, here $\omega(A)$ is the weight of A.

Proof: (A): Since S is dominated by metric subsets, as is well-known, S is a paracompact σ -space (indeed, M_1 -space; see [31], for example). Let $X_0 = M$, and let $M' = \{0\} \cup M$. For $p \in X_x$ $(x \in M')$, let $\{V_{xn}(p) : n \in N\}$ be a decreasing local base at p in X_x . For each $p \in S$, and $n \in N$, let $Q_n(p) =$ $\cup \{V_{xn}(p) : p \in X_x, x \in M'\}$. Since S is determined by a point-finite cover $\mathcal{C} = \{X_x : x \in M'\}, \{Q_n(p) : n \in N\}$ is a weak nbd of p in S. Thus, S is g-first countable. Since any compact subset of S contained in a finite union of elements of the closed cover \mathcal{C} , it is routine to show that S has a pointcountable closed cs^{*}-network. Also, S has a σ -compact-finite k-network by Theorem 3.

(B): It suffices to show that if S is Fréchet, then M is discrete. Assume that M is not discrete. Then M has an infinite convergent sequence. Hence, S contains a copy of S_2 . But, S_2 is not Fréchet. Then, S is not Fréchet.

(C): If S has a star-countable k-network, then so does M. Since M is first countable, M is locally separable by [7; Proposition 3.3]. Conversely, if M is locally separable, then, S has a star-countable k-network by (a) and Theorem 12(1).

(D): Suppose that S is locally separable. Since every separable subset of S meets only countably many of L_x 's. S is a locally \aleph_0 -space. But, S is paracompact by (A). Thus, each of the first three equivalence holds by [9; Theorem 1.4 and Proposition 1.5]. For the last equivalence, if M is locally separable, then M is the topological sum of separable subsets M_α . But, $\cup \{L_x : x \in M_\alpha\} \cup M_\alpha$ locally separable, then each M_α is countable. Thus, M is the topological sum of countable subsets.

(E): This is shown by a similar way as in (D), so we omit the proof.

(F): Let S have a point-countable k-network of separable subsets. Then so does M. Thus, since M is first countable, M is locally separable by [7; Proposition 3.2]. Conversely, let M be locally separable. Then M is determined by a pointcountable cover of separable metric closed subsets. But, since S is determined by a point-finite closed cover $\{M, X_x : x \in M\}$, it is routinely shown that S has a point-countable k-network of separable metric closed k-network.

(G): First, we show that (b) \Rightarrow (a) holds. Let $\mathcal{P} = \cup \mathcal{P}_n$ be a σ -locally countable closed k-network for S. For $n \in N$, and $x \in S$, let V_{xn} be a nbd of X meeting only countably many elements of \mathcal{P}_n . Since $\{V_{xn} : x \in S\}$ is an open cover of a paracompact space S, there exists a locally finite open refinement \mathcal{U}_n of $\{V_{xn} : x \in S\}$. For each $U \in \mathcal{U}_n$, $\{U \cap P :$ $P \in \mathcal{P}_n$ = { $P_{ni}(U) : i \in N$ }. Let $\mathcal{U}_{ni} = \{P_{ni}(U) : U \in \mathcal{U}_n\}$ \mathcal{U}_n , and $\mathcal{W}_n = \bigcup \mathcal{U}_{n\,i}$ and let $\mathcal{W} = \bigcup \mathcal{W}_n$. Then \mathcal{W} is σ locally finite in S. We show that W is a k-network. Let V be open in S, and let $\{x_n : n \in N\}$ be a sequence converging to $x \in V$. Then, there exists $P \in \mathcal{P}_n$ for some $n \in N$ such that P contains a subsequence of $\{x_n : n \in N\}$. But, \mathcal{U}_n is an open cover of S, there exists $U \in \mathcal{U}_n$ containing x. Then, $P \cap U \in \mathcal{W}_n$, $P \cap U \subset V$, and $P \cap U$ contains a subsequence of $\{x_n : n \in N\}$. While, every compact subset of S is sequentially compact. Thus, \mathcal{W} is a k-network by [32: Proposition 1.2]. Then, S is an \aleph -space, thus, (a) holds. Next, we show that (d) \Rightarrow (f), and (f) \Rightarrow (a) hold. Let (d) hold, and let $\mathcal{P} = \cup \mathcal{P}_n$ be a σ -compact-finite cs^{*}-network for S which is closed under finite intersections. Since S is dominated by metric subsets, in view of the proof of Theorem 9(2), using Lemma 10, we can assume that, for each $P \in \mathcal{P}$, clP is metric. For each $P \in \mathcal{P}$, let $D(P) = \{x \in M : x \in P, \text{ and } L_x \text{ is contained in }$ P frequently E For each $P \in \mathcal{P}$, clP is metric, so it contains no copy of S_2 . Thus, each D(P) is closed discrete in M. For each $n \in N$, let $D_n = \bigcup \{D(P) : P \in \mathcal{P}_n\}$. Then since \mathcal{P} is a cs^{*}-network for S, M is the union of these D_n 's. To show each D_n is closed discrete in M, suppose not. Then, there exists an infinite sequence K in D_n converging to a point $x \in M$. But, for each D(P), the compact set $C = K \cup \{x\}$ contains at most finitely many points in D(P). Then, the compact set C meets infinitely many elements of \mathcal{P}_n , a contradiction. Thus, M is the countable union of closed discrete subsets D_n . Thus, (f) holds. Conversely, let (f) hold, and let M be the countable union of closed discrete subsets $E_n(n \in N)$. For each $n \in N$, let $C_n = \bigcup \{L_x : x \in E_n\} \cup M$. Then each C_n is a metric closed subset of S. But, each convergent sequence in S is contained in some C_n , then S is determined by a cover $\{C_n : n \in N\}$, for S is sequential. Thus, S is determined by a countable cover $\{C_n : n \in N\}$ of metric closed subsets. Thus, S is an \aleph -space by [31; Proposition 11]. Hence, (a) holds. For (c) \Rightarrow (a), since S is g-first countable, if S has a σ -HCP k-network, S is an \aleph -space by means of [33; Theorem 6]. To show that (e) \Leftrightarrow (g) holds, first, let (e) hold. But, S is a g-first countable by (A). Then, S has a point-countable weak base $T_s = \bigcup \{T_p : p \in S\}$ by [14; Lemma 7]. While, S is dominated by a cover $\{S_x : x \in M\}$ of metric subsets. Then, by Lemma 10, we can assume that, for each $p \in S$ and each $T \in T_p$, T is contained in a finite union of S_x 's. Thus we can assume, for any $T \in T_s$, clT is metric. Since M is closed in $S, \{T \cap M : T \in T_s\}$ is a weak base for M. We recall that, for a space X and for a weak base $T_X = \bigcup \{T_x :$ $x \in X$ for X, any sequence converging to a point $x \in X$ is contained eventually in any element of T_x . Then, since M is first countable, for any $x \in M$ and $T \in T_x$, $x \in int_M(T \cap M)$. Thus, $\mathcal{V} = \{ \operatorname{int}_M(T \cap M) : T \in T_s \}$ is a point-countable open cover of M. For each $V = \operatorname{int}_M(T \cap M) \in \mathcal{V}$, let $D_V = \{x \in V :$ L_x is contained eventually in T}. Then, $\cup \{X_x : x \in D_V\} \subset$ clT. But, since clT is metric, clT contains no copy of S_2 . Thus, D_V is a discrete closed subset of M with $D_V \subset V$. Also, $\{D_V : V \in \mathcal{V}\}$ is a cover of M, because, for any $x \in M$

and $T \in T_x$, $x \in int_M(T \cap M)$ and T contains L_x eventually. Since each $D_V = \{x_t : t \in D_V\}$ is closed discrete in M, there exists a discrete open collection $\{G_t : t \in D_V\}$ in M such that $x_t \in G_t \subset V$. Then, $\{G_t : t \in D_V, V \in \mathcal{V}\}$ is a point-countable open cover of M with $x_t \in G_t$, and $\{x_t : t \in D_V, V \in \mathcal{V}\} = M$. Then (g) holds. Conversely, let (g) hold. Then, since M has a point-countable base, it is easy to show that S has a pointcountable cs-network, thus, (e) holds. We show that (f) \Leftrightarrow (g) holds. Since M is metric, (f) \Rightarrow (g) holds. Let (g) hold, and let M have a point-countable open cover W satisfying (*). Let \mathcal{B} be a σ -locally finite base for M. For each $W \in \mathcal{W}$, choose $B_W \in \mathcal{B}$, with $x(W) \in B_W \subset W$. since \mathcal{W} is pointcountable, for each $B_W \in \mathcal{B}, \{B_{W'}: B_W = B_{W'}\}$ is countable. This shows that $\{B_W : W \in \mathcal{W}\}$ is a σ -locally finite open cover of X satisfying (*). Then, M is the countable union of closed discrete subsets. Thus, (f) holds. For $(g) \Rightarrow (h)$, let \mathcal{B} be a base for A. Then, A has a dense subset D with $|D| \leq |\mathcal{B}|$. But, A has a point-countable open cover \mathcal{V} satisfying (*). Thus, $|\mathcal{V}| \leq |D|$. Hence, $|A| \leq |\mathcal{B}|$, thus, $|A| \leq \omega(A)$. But, since A is metric, $|A| \ge \omega(A)$. Hence $|A| = \omega(A)$.

A space X is strongly Fréchet [28] (= countably bi-sequential in the sense of [22]), if whenever $\{A_n : n \in N\}$ is a decreasing sequence of subsets of X such that $clA_n \ni x$ for each $n \in N$, there exists a sequence $\{x_n : n \in N\}$ coverging to the point x with $x_n \in A_n$. A space X is an inner-closed A-space [23] (or [24]). if whenever $\{A_n : n \in N\}$ is a decreasing sequence of subsets of X such that $cl(A_n - \{x\}) \ni x$ for each $n \in N$, there exist $B_n \subset A_n$ which are closed in X, but $\cup \{B_n : n \in N\}$ is not closed in X. Every first countable space is strongly Fréchet, and every strongly Fréchet space is Fréchet. Every strongly Fréchet space, more generally, every countable bi-quasi-k-space in the sense of [22] is inner-closed A.

We recall canonical quotient spaces S_{ω}, S_{ω_1} , and S_2 . S_{ω} is called the *sequential fan*, and S_2 is the *Arens' space*. S_{ω}, S_{ω_1}

is respectively the space obtained from the topological sum of ω : ω_1 many convergent sequences by identifying all limit points to a single point ∞ . For the space S_2 , see Example 13. We note that neither S_{ω} nor S_2 is an inner-closed A-space.

In [10], it is proved that a space X with a σ -HCP k-network is an \aleph -space if and only if X contains no closed copy of S_{ω_1} . For a k-space with a σ -compact-finite k-network, the following holds.

Theorem 14 Let X be a k-space with a σ -compact-finite knetwork. Then the following are equivalent.

- (a) X contains no closed copy of S_{ω_1} .
- (b) X has a point-countable cs^* -network.
- (c) X is the quotient s-image of a metric space.

Proof: Since X is sequential, the equivalence between (b)and (c) holds by [32; Theorem 2.3]. The implication (b) \Rightarrow (a) holds, because S_{ω_1} has no point-countable cs^{*}-networks by [32; Lemma 2.4]. For the implication (a) \Rightarrow (b), let \mathcal{P} = $\cup \{\mathcal{P}_n : n \in N\}$ be a σ -compact-finite k-network for X. Let $\mathcal{P}^* = \{S(P) : P \in \mathcal{P}\}, \text{ where } S(P) \text{ is the set of all limit points}$ of sequences in P. Then \mathcal{P}^* is point-countable. Otherwise, since \mathcal{P} is a σ -compact-finite cover, for some point $x \in X$, and some \mathcal{P}_n , \mathcal{P}_n contains uncountable many elements P_{α} such that each P_{α} contains an infinite sequence L_{α} converging to the point x, here the sequences L_{α} are disjoint. Then, the space $S = \bigcup \{L_{\alpha} : \alpha\} \cup \{x\}$ is a closed copy of S_{ω_1} , because X is a k-space, and \mathcal{P}_n is compact-finite. Thus, X contains a closed copy S of S_{ω_1} . This is a contradiction. Thus, \mathcal{P}^* is point-countable. Next, to show \mathcal{P}^* is a cs^{*}-network, let L be a sequence converging to a point y, and let U be a nbd of y. Let V be a nbd of y with $clV \subset U$. Since \mathcal{P} is a k-network, there exists $P_0 \in \mathcal{P}$ such that $P_0 \subset V$, and P_0 contains L frequently. Hence, $S(P_0) \subset U$, and $S(P_0)$ contains the point y,

and contains L frequently. This show that \mathcal{P}^* is a cs^{*}-network for X. Thus, \mathcal{P}^* is a point-countable cs^{*}-network for X.

Lemma 15 ([15]). Every strongly Frécht space with a σ -compact-finite k-network is metric.

Lemma 16 ([30]). Let X be a sequential space with G_{δ} points. If X contains no closed copy of S_{ω} and no S_2 (resp. no S_2), then X is strongly Fréchet (resp. Frécht).

Not every paracompact space with a σ -disjoint base is metric; see [3]. Thus, not every first countable space with a σ point-finite k-network is metric. But, for spaces with a σ compact-finite k-network, the following metrization theorem holds. In particular, under (CH), every k-space with a σ compact-finite k-network is metric if it contains no closed copy of S_{ω} , and no S_2 . This gives an affirmative answer to the parenthetic part of Question 3.2 in [20] under (CH).

Theorem 17 Let X be a k-space with a σ -compact-finite knetwork. Then the following are equivalent. When X is a space with G_{δ} points, a meta-Lindelöf space, or (CH) holds, it is possible to omit " $\chi(X) \leq \omega_1$ " in (b).

(a) X is metric.

(b) $\chi(X) \leq \omega_1$, and X contains no closed copy of S_{ω} , and no S_2 .

(c) X is an inner closed A-space.

Proof: (a) \Rightarrow (b) & (c) is obvious. For (b) \Rightarrow (a) suppose (b) holds. Then, X has a σ -locally countable k-network by Theorem 6. Thus, each point of X is a G_{δ} -set in X. But, X is a sequential space which contains no closed copy of S_{ω} , and no S_2 . Thus, X is strongly Fréchet by Lemma 16. Then X is metric by Lemma 15. For (c) \Rightarrow (a), note that X is a k-space with a point-countable k-network. Then X is first countable by [20; Theorem 1.16]. Thus, X is metric. For the latter part of the theorem, let C be a countable subset of X, and let D = clC. We note that every separable meta-Lindelöf space is Lindelöf, thus ω_1 -compact. Then, if X is meta-Lindelöf, or (CH) holds, D is an \aleph_0 -space in view of Lemma 4 and Theorem 6. Thus, Dis a space with G_{δ} points. But, D is a k-space, thus sequential, and D contains no closed copy of S_{ω} , and no S_2 . Thus, D is strongly Fréchet by Lemma 16. Then, C is strongly Fréchet. Thus, any countable subset of X is strongly Fréchet. But, Xhas countable tightness by Lemma 1(2). Thus, X is strongly Fréchet by [22; Propositions 8.5 & 8.7]. Thus, X is metric by Lemma 15.

Corollary 18 (CH) Let X and Y have σ -compact-finite knetworks. For $Z \subset X \times Y$, Z is metric if and only if Z is a k-space which contains no closed copy of S_{ω} , and no S_2 . In particular, if X is a Lašnev space or a CW-compaex, and so is Y, then it is possible to omit (CH).

Remark 19 For $Z = X \times Y$, where X and Y have σ -compactfinite k-network, let us consider the k-ness of X. In [20], the authors show that a necessary and sufficient condition for the product of two k-spaces with a compact-countable k-network to be a k-space is independent of the usual axiom of set theory. As an application of this, the following holds by [20; Theorem 2.4], Lemma 15, and the fact that the product of two k_{ω}-spaces is a k_{ω}-space [21].

(CH). Let X and Y be k-spaces with a σ -compact-finite k-network. For $Z = X \times Y$, Z is a k-space if and only if X or Y is a locally compact metric space; otherwise, Z is a metric space, or a locally k_{ω} (equivalently, topological sum of k_{ω} -and - \aleph_0 -spaces in view of the proof of Theorem 6). If X = Y, it is possible to omit (CH).

In [17], it is proved that a k-space X with a σ -HCP knetwork is g-first countable if and only if X contains no closed copy of S_{ω} . The authors don't know whether the result remains true if we replace " σ -HCP" by " σ -compact-finite". But,the following holds. For the definition of g-first countable spaces, see Example 13.

Theorem 20 Let X be a k-space. If (a), (b), (c), or (d) holds, then, X is g-first countable (resp. Lašnev) if and only if X contains no closed copy of S_{ω} (resp. S_2).

- (a) X has a star-countable k-network.
- (b) X has a σ -HCP k-network; more generally,
- (c) X has a σ -compact-finite k-network, and each point is a G_{δ} -set in X.
- (d) (CH) X has a σ -compact-finite k-network.

Proof: The "only if" part is obvious, so we prove the "if" part holds. For (a), let \mathcal{P} be a star-countable k-network for X. For $x \in X$, let $\mathcal{P}_x = \{P \in \mathcal{P} : P \text{ contains a sequence}\}$ converging to x. X is sequential, and \mathcal{P} is a star-countable k-network, then X is a disjoint union of X_{α} 's, where each X_{α} is a countable union of elements of \mathcal{P} , and, for each finite subset F_{α} of X_{α} , $\cup \{F_{\alpha} : \alpha\}$ is closed discrete in X ([20, 26]). But, X contains no closed copy of S_{ω} , then \mathcal{P}_x is countable. Let $P_x = \operatorname{cl}(\cup \mathcal{P}_x)$. Then, \mathcal{P}_x is separable, so P_x is an \aleph_0 -space by Theorem 7(1). Thus P_x is g-first countable by [17]. Take a local weak base T_x at x in P_x such that T_x is countable. Then, for any sequence L converging to $x \in X$, and any $T \in T_x$, L is contained in T eventually. Let $U \subset X$, and for each $x \in U$, let $x \in T \subset U$ for some $T \in T_x$. Then U is open in X, for X is sequential. Then $\cup \{T_x : x \in X\}$ is a weak base for X. Thus, X is g-first countable. For (c), since X contains no closed copy of S_{ω} , X has a point-countable cs^{*}-network by Theorem 14. Thus, X is g-first countable in view of the proof of Theorem 1 in [17]. For (d), under (CH), every closed separable subset F of X is an \aleph_0 -space by Theorem 7(1), hence each point of F is a G_{δ} -set in F. Thus, X is also g-first countable in view of the proof of Theorem 1 in [17]. For the parenthetic part, the result for (c) holds by Lemma 16 and Remark 5(1). For (d), since X contains no closed copy of S_2 , X is Fréchet by the same way as in the proof of Theorem 17, thus, X is Lašnev. For (a), the proof is similar to (d), but use Theorems 3 and 7(1).

In conclusion of this paper, we shall pose a question on spaces with a σ -compact-finite k-network.

Question 21 Let X be a separable k-space with a σ -compactfinite k-network \mathcal{P} . Then, is X an \aleph_0 -space, a σ -space, or a space with G_{δ} points?

Remark 22 We shall give the following comments related to Question 21.

(1) The space X is an \aleph_0 -space when (CH) holds (Theorem 6); \mathcal{P} is star-countable ([25]); or \mathcal{P} contsits of closed subsets (because, by Remark 5(2), X is an \aleph -space, so X is meta-Lindelöf [5], then X is Lindelöf, hence X is an \aleph_0 -space).

(2) If Question 21 is afirmative, then Corollary 18 remains valid without (CH), for example.

(3) Every k-space Y is meta-Lindelöf if Y has a star-countable k-network ([20]), or a σ -compact-finite k-network of closed subsets (see(1)). (For case where Y has a star-countable knetwork, Y is actually a paracompact σ -space ([26])). But, the k-ness of Y is essential. Indeed, in view of [25], every space with a star-countable, compact-finite, and locally countable closed k-network is not a σ -space, thus meta-Lindelöf by [9; Proposition 1.5]. Also, every space with a star-countable and compact-finite closed k-network is not a space with G_{δ} points [25]. In terms of these, we have the following (more general) questions related to Question 21. **Questions:** (i) Is every k-space with a σ -compact-finite (or σ -HCP) k-network a meta-Lindelöf space?

(ii) Is every k-space with a σ -compact-finite (or star-countable) k-network a σ -space, or a space with G_{δ} points?

References

- A. V. Arhangel'skii, Mappings and spaces, Russian Math. Surveys, 21 (1966), 115-162.
- [2] D. K. Burke and E. Michael, On certain point-countable covers, Pacific J. Math., 64 (1976), 79-92.
- [3] H. H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8 (1964), 351-360.
- [4] N. Dykes, Mappings and realcompact spaces, Pacific J. Math., 31 (1969), 347-358.
- [5] L. Foged, Normality in k-and-ℵ-spaces, Topology and Appl., 22 (1986), 223-240.
- [6] Z. M. Gao, ℵ-spaces is invaliant under perfect mappings, Q & A in General Topology, 5 (1987), 271-279.
- G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113 (1984), 303-332.
- [8] J. A. Guthrie, A characterization of ℵ₀-spaces, General Topology and Appl., 1 (1971), 105-110.
- [9] Y. Ikeda and Y. Tanaka, Spaces having star-countable knetwork, Topology Proc., 18 (1993), 107-132.
- [10] H. Junnila and Y. Ziqiu, ℵ-spaces and spaces with a σhereditarily closure-preserving k-network, Topology and its Appl., 44 (1992), 209-215.

- [11] S. Lin, On a problem of K. Tamano, Q & A in General Topology, 6 (1988), 99-102.
- [12] —, Spaces with a locally countable k-networks, Northeastern Math. J., 6 (1990), 39-44.
- [13] S. Lin and C. Liu, On spaces with point-countable csnetworks, Topology and Appl., 74 (1996), 51-60
- [14] S. Lin and Y. Tanaka, Point-countable k-network, closed maps, and related results, Topology and Appl., 59 (1994), 79-86.
- [15] C. Liu, Spaces with a σ-compact finite k-network, Q & A in General Topology, 10 (1992), 81-87.
- [16] —, Spaces with a σ -hereditarily closure preserving knetwork, Topology Proc., **18** (1993), 179-188.
- [17] C. Liu and M. Dai, g-metrizablity and S_{ω} , Topology and Appl., **60** (1994), 185-189.
- [18] C. Liu and Y. Tanaka, Spaces with a star-countable knetwork, and related results, Topology and Appl., 74 (1996), 25-28
- [19] —, Spaces with certain compact-countable k-networks, and questions, Q & A in General Topology, 14 (1996), 15-37.
- [20] —, Star-countable k-networks, compact-countable knetworks, and related results, to appear in Houston J. Math.
- [21] E. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier, Grenoble, 18 (1968), 287-302.

- [22] —, A quintuple quotient quest, General Topology and Appl., 2 (1972), 91-138.
- [23] —, Countably bi-quotient maps and A-spaces, Topology Conf. Virginia Polytech, Inst. and State Univ., 1973, 183-189.
- [24] E. Michael, R.C. Olson, and F. Siwiec, A-spaces and countably bi-quotient maps, Dissertations Math., (Warszawa), 133 (1976), 4-43.
- [25] M. Sakai, Remarks on spaces with special types of knetworks, Tsukuba J. Math., 21(2) (1997).
- [26] —, On spaces with a star-countable k-networks, Houston J. Math., 23 (1997), 45-56.
- [27] —, Personal communication.
- [28] F. Swiec, Sequence-covering and countabley bi-quotient mappings, General Topology and Appl., 1 (1971), 143-154.
- [29] —, On defining a space by a weak base, Pacific J. Math.,
 52 (1974), 233-245.
- [30] Y. Tanaka, Metrizablity of certain quotient spaces, Fund. Math., 119 (1983), 157-168.
- [31] —, Spaces determined by metric subsets, Q & A in General Topology, 5 (1987), 173-187.
- [32] —, Point-countable covers and k-networks, Topology Proc., **12** (1987), 327-349.
- [33] —, σ -hereditarily closure-preserving k-networks and gmetrizability, Proc. Amer. Math. Soc., **112** (1991), 183-290.

- [34] —, k-networks, and covering properties of CWcomplexes, Topology Proc., 17 (1992), 247-259.
- [35] Y. Tanaka and Z. Hao-xuan, Spaces determined by metric subsets and their character, Q & A in General Topology, 3 (1985/86), 145-160.

Guangxi University Nanning, Guangxi, P. R. CHINA

Tokyo Gakugei University Koganei, Tokyo JAPAN