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Abstract

By modifying Knaster’s continuum of V’s and A’s
there is produced a colocally connected continuum that
is not a simple closed curve but which admits an hered-
itarily monotone mapping onto a simple closed curve.

1 Introduction and Definitions

An hereditarily weakly confluent mapping (see [1]) between con-
tinua X and S is a continuous mapping h : X — S such that
for each subcontinuum K of X and each subcontinuum M of
h(K) there exists a subcontinuum Kjs of K with h(Kp) = M.
In an unpublished paper of Davis and Nadler it was proved
that every arcwise connected, semi-locally connected and cyclic
continuum admitting an hereditarily weakly confluent mapping
onto S! is a simple closed curve, i.e., is homeomorphic to S?!.
The authors asked (a question posed by Nadler at the 1994
Joint Meeting of the AMS/MAA in Cincinatti) whether ev-
ery semi-locally connected and cyclic continuum X admitting
an hereditarily weakly confluent mapping onto S? is a simple
closed curve. The purpose of this paper is to provide a neg-
ative answer to the question. The non-planar continuum and
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mapping constructed are derived from a technique briefly con-
sidered by Nadler and Davis; the technique was suggested to
this author by Nadler. The given mapping onto S! is actually
hereditarily monotone.

For most fundamental definitions the reader is referred to
[2], [5] and [6]. A compactum is a nonempty compact metric
space, and a continuum is a connected compactum. A contin-
uum K contained in a continuum X is called a subcontinuum
of X. A continuum X is said to be colocally connected at z
(z € X) if each open neighborhood of z contains an open
neighborhood of  whose complement in X is connected . A
continuum is colocally connected if it is colocally connected at
each of its points. To use the terminology of [8], a continuum
is colocally connected if and only if it is semi-locally connected
and cyclic (see [3] and Lemma 4.14 in Chapter III of [8]). A
continuum X is arcwise connected if each two of its points can
be joined by an arc in X. A continuous mapping h from a con-
tinuum X into a continuum S is said to be monotone if h™!(s)
is connected for each s € S. A continuous mapping h: X — S
is monotone if and only if A~'(M) is a subcontinuum of X
whenever M is a subcontinuum of h(X) (see Theorem 9 in
Section 46, Chapter I, of [5]). When X is a continuum a con-
tinuous mapping h from a continuum X into a continuum S is
said to be hereditarily monotone if the restriction % |k is mono-
tone for each subcontinuum K of X. Thus, each hereditarily
monotone mapping h : X — S is hereditarily weakly conflu-
ent, since we can choose K in the definition of hereditarily
weakly confluent to be (k| )™" (M).

When X is any topological space we use Clx(A), or just
Cl(A) when X is understood by context, to denote the closure
of a set A C X. Bdx(A) and Intx(A) denote the interior and
boundary of A in X, and the subscript X is again frequently
omitted. If A and Z are nonempty separated subsets of X (i.e.,
Cl(A)N Z and ANCI(Z) are empty), we write AUZ = A |Z.
The cardinality of a set A is denoted by |A|. Given sets A and
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Z, the symbol A\Z denotes the complement of ANZ in A, i.e.,
A\Z is the set of all elements of A that are not elements of Z.
The unit circle in the plane is denoted by S*.

2 A Generalization of Knaster’s
Continuum

To arrive at the example mentioned above one first constructs
generalized circular versions of Knaster’s continuum of V's and
A’s (see Example 5 in Section 48, Chapter I, of [5]). Through-
out we let C' denote a Cantor set in S?, and let Ay, Ay, As, ...
be an ordering of the components of ST\C. For each positive
integer j let E; be the set of endpoints of A;. Thus |E;| = 2
for each j. Define

E1={FEam-1:1<m< oo} and & = {Esypn:1 <m < co}.

(J€-1 and |J&; are disjoint subsets of C' whose union, which
we denote by FE, is dense in C,

UenNUJeay =05 E=JEn.

Now let Z be an arbitrary continuum. A quotient contin-
uum, Zr = Zr(€_1,&;), will be defined by identifying certain
pairs of points of Z x C, the particular pairs identified depend-
ing upon a choice of compacta F(—1) and F(1) in Z. After the
definition is given, we describe conditions under which Zr is
colocally connected, define a natural map from Z# onto S!, and
cite a sufficient set of conditions for this map to be hereditarily
monotone. The example described in the previous section is
then constructed. The general method used to construct Zr
is not new; see, e.g., Example 2.1 in [7].

Define a mapping 7 from C into {E£ C C : |E| =1 or 2} by

r(c) = { E, if c € E, for somen € {1,2,3,...}

{c} otherwise.
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Let T(n(C)) = {d € =(C) : (JU is open in C'}. Then T'(x(C))
is a quotient topology for the collection 7(C). When 7(C) car-
ries this topology, which we assume henceforth, it is a simple
closed curve, and 7 is continuous with respect to this topology.

Let F = {F(—1), F(1)} be a pair of compacta in Z. Define
a mapping [Ir from Z x C'into {SC Z x C :|S| =1 or 2} by

{z} x E, if (z,¢) € F((—-1)") x E, for some n
Mz (z,c) = { {(z,¢)} otherwise.

15 is well-defined since the sets Ey, E3, E3, ... are pairwise dis-
joint. Let D =TIx(Z x C)and let T(D) ={U CD:JU is
open in Z x C}. By Definition 3.1 and subsequent comments
in [6], the space (D, T (D)) is a decomposition of Z x C, and
IIr is a continuous map from Z x C onto (D, T(D)). Let

Zr = Z5[€_1,&] = (D, T(D)), or, in other words,

Z]: = H]:(Z X C)

Then Zr is compact, since IIr is continuous. (If Z = [0, 1],
F(1) = {1} and F(-1) = {0}, ZF is a simple circular version
of Knaster’s continuum.)

Some collections of open arcs in S'are now defined. For
each c € C, let

I(c,1) = {(ab) € S*: C £ (ab) 2 7(c) ; a,b € U2, Asj}
Z(c,~1) = {(ab) € S : C £ (ab) 2 7(c) ; a,b € ;2 Azj-1}.

As in [8], we say that a set S C Z x C is an inverse set of [Ir
provided I17' (I ~(S)) = S. Equivalently, S is an inverse set of
[Ir if and only if (JII(S) = S. This is the same as saying
that S is D-saturated, as in [6]. Thus, because |JII#(S) = S
for each inverse set S of IIx, we see from the definition of the
decomposition topology:

If S is an open inverse set of IIx then I1x(S) is open in Z£.

(1)
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Observe also that, by the definition of I1 and by the placement
of the sets F, in C,

If (ab) is an open arc in S* with a,6 € C\F and R C Z,
then R x [(ab) N C] is an inverse set of Il £.

(2)
We show the following:

If ¢o € C, (ab) € Z(co,1), and R C Z with RN F(1) = 0,
then R X [(ab) N C] is an inverse set of Il £.

(3)

Clearly, [T (IT=(Rx[(ab)NC])) 2 Rx[(ab)NC]. For the reverse
containment, suppose (21, ¢1) € 17 (Il(2, ¢)) for some (z,¢) €
R x [(ab)N C]. We want to show that (z1,¢1) € R x [(ab) N C].
Since (2, ¢) = ll£(2, c1),

Z=ZleR.

Also, as (ab) € Z(co,1), there exist distinct positive integers
J and k so that a € Ay; and b € Ay Since (ab) € I(c, 1),
we have (ab) N C' # (0. Then, since a € A,j, (ab) N Ey; # 0.
Similarly, (ab) N Eqx # . Moreover, as a € Ajj, b € Ay, and
J # k, we have |(ab) N Eyj| = 1 = |(ab) N E3|. Without loss
of generality, we can assume

(ab) N Ey; = {€}} and (ad) N Egi = {€,}, (4)

where Eq; = {ej,ei} and Ey. = {ex, e} }. Now, arguing by
contradiction, suppose that (z1,¢1) ¢ R X [(ab) N C]. Then
(2,¢) # (z1,¢1) = (z,¢1). Hence ¢ # ¢;. Since (z1,¢1) ¢ R X
[(ab) N C] and z; € R we must have ¢; ¢ (ab) N C. But as
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(z1,¢1) € NF (IIx(z,¢)) C {2} x C, we have ¢; € C. Hence
¢1 ¢ (ab). Then

¢ ¢ (ab) and c € (ab).

By choice of (z1,¢1), [Iz(2,¢) = Hx(z1,¢1) = lI£(2,¢1). Thus
7(c) = m(¢1). Therefore, {c,c1} € E_1UE;. We claim that either
{c,c1} = {e;, €5} or {c,c1} = {ex, €} }. For otherwise the open
arcs Asj, Aak, and one of the two open arcs with endpoints ¢
and ¢; are three distinct (and hence disjoint) components of
S™\C. We can denote these open arcs by (eje}), (exe}) and
(cc1). We have e, ex, ¢1 ¢ (ab) and €, €, ¢ € (ab). However,
as the three component arcs are disjoint, this is impossible.
Thus, either {c,c:1} = {ej, €} or {c,c1} = {ex, e;}. Now if
{c,c1} = {ej, €} then, since 7(c) = 7(c1), we have 7(e}) =
7(e;); thus
7 (z,¢;) = Iz (z,¢€;).

However, this contradicts the definition of IIx, since, by hy-
pothesis, z € R C Z\F(1) = Z\F((—1)¥). A similar contra-
diction is reached if {c,¢1} = {ex, €} }. This establishes (3). By

a symmetric argument we also have:

If co € C, (ab) € I(co,—1), and R C Zwith RN F(-1) = 0,
then R x [(ab) N C] is an inverse set of I1x.
()

Define

7'(1)
7'(-1)

{(ab) € S': a,be (C\E)U Uj’;l Asj}
{(ab) C S': a,be (C\E)UJZ; Azj1}.

In a manner similar to the proof of (3), one can show that

If i € {—1,1}, (ab) € T'(i), and R C Z with
RN F(i) =0, then R x [(ab) N C] is an inverse set of IIx.
(6)
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There is also the following lemma.

Lemma 1 If(z,c¢) € ZxC and Il £(z,c) C U, where U is open
in Zx C, then there is an open arc (ab) C S with c € (ab) 2 C
and an open O C Z with z € O such that for each subset L of
O with z € L one has

(A) Og(z,c¢) C Lx[(ab)nC]|CU, and
(B) L x[(ab)NC] is an inverse set of Il£.

Proof: We consider first the case when 7(c) = {c}. Here,
Mr(z,c¢) = {(z,¢)}. As C\E is dense in C, there exists an
open arc (ab) containing ¢ with a,b € C\E and an open neigh-
borhood O of z in Z such that the basic open set O x [(ab) NC]
is contained in U. Observe that (ab) 2 C, and if L is any sub-
set of O containing z then (A) holds. Also, (B) holds for every
subset L of O with z € L since, by (2), (B) holds for every
LCZ

Suppose next that 7(c) = {¢, ¢} = E, for some n and
[Ix(z,¢) = {(2,¢)}. This means that z ¢ F((—1)"). The set
U contains a basic open neighborhood Og x [(ab) N C] of (2, ¢)
where (ab) N E, = {c} and b € C\E. Note that, since b €
C\E, (ab) 2 C. Let O = Op N (Z\F((—=1)")). Then, since
the compactum F((—1)") does not contain z, O is an open
neighborhood of z, and (z,¢) € O x [(ab) N C] C U. By (6),
(B) holds for any L C O. Moreover, as O C Og, (A) holds for
any subset L of O with z € L, since then L x [(ab) N C] C
Oo X [(ab)NnC] C U.

Finally, assume that n(c) = {¢,¢'} = E, for some n, and
that Ilx(z,c) = {2z} x {¢,c'}. The set U contains a basic open
neighborhood of (z,¢) of the form O x [(ac’) N C], where a €
C\E. Likewise, U contains a basic open neighborhood of (z, ¢)
of the form O; x [(bc)NC], where b € C\ E. We can also select b
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and a so that the open arc (ab) = (ac’) U (bc) does not contain
C.Let O =0oN0O;. Then,if z€ L CO,

[Ir(z,c) = {2} x {¢,c'} €L x [(ab)NC] = (L x [(ac’) N C])U
(L x [(be)NC]) € (O X [(ac)NC])U (O x [(be) N C]) C U.

Thus (A) holds whenever L C O and z € L. Also, (B) holds
for every subset L of O with z € L since, by (2), (B) holds for
every L C Z. O

By Lemma 1 and by (3) of Proposition 3.7 in [6], it follows
that D is an upper semicontinuous decomposition of Z x C.
Therefore, by Theorem 3.9 in [6], Zr = [I1£(Zx () is a compact
metric space. We will now prove:

Lemma 2 IfY is a connected subset of Z with Y N F(—1) #
0 # YNF(1), and if K is a connected subset of S* with KNC #
0, then Ix(Y x (K NC)) is connected.

Proof: For suppose [Ix(Y x (K NC)) is not connected. Then,
because II#(Y x {c}) is connected for every ¢ € C (by the
continuity of II£), we have

(Y x (KNC))=TxY x C) |ILe(Y x Cy), (7)
for some sets C;,Cy; C C with KN C = CyUC,. Then, as II£

s continuous,
YXx(KNC)=(Y x Cy)|(Y x Cy).

Therefore, by the continuity of the projection from Z x C' onto
C,

KnC =0 |C;. (8)

Now, K is connected implies there exists a closed arc A =

{ei* :a <t < b} C K, where 0 < a < b < 27 and either

e* € Oy, e € C, or e € Oy, e € C;. We assume the former
case, without loss of generality. Note that

ANC = (ANC) (AN Cy). (9)
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Let s(2) = inf{s € [a,b] : € € Cy}. Then a < s(2) < b and
e*® € C,. Let s(1) = sup{s € [a,s(2)] : €* € C;}. Then
a < s(1) < s(2) and e*() € C;. Furthermore, the closed arc
A" = {e* : 5(1) < s < 5(2)} has the property that AN C; =
{e*V} and ANC, = {e*@}. Hence, by (9), e ¢ C for s(1) <
s < s(2). Thus {e*M, e*®} = E, for some n € {1,2,3,...}.
Suppose first that this n is even. Since § # YNF(1) there exists
y € YNF(1). Then {y} x E, C F(1) X E, = F((-1)") XE,,
so that Tx(y, e*M) = {y} x E, = [I£(y, e*?). Thus, Ix(Y x
C1) NI (Y x Cy) # 0. But this contradicts (7). Similarly if n
is odd, by using the hypothesis that Y N F(—1) # 0, we again
arrive at a contradiction to (7). This establishes Lemma 2.0

It follows from Lemma 2 with Y = Z and K = S! that
x(Zx(S'NC)) =x(Z x C) = Z5 is connected. Therefore,
as we have already seen that Zr is a compact metric space
(and is clearly nonempty), Zr is a continuum.

Now if Z is degenerate, ie., Z = {p} = F(-1) = F(1),
then IIx(Z x C) is homeomorphic to 7(C). This continuum,
7(C), has the property that if ¢,/ € C and 7n(c) # 7(¢),
then C'\(7(c) U m(c’)) is the union of two disjoint open inverse
sets of Ilx, O; and O,. Thus, by (1), 7(C)\{x(¢),7()} =
7(01) |m(O2).Hence, by Theorem 9.31 in [6], 7(C) is a simple

closed curve.

Lemma 3 Suppose each F(i) is nondegenerate (i.e., |F(i)| >
1 for each i € {—1,1}) and Z is colocally connected. Then Zx
s colocally connected.

Proof: Suppose D = llx(z,¢) € U € T(D). We need to find
V € T(D) such that IIx(z,¢) € YV CU and Z£\V is connected.
To do so, let U = |JU. Then U is open in Z x C, because
U € T(D). Since Ilx(z,¢) C |JU = U, we can find an open
arc (ab) C S* and an open O C Z as in Lemma 1. Since Z is
colocally connected and F(—1) # {z} # F(1) (because F(—1)
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and F(1) are nondegenerate), there is an open Oz C O such
that z € Oz and

Z\Oz is a subcontinuum of Z meeting both F(—1) and F(1).
(10)

Let V = [I£(0Oz x [(ab) N C)]). Then Il#(z,c) € V. Also, by

(B) of Lemma 1, we have
(V) = T (II£(0z x [(ab) N C))) = Oz x [(ab) N C]. (11)

Hence Oz x [(ab) N C] is an open inverse set of [Ix. Thus
YV € T(D) by (1). Furthermore, by (A) of Lemma 1 with
L=0z,0zx [(ab)ﬂ(]] CU. ThenV = H}'(Oz X [(ab)ﬂC]) -
OF(U) =U, so that I1x(z,¢c) € YV CU. Now it remains only to
show that Z\V is connected. Notice first that the set Z\Oz
is connected, and that (ab)NC and C\(ab) are nonempty, since
(ab) was obtained via Lemma 1. Thus, by Lemma 2 and (10),
the sets M = I1x((Z\Oz) x C) and N = IIx(Z x (C\(ab)))

are subcontinua of Zr. Note too that
(ZxC)\(0zx[(ab)NC]) = [Zx(C\(ad))]V[(Z2\02)x C]. (12)

AISO, Z]:\V = Z}'\H}'(Oz X [(ab) N C]) = H}'((Z X C)\(OZ X
[(ab) N C)), where the second equality follows from (11). So,

by (12),
ZA\V = II(Z x (C\(ab))) UTL((Z\Oz) x C) = N U M.

Choose z € Z\Oz. Then, as a € C\E, we have (z,a) € [Z x
(C\(ab))] N [(Z\Oz) x C]. Hence ll£(z,a) € N N M. Thus,
because Zx\V is the union of the intersecting continua M and
N, Z£\V is a subcontinuum of Zx. This completes the proof
of Lemma 3.0

We let m; denote the continuous mapping 7 o p, where p
is the projection of Z x C onto C, i.e., p(z,¢) = c. Define a
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mapping ®r : Zr — 7(C) by ®x(llx(z,¢c)) = m(z,c¢), for
(z,¢) € Z x C. Then @ is well-defined (single-valued), for if
r(z,c) = (7', ) then n(c) = n(c'), and hence m(z,¢c) =
m1(2',¢'). The mapping ®r = m; o [I7' is continuous by the
Transgression Lemma (page 45 of [6]).

Lemma 4 Suppose the ordering Ay, As, As, ... of the compo-
nents of S'\C s such that both |JE_1 and |J& are dense
subsets of C. Assume that the compacta F(—1) and F(1) are
disjoint. Suppose also that (*) if R and R are subcontinua
of Z each of which intersects both F'(1) and F(—1), then RN
RNF()#0#RNRNF(-1). Then @ is an hereditarily

monotone mapping from Zr onto n(C).

Proof: Since m; maps Z x C onto C, the continuous ®+ maps
Zr onto 7(C). Let K be a subcontinuum of Z# and let ¢ de-
note the restriction of &+ to K. We must show that ¢ is mono-
tone. Clearly, ¢ is continuous and ¢(K) is a subcontinuum
of m(C). If p(K) is degenerate then ¢ is certainly monotone.
Hence, it can be assumed that

¢(K) is a nondegenerate subcontinuum of 7(C). (13)

To show that ¢ is monotone the following equality, a conse-
quence of the definition of the surjective map Il z, will be freely
used.

Z]:\H]:(T X C) = H}'([Z\T] x C forall T - Z.

We aim to establish assertions (14), (21), (22), (24), and (29)

below.

If: € {—1,1}, S is a component of K N (Zx\IIx(F () x C))
and II£(z,c) € S for some (z,c) € Z x C, then S is a com-
ponent of K N (IL=([Z\F(2)] x m(c))).

(14)
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Here we first note that

z € Z\F(2). (15)
Observe too that

Ze\IIx([Z\F ()] x 7(c)) =
x(F(z) x C)ULF([Z\F(&)] x [C\7(c)]).

Hence, H£([Z\F(2)] X 7(c)) € Zx\[I£(F(2) x C). Then, as S
is a component of K N (Zx\Ilz(F(:) x C)), to prove S is a
component of K N (IIz([Z\F(z)] x 7(c))) it suffices to show
S C Hx([Z\F(3)] x m(c)). Thus it suffices to show that if
Or(z0,c0) € Zr\II£([Z\F(?)] X 7(c)) then I1x(z0,c0) ¢ S.
Also, as IIx(F(i) x C)N S = 0, we can assume IIx(zg,co) €

O ([Z\F(2)] x [C\7(c)]). So 1 (z0,¢c0) = 1 (21,¢1) for some
(z21,¢1) € [Z\F(2)] x [C\7(c)]. Hence,

20 = 21 € Z\F(i). (16)

Now 7(co) = [l£(20,¢0) = Ux(z1,¢1) = 7(c1) # 7w(c). Thus
m(co) N m(c) = 0. Then, as |J&; is dense in C' by hypothesis,
there exists (ab) € I(c,t) with

m(co) C C\(abd). (17)

We have
c € 7(c) C (ab) and a,b ¢ C. (18)

Let U; = [Z\F(2)] X [(ab) N C] and V; = [Z\F(2)] x [C\(ab)].
Then, by (3) or (5), U; and V; are open inverse sets of [l
whose union is [Z\F(:)] x C. Also, U;NV; = 0, so from (1) and
the initial hypothesis on S in (14) we have

§ C Zp\llx(F(:)xC) = I ([Z2\F(&)]xC) = #(U:) [#(Vi).
(19)
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Then by (15) and (18) we have (z,¢) € U;. So Ilx(z,¢c) €
SNIIz(U;). Thus, as S is connected, it follows from (19) that

S CILe(U;) C ZA\IL£(VA). (20)

Now, by (16) and (17), (20, co) € Vi. Hence I1£(z9, co) € £ (V).
Therefore, by (20), (20, co) ¢ S. This completes the proof of
(14). We now prove the following.

Ifi € {—1,1}, then K NII=(F(Gi)x C) #0.  (21)

Assume KNII#(F(:)xC) = 0. Then K = KNZx\I£(F(:)xC),
so K is a component of K N Zz\IIx(F(¢) x C). Moreover,
since § # K C Zr = Ux(Z x C), Ux(z,¢) € K for some
(z,¢) € Z x C. Therefore, by (14) (with S = K) we have
that K is a component of K N (IIx([Z\F(?)] x m(c))). Hence
K C TIx([2\F(3)] x 7(c)). Thus, p(K) = @#(K) = {r(c)}.
But this contradicts (13). So (21) holds. We also make this

claim:

If € {-1,1} and S is a component of K N (Zx\[I£(F () x
C)), then Clg(S)NIIx(F(z) x C) # B and S is not compact.
(22)

For, since F'(7) x C'is compact and I is continuous, I1(F'(7) x
C) is compact. Hence, by (21),

Hr(F(2) x C) is closed in Z7 and intersects K. (23)
Let £/ = KNI1r(F(i)x C). Then, since S C Zr\[Lr(F(i)x ),
SNE =40.
Now, by (21), K N [Ix(F(—1) x C) # 0. Moreover, F(—1)

N
F(1) = 0 by hypothesis, and hence § # K NIz(F(—i) x C) C
KNIF([Z\F(:)] x C) =
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KN(Ze\IIx(F(:)xC)) = K\E'. Also, by (23), E' is a nonempty
closed subset of K. Thus, K'\E’ is a nonempty, proper open
subset of the continuum K. Then, as S is a component of
K\F', it follows (from Theorem 2-16 in [2]) that Clx(S) N
E' # 0. Therefore, since E' = K N IIz(F(z) x C), we have
Clg(S)NII(F(2) x C) # 0. Furthermore, because SN E' =
0 # Clg(S)N E', we have S # Clg(S). Hence S is not com-
pact. This completes the proof of (22). There are two more
facts that we will need to show ¢ is monotone.

Assume i € {—1,1}, c€ C, 7(c) € p(K), and N is a
component of p~!(7(c)). Then N NI x(F (i) x 7(c)) # 0.
(24)

To see this, first note that ¢p~!(n(c)) is a closed subset of K
and N is a closed subset (being a component) of ¢~'(7(c)).
Thus

N is a closed subset of K. (25)

Now suppose N NII#(F(:) X 7(c)) = 0. By the definition of
N (and the definition of ¢ as a restriction of ®r), we have
N C II([Z\F(¢)] x w(c)). Hence, as 7(c) € p(K),

0 £ N CI([Z\F(i)] x 7(c)) € ZA\IL(F(i) x C).  (26)

Thus there exist 2’ € Z\F(:) and ¢’ € 7(c) with I1x(2',¢') € N.
Then, by (25) and (26), we have

Mr(2,¢) € KN NN [Z\I(F() x O)]. (27)

Now let S be the component of K N [Z£\[I£(F(z) x C')] con-
taining I1x(2',c'). Then, by (14), S is a component of K N
Or([Z\F(i)] x w(c)). But 7(c') = w(c) and KNI #([Z\F(2)] x
m(c)) € K Nx(Z x 7(c)) = ¢ (r(c)), so S is a connected
subset of ¢~!(m(c)) containing IIx(2',¢’). Therefore, as N is
the component of ¢~!(w(c)) containing IIx(2’,c'),

P#SCN. (28)
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By (22), Clg(S)NI#(F(2)xC) # 0. Then Clg(N)NI£(F(z)x
C) # 0, by (28). Therefore, by (25), N N ILs(F(:) x C) # 0.
Thus, there exists (z0,c0) € F(2) X C with II£(zp,c0) € N.
Then, as I1 (29, ) € N C ¢! (n(c)), we have p(I15(20, o)) =
m(c). But ¢(Ilx(z0,c0)) = @x(Il#(20,c0)) = 7(co). Hence
7(co) = 7(c), and ¢o € 7(c). Thus II£(20,c0) € N NI £(F(z) x
7(c)). Therefore, N N Ix(F(7) x 7(c)) # 0, as desired. The
last fact to be proved is the following.

Suppose ¢ € {—1,1} and c € (C\E)U|JE;. Let B be the set

7 (K) N ([Z\F(i)] x 7(c)). Then the restriction T = Ilx|g

maps B homeomorphically onto K N II£([Z\F ()] X 7(c)).
(29)

To establish (29), note first that IIx maps compact subsets of
Z x C onto compact subsets of Zr. Hence, Ilr is a closed map-
ping. Moreover, B is an inverse set of IIx. Thus, by Theorem
1 in Section 13, Chapter I of [4], T is a closed mapping. Notice
too that T is continuous and, because ¢ € (C\E)U|J&;, T
is one-to-one. So T is indeed a homeomorphism from B onto
K NI£([Z\F(2)] x 7(c)).

We now show ¢ is monotone. Suppose ¢ € C. If 7(c) ¢
©(K) then ¢~ !(7(c)) is empty, and hence is connected. So as-
sume 7(c) € ¢(K). Let N and N’ be components of ¢~!(7(c)).
We will show N = N’ by proving that N N N’ # (. Observe
that

N and N’ are subcontinua of K.

Consider first the case that
ce (C\E)UlJé&.
By (24) there exist, for each ¢ € {—1,1}, 2(:) € F(:) and

c(2) € m(c) with IIx(2(2),c(¢)) € N. Similarly by (24), there
exist, for each ¢ € {—1,1}, 2/(:) € F(z) and ¢(¢) € m(c) with
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Nx(2'(¢),'(z)) € N'. Then, since F(—1) and F(1) are assumed
to be disjoint,

He(z(=1),e(—-1)) € NN Knx([Z\F(1)] x 7(c)), and
IF(2'(=1),d(=1)) € N'n K N1#([Z\F(1)] x 7(c)).

Let S be the component of K NI x([Z\F(1)] x C) that con-
tains the point IIz(z(—1),¢(—1)), and S’ be the component
of K N Zr\IIz(F(1) x C) containing [1(z'(—1),c'(—1)). Let
H be the component of II;'(K) N ([Z\F(1)] x 7(c)) contain-
ing (z(—1),¢(—1)), and let H' be the component of I (K) N
([Z\F(1)] x 7(c)) containing (z'(—1),c(—1)). Then

HC Iy ( ) N([2\F(1)] x {e(-1)}) , and
H’CH HE)N([Z\F(1)] x {(=1)}).

Let CI(H) denote the closure of H in II7'(K) N ([Z\F( )] x
{c(=1)}, and let CI(H') denote the closure of H' in 117" (K )N
([Z\F(1)] x {c/(—1)}. We claim that

CI(H) is a subcontinuum of Z x {¢(—1)} that intersects

both F(1) x {¢(=1)} and F(—1) x {c(-1)}.
(30)

For consider the component S of K N Zz\Ilx(F(1) x C) that
contains [Ir(z(—1),¢(—1)). By (14) and (22), S is a non-compact
component of the set K NI£([Z\F(1)] x w(c(—1)). Thus, as
C(—l) € 7T(C)’

S is non-compact and a component of KNI#([Z\F(1)]x7(c)).
(31)

Let T be the restriction of Il to IIF' (K) N ([Z\F(1)] x 7(c)).
By (29), T maps 7' (K)N([Z\F(1)] x7(c)) homeomorphically
onto K NII#([Z\F(1)] X m(c)). Therefore, by (31),
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T-1"(S) is non-compact and a component of

I (K) N ([Z\F(1)] x 7(c)).
Also (z(=1),e(=1)) € [Z\F(1)]

x m(c), and (from above)
(

r(z(—1),c(— 1)) € KNIx([Z\F(1)] x 7(c)). Consequently
(z(— ) ¢(=1)) € T71(S). Hence, as Y~1(S) is the component
of II7( &’) N ([Z\ (1)] x =(c)) containing (2(—=1),¢(—1)), we
have T71(S) = H. Then, as T~! is a homeomorphism, it fol-

S) =
lows from (31) that H is not compact. Moreover,

H C[Z\F(1)] x {c(=1)},

since (z(—1),c¢(—=1)) € H C [Z\F(1)] x w(c) and H is con-
nected. Then, as H is not compact, there exist points
(z1,¢(—1)), (22,¢(=1)),..., in H which converge to some
(20,¢(=1)) € [CI(H)]\H. Note that H U {(z0,¢(—1))} is con-
nected. Also, (zp,¢(—1)) € H;—l(K), since (zx,¢(—1)) € H C
7 (K) for k > 1, and II7'(K) is closed in Z x C. Hence,
as (z0,c(—1)) € M7 (K) and as H U {(20,¢(—1))} is a con-
nected subset of I1- (]&) that properly contains the component
H of I (K)N ([Z\F(l)] x {c¢(=1)}), we have (zo,c(—1)) ¢
[Z\F(1)] x {c(—1)}. That is, zo € F(1). Then, because
(20,¢(~1)) € CICH) N (F(1) x {e(—1)}) and (2(~1),¢(~1)) €
CI(H)NF(—1) x {c(—1)}, (30) holds. Symmetric to (30), one
also has

CI(H') is a subcontinuum of Z x {c¢'(—1)} that intersects
both F(1) x {¢(—1)} and F(—1) x {c(—1)}.
(32)
By (30) and (32), and since ¢(—1),c'(—1) € 7(c),
IF(CU(H)) S ¢~ (r(c(=1))) = ¢~ (x(c))

— N (m((~1)) 2 T=(CIUH")).
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Moreover, I1z(CI(H)) is, again by (30), a continuum in
¢~ 1(n(c)) containing IIx(2(—1),¢(—1)). Thus, as N is the com-
ponent of ¢~ !(7(c)) containing Il x(z(—1),c(-1)), He(CI(H))
is a subcontinuum of N. Similarly, [I£(CI(H")) is a subcontin-
uum of N’. Now let R and R’ denote the projections of C'l(H)
and CI(H'), respectively, onto Z. Then R and R’ are subcon-
tinua of Z each of which intersects both F'(1) and F(—1) (by
(30) and (32)). Thus, by hypothesis (*) of Lemma 4, there
exists 2 € RN R' N F(1). Consequently, (2,¢(—1)) € Cl(H)
and (£,d(—1)) € Cl(H'). Hence, as ¢(—1),c(-1) € 7(c) and
c € (C\E)UJ&, we have

Mr(2,¢(—1)) = Ox(2,d(-1)) €
O-(CI(H)NLe(CI(H) S NN N'.
Thus, NN N’ # (. Hence N = N'.
The proof that N = N’ when ¢ € (C\E)U |J&_; is sym-
metric to the argument just given. This completes the proof
of Lemma 4.0

3 An Example

Let A denote a fixed plane triangle with vertices (z;,y;) for
¢ =0,1,2. For any real number z let A(z) denote the triangle
A x {z} in R?, and let Vi(z) be the vertex (z;,y;,z) of A(z).
For : = 0,1,2, let I; denote the closed vertical line segment
joining V;(0) to Vi(1). Let Z’ be the continuum defined by

Z' =1L, ULULU|J A(n/(n+1))UAQ1).
n=0
For 0 < n < oo let i(n) = n mod 3, and let O, be the open
subarc of I;(,) with missing endpoints V,'(n)(#) and Vi(n)(%).
Let O =J27,On and

Z" = 7Z'\O.
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Define Z to be the union of Z” with its reflection through the
plane z = 0. It is not difficult to verify that Z’, Z” and Z are
colocally connected continua. Define

F(1) = {W(1), Wi(1), V3(1)} and
F(=1) = {Vo(-1), i(-1), Va(-1)}.

Observe that

Each subcontinuum of Z intersecting both F(1) and F'(—1)
contains at least two of the three points in F(1) and at least
two of the three points in F'(—1).

(33)
Let F = {F(-1),F(1)}, and let the ordering of the compo-
nents of S*\C' be as stated in Lemma 3. Then Zr is colocally
connected by Lemma 3. Also, by (33), if R and R’ are sub-
continua of Z each of which intersects both F'(1) and F(—1),
then RNR' N F(1) # 0 # RN R NF(-1). Hence, by Lemma
4, @5 is an hereditarily monotone mapping of Zr onto the
simple closed curve 7(C'). Choose a homeomorphism I' from
7(C) onto S'. Then h = T o ®x is an hereditarily monotone
mapping of Zr onto S?.
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