
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



1 

Topology Proceedings 

Vol. 21, 1996 

Hereditarily Monotone Mappings 
onto 8 1 

Robert Pierce 

Abstract 

By modifying Knaster's continuum of V's and A's 
there is produced a colocally connected continuum that 
is not a simple closed curve but which admits an hered
itarily monotone mapping onto a simple closed curve. 

Introduction and Definitions 

An hereditarily weakly confluent mapping (see [1]) between con
tinua X and 5 is a continuous mapping h : X --t 5 such that 
for each subcontinuum !( of X and each subcontinuum M of 
h(!{) there exists a subcontinuum !{M of !( with h(!{M) == M. 
In an unpublished paper of Davis and Nadler it was proved 
that every arcwise connected, semi-locally connected and cyclic 
continuum admitting an hereditarily weakly confluent mapping 
onto 51 is a simple closed curve, i.e., is homeomorphic to 51. 
The authors asked (a question posed by Nadler at the 1994 
Joint Meeting of the AMS/MAA in Cincinatti) whether ev
ery semi-locally connected and cyclic continuum X admitting 
an hereditarily weakly confluent mapping onto 51 is a simple 
closed curve. The purpose of this paper is to provide a neg
ative answer to the question. The non-planar continuum and 
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rnapping constructed are derived from a technique briefly con
sidered by Nadler and Davis; the technique was suggested to 
this author by Nadler. The given mapping onto 51 is actually 
hereditarily monotone. 

For most fundamental definitions the reader is referred to 
[2], [5] and [6]. A compactum is a nonempty compact metric 
space, and a continuum is a connected compactum. A contin
uum ]{ contained in a continuum X is called a subcontinuum 
of X. A continuum X is said to be colocally connected at x 
(x E X) if each open neighborhood of x contains an open 
neighborhood of x whose complement in X is connected . A 
continuum is colocally connected if it is colocally connected at 
each of its points. To use the terminology of [8], a continuum 
is colocally connected if and only if it is semi-locally connected 
and cyclic (see [3] and Lemma 4.14 in Chapter III of [8]). A 
continuum X is arcwise connected if each two of its points can 
be joined by an arc in X. A continuous mapping h from a con
tinuum X into a continuum 5 is said to be monotone if h -1 (s) 
is connected for each s E 5. A continuous mapping h : X ~ 5 
is monotone if and only if h-1 (M) is a subcontinuum of X 
whenever M is a subcontinuum of h(X) (see Theorem 9 in 
Section 46, Chapter I, of [5]). When X is a continuum a con
tinuous mapping h from a continuum X into a continuum 5 is 
said to be hereditarily monotone if the restriction h IK is mono
tone for each subcontinuum ]{ of X. Thus, each hereditarily 
monotone mapping h : X ~ 5 is hereditarily weakly conflu
ent, since we can choose ]{M in the definition of hereditarily 
weakly confluent to be (h IK )-1 (M). 

When X is any topological space we use Clx(A), or just 
Cl(A) when X is understood by context, to denote the closure 
of a set A ~ X. Bdx(A) and Intx(A) denote the interior and 
boundary of A in X, and the subscript X is again frequently 
omitted. If A and Z are nonempty separated subsets of X (i.e., 
Cl(A) n Z and An Cl(Z) are empty), we write AU Z = A IZ. 
The cardinality of a set A is denoted by IAI. Given sets Aand 
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Z, the symbol A\Z denotes the complement of AnZ in A, i.e., 
A\Z is the set of all elements of A that are not elements of Z. 
The unit circle in the plane is denoted by 8 1 . 

2	 A Generalization of Knaster's 
Continuum 

To arrive at the example mentioned above one first constructs 
generalized circular versions of Knaster's continuum of V's and 
A's (see Example 5 in Section 48, Chapter I, of [5]). Through
out we let C denote a Cantor set in 8 1

, and let AI, A2 , A3 , ••• 

be an ordering of the components of 81\C. For each positive 
integer j let Ej be the set of endpoints of A j . Thus IEjl == 2 
for each j. Define 

£-1 == {E2m - l : 1 :::; m < oo} and £1 == {E2m : 1 :::; m < oo}. 

U£-1 and U£1 are disjoint subsets of C whose union, which 
we denote by E, is dense in C, 

00 

n=1 

Now let Z be an arbitrary continuum. A quotient contin
uum, Z:F == Z:F(£-I, £1)' will be defined by identifying certain 
pairs of points of Z xC, the particular pairs identified depend
ing upon a choice of compacta F( -1) and F(l) in Z. After the 
definition is given, we describe conditions under which Z:F is 
colocally connected, define a natural map from Z:F onto 8 1 , and 
cite a sufficient set of conditions for this map to be hereditarily 
monotone. The example described in the previous section is 
then constructed. The general method used to construct Z:F 
is not new; see, e.g., Example 2.1 in [7]. 

Define a mapping 7r from C into {E ~ C : lEI == 1 or 2} by 

7r(c) == { En if c E E~ for some n E {l, 2, 3, ... } 
{c} otherwIse. 
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Let T(7r(C)) == {U ~ 1r(C) : UU is open in C}. Then T(1r(C)) 
is a quotient topology for the collection 1r(C). When 1r(C) car
ries this topology, which we assume henceforth, it is a simple
closed curve, and 1r is continuous with respect to this topology. 

Let F == {F( -1), F( I)} be a pair of compacta in Z. Define 
a mapping IIF from Z x C into {S ~ Z xC: lSI == 1 or 2} by 

IIF(z c) == { {z} x En if (z,.c) E F((-1)n) X En for some n 
, {(z,c)} otherwIse. 

lIF is well-defined since the sets E 1 , E 2 , E3 , ••• are pairwise dis
joint. Let V == IIF(Z x C) and let T(V) == {U ~ V: UU is 
open in Z x C}. By Definition 3.1 and subsequent comments 
in [6], the space (V, T(V)) is a decomposition of Z x C, and 
IIF is a continuous map from Z x C onto (V, T(V)). Let 

ZF == ZF[£-l, £1] == (V, T(V)), or, in other words, 

ZF == IIF(Z x C). 

Then ZF is compact, since IIF is continuous. (If Z == [0,1], 
F(l) == {I} and F( -1) == {O}, ZF is a simple circular version 
of Knaster's continuum.) 

Some collections of open arcs in Slare now defined. For 
each c E C, let 

I(c, 1) == {(ab) ~ 51 : C ~ (ab) 2 1r(c) ; a, b E U~l A2j } 

I(c, -1) == {(ab) ~ Sl : C ~ (ab) ~ 1r(c) ; a, b E U~l A2j - 1 }. 

As in [8], we say that a set S ~ Z x C is an inverse set of IIF 
provided lIF1 (lIF(S)) == S. Equivalently, S is an inverse set of 
lIF if and only if UlIF(S) == S. This is the same as saying 
that S is V-saturated, as in [6]. Thus, because UlIF(S) == S 
for each inverse set S of lIF , we see from the definition of the 
decomposition topology: 

If S is an open inverse set of lIF then lIF(S) is open in ZF. 
(1) 
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Observe also that, by the definition of II;=- and by the placement 
of the sets En in C, 

If (ab) is an open arc in 51 with a, b E C\E and R ~ Z, 
then R x [(ab) n C] is an inverse set of II;=-. 

(2) 

We show the following: 

If Co E C, (ab) E I(co, 1), and R ~ Z with R n F(l) = 0, 
then R x [(ab) n C] is an inverse set of II;=-. 

(3) 

Clearly, IIF1 (II;=-(Rx [(ab)nC])) ~ Rx [(ab)nC]. For the reverse 
containment, suppose (Zl' C1) E II;:.l (II;=-(z, c)) for some (z, c) E 
R x [(ab) nC]. We want to show that (Zl' C1) E R x [(ab) nC]. 
Since II;=-(z, c) = II;=-(Zl,C1), 

z = Zl E R. 

Also, as (ab) E I( Co, 1), there exist distinct positive integers 
j and k so that a E A2j and b E A2k . Since (ab) E I(co,l), 
we have (ab) n C -=I 0. Then, since a E A2j , (ab) n E2j -=I 0. 
Similarly, (ab) n E2k -=I 0. Moreover, as a E A2j , b E A2k , and 
j =f k, we have I(ab) n E 2j l == 1 == I(ab) n E 2k l. Without loss 
of generality, we can assume 

(ab) n E2j = {ej} and (ab) n E2k = {e~}, (4) 

where E2j = {ej,ej} and E2k = {ek,e~}. Now, arguing by 
contradiction, suppose that (Zl,C1) ~ R x [(ab) n C]. Then 
(z,c) =/= (Zl,C1) = (Z,C1). Hencec=/= C1. Since (Zl,C1) ~ Rx 
[(ab) n C] and Zl E R we must have C1 ¢:. (ab) n C. But as 
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(Zl,C1) E IIF1(II F(z,c)) ~ {z} X C, we have C1 E C. Hence 
C1 ~ (ab). Then 

C1 ~ (ab) and c E (ab). 

By choice of (Zl' C1), IIF(z, c) = IIF(Zl' C1) = IIF(z, C1). Thus 
7r(c) ~ 7r(C1). Therefore, {c, C1} E £-1 U£l. We claim that either 
{C,C1} = {ej, ej} or {C,C1} = {ek' e~}. For otherwise the open 
arcs A2j , A 2k , and one of the two open arcs with endpoints c 
and C1 are three distinct (and hence disjoint) components of 
81\C. We can denote these open arcs by (ejej), (eke~) and 
(CC1). We have ej, ek, C1 ~ (ab) and ej, e~, c E (ab). However, 
as the three component arcs are disjoint, this is impossible. 
Thus, either {c, C1} = {ej, ej} or {c, C1} = {ek' e~}. Now if 
{C,C1} = {ej, ej} then, since 7r(c) = 7r(C1)' we have 7r(ej) = 
7r (ej); thus 

IIF(z, ej) = IIF(z, ej). 

However, this contradicts the definition of IIF , since, by hy
pothesis, z E R ~ Z\F(l) = Z\F(( -1)2j 

). A similar contra
diction is reached if {C,C1} = {ek' e~}. This establishes (3). By 
a symmetric argument we also have: 

If Co E C, (ab) E I(co, -1), and R ~ Zwith R n F( -1) = 0, 
then R x [(ab) n CJ is an inverse set of II-r. 

(5) 

Define 

I'(l) = {(ab) ~ 81 
: a, b E (C\E) U U~l A2j }
 

I'( -1) = {(ab) ~ 51: a, b E (C\E) U U~l A2i - 1 }.
 

In a manner similar to the proof of (3), one can show that 

If i E {-I, I}, (ab) E I'(i), and R ~ Z with
 
R n F(i) = 0, then R x [(ab) n C] is an inverse set of IlF .
 

(6) 
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There is also the following lemma. 

Lemma 1 IJ(z, e) E ZxC and II.r(z, e) ~ U, where U is open 
in Z x C, then there is an open arc (ab) ~ 51 with e E (ab) t. C 
and an open 0 ~ Z with z E 0 such that Jor each subset L oj 
o with z E L one has 

(A) II.r(z, e) ~ L x [(ab) n C] ~ U, and 
(B) L x [(ab) n C] is an inverse set ofIIF. 

Proof: We consider first the case when 1r(e) == {e}. Here, 
II.r(z,e) == {(z,e)}. As C\E is dense in C, there exists an 
open arc (ab) containing e with a, b E C\E and an open neigh
borhood 0 of z in Z such that the basic open set 0 x [(ab) nC] 
is contained in U. Observe that (ab) t. C, and if L is any sub
set of 0 containing z then (A) holds. Also, (B) holds for every 
subset L of 0 with z E L since, by (2), (B) holds for every 
L ~ Z. 

Suppose next that 7f(e) == {e,e'} == En for some nand 
IIF(z, e) == {(z, e)}. This means that z ~ F(( _l)n). The set 
U contains a basic open neighborhood 0 0 x [( ab) n C] of (z, e) 
where (ab) n En == {e} and b E C\E. Note that, since b E 

C\E, (ab) ;. C. Let 0 == 0 0 n (Z\F((-l)n)). Then, since 
the compactum F(( -l)n) does not contain z, 0 is an open 
neighborhood of z, and (z, e) E 0 x [(ab) n C] ~ U. By (6), 
(B) holds for any L ~ O. Moreover, as 0 ~ 0 0 , (A) holds for 
any subset L of 0 with z E L, since then L x [(ab) n C] ~ 

0 0 x [(ab) n C] ~ U. 
Finally, assume that 1r(e) == {e, e'} == En for some n, and 

that II.r(z , e) == {z} X {e, e'}. The set U contains a basic open 
neighborhood of (z, e) of the form 0 0 X [(ae') n C], where a E 
C\E. Likewise, U contains a basic open neighborhood of (z, e') 
of the form 0 1 X [(be) nC], where b E C\E. We can also select b 
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and a so that the open arc (ab) == (ae') U (be) does not contain 
C. Let 0 == 0 0 n 0 1 . Then, if z E L ~ 0, 

IIF(z, e) == {z} x {e,e'} ~ L x [(ab) n C] == (L x [(ae') n C])U 
(L x [(be) n CJ) ~ (00 X [(ae') n CJ) U (01 X [(be) n C]) ~ u. 

Thus (A) holds whenever L ~ 0 and z E L. Also, (B) holds 
for every subset L of 0 with z E L since, by (2), (B) holds for 
every L ~ z. D 

By Lemma 1 and by (3) of Proposition 3.7 in [6], it follows 
that V is an upper semicontinuous decomposition of Z x C. 
Therefore, by Theorem 3.9 in [6], ZF == IIF( Z x C) is a compact 
metric space. We will now prove: 

Lemma 2 If Y is a connected subset of Z with Y n F( -1) =I 
o=I YnF(l), and if !{ is a connected subset of 51 with !{nC =I 
0, then IIF(Y x (!{ n C)) is connected. 

Proof: For suppose IIF(Y x (!{ nC)) is not connected. Then, 
because IIF(Y x {e}) is connected for every e E C (by the 
continuity of IIF ), we have 

for some sets C1 , C2 ~ C with !{ n C == C1 U C2 • Then, as IIF 

is continuous, 

Therefore, by the continuity of the projection from Z X C onto 
C, 

(8) 

Now, !{ is connected implies there exists a closed arc A == 
{eit : a :::; t :::; b} ~ !{, where 0 :::; a < b < 21r and either 

ia ia ibe E C1 , eib E C2 or e E C2 , e E C1 . We assume the former 
case, without loss of generality. Note that 

(9) 
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Let s(2) == inf{s E [a, b] : eis E C2 }. Then a :s; 8(2) :s; band 
ise (2) E C2. Let s(l) == sup{s E [a,8(2)] : eis E C1 }. Then 

a :s; 8 (1) < 8 (2) and eis(l) E C1. Furthermore, the closed arc 
A' == {eis 

: 8(1) ~ 8 ::; 8(2)} has the property that An C1 == 
{eis(l)} and AnC2 == {eis(2)}. Hence, by (9), eis ff. C for 8(1) < 
8 < 8(2). Thus {e is(1),e is(2)} == En for some n E {1,2,3, ... }. 
Suppose first that this n is even. Since 0 t YnF( 1) there exists 
y E Y n F(l). Then {y} x En ~ F(l) x En == F((-I)n) xEn , 

so that ITF(y,e is(l)) == {y} x En == IlF(y,e is(2)). Thus, IlF(Y X 

C1 ) n IT;=-(Y X C2 ) =I 0. But this contradicts (7). Similarly if n 
is odd, by using the hypothesis that Y n F( -1) =I 0, we again 
arrive at a contradiction to (7). This establishes Lemma 2.0 

It follows from Lemma 2 with Y == Z and Ii == 51 that 
IT;=-( Z x (51 nC)) == IT;=-( Z X C) == ZF is connected. Therefore, 
as we have already seen that Z:F is a compact metric space 
(and is clearly nonempty), Z:F is a continuum. 

Now if Z is degenerate, i.e., Z == {p} == F( -1) == F(l), 
then IlF(Z x C) is homeomorphic to 7r(C). This continuum, 
7r(C), has the property that if c,c' E C and 7r(c) =I 7r(c'), 
then C\(7r (c) U 7r (c')) is the union of two disj oint open inverse 
sets of IIF , 0 1 and O2. Thus, by (1), 7r(C)\{7r(c),7r(c')} == 
7r(Ol) 17r(02).Hence, by Theorem 9.31 in [6], 7r(C) is a simple 
closed curve. 

Lemma 3 Suppose each F(i) is nondegenerate (i.e., IF(i)1 > 
1 for each i E {-I, I}) and Z is colocally connected. Then ZF 
is colocally con'nected. 

Proof: Suppose D == ITF(z, c) E U E T(1J). We need to find 
V E T(1J) such that ITF(z, c) E V ~ U and ZF\V is connected. 
To do so, let U == UU. Then U is open in Z x C, because 
U E T(D). Since IIF(z, c) ~ UU = U, we can find an open 
arc (ab) ~ 3 1 and an open 0 ~ Z as in Lemma 1. Since Z is 
colocally connected and F (-1) =I {z} =I F (1) (because F (-1 ) 
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and F(I) are nondegenerate), there is an open Oz ~ 0 such 
that Z E Oz and 

Z\Oz is a subcontinuum of Z meeting both F(-I) and F(I). 
(10) 

Let V == ITF(Oz x [(ab) n C)]). Then IIF(z, c) E V. Also, by 
(B) of Lemma 1, we have 

IIF1(V) == IIF1(IIF(Oz x [(ab) n C])) == Oz x [(ab) n C]. (11) 

Hence 0 z x [(ab) n C] is an open inverse set of IIF . Thus 
V E T(V) by (1). Furthermore, by (A) of Lemma 1 with 
L == OZ, Oz x [(ab)nC] ~ U. Then V == IIF(Oz X [(ab)nC]) ~ 

II-r-(U) == U, so that IIF(z, c) E V ~ U. Now it remains only to 
show that Z-r-\V is connected. Notice first that the set Z\Oz 
is connected, and that (ab) nC and C\(ab) are nonempty, since 
(ab) was obtained via Lemma 1. Thus, by Lemma 2 and (10), 
the sets M =TI-r-((Z\Oz) x C) and N =IIF(Z X (C\(ab))) 
are subcontinua of Z-r-. Note too that 

(Zx C)\(Oz x [(ab)nC]) == [Zx (C\(ab) )]U[(Z\Oz) xC]. (12) 

Also, ZF\V == ZF\IIF(Oz x [(ab) nC]) == IIF((Z x C)\(Oz x 
[(ab) n C]), where the second equality follows from (11). So, 
by (12), 

Z-r-\V == IIF(Z x (C\(ab))) U II-r-((Z\Oz) x C) == N U M. 

Choose z E Z\Oz. Then, as a E C\E, we have (z, a) E [Z x 
(C\(ab))] n [(Z\Oz) x C]. Hence IIF(z, a) E N n M. Thu~, 

because ZF\V is the union of the intersecting continua M and 
N, Z-r-\V is a subcontinuum of Z:F. This completes the proof 
of Lemma 3.0 

We let 1rl denote the continuous mapping 1r 0 p, where p 
is the projection of Z x C onto C, Le., p(z, c) == c. Define a 
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mapping <PF : ZF --t 1f(C) by <PF(IIF(z,c)) == 1fl(Z, c), for 
(z, c) E Z x C. Then <PF is well-defined (single-valued), for if 
IIF(z, c) == IIF(z', c') then 1f(c) == 7r(c'), and hence 7rl(Z, c) == 
1fl(Z', c'). The mapping <PF == 1fl 0 IIFI is continuous by the 
Transgression Lemma (page 45 of [6]). 

Lemma 4 Suppose the ordering AI, A2, A3 , ••• of the compo
nents of 51 \ C is such that both U£-1 and U£1 are dense 
subsets of C. Assume that the compacta F( -1) and F(l) are 
disjoint. Suppose also that (*) if Rand R' are subcontinua 
of Z each of which intersects both F(l) and F( -1), then R n 
R' n F(l) =I 0 =I R n R' n F( -1). Then <PF is an hereditarily 
monotone mapping from ZF onto 1f(C). 

Proof: Since 1fl maps Z x C onto C, the continuous <PF maps 
ZF onto 1f(C). Let 1< be a subcontinuum of ZF and let r..p de
note the restriction of <PF to 1<. We must show that r..p is mono
tone. Clearly, r..p is continuous and r..p(I<) is a subcontinuum 
of 1f(C). If r..p(I<) is degenerate then r..p is certainly monotone. 
Hence, it can be assumed that 

r..p(I<) is a nondegenerate subcontinuum of 1f(C). (13) 

To show that r..p is monotone the following equality, a conse-
quence of the definition of the surjective map IIF , will be freely 
used. 

ZF\IIF(T x C) == IIF([Z\T] x C for all T ~ Z. 

We aim to establish assertions (14), (21), (22), (24), and (29) 
below. 

If i E {-I, I}, 5 is a component of 1< n (ZF\IIF(F(i) x C)) 
and IlF(z, c) E S for some (z, c) E Z x C, then S is a com
ponent of 1< n (IlF([Z\F(i)] x 1r(c))). 

(14) 
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Here we first note that 

Z E Z\F( i). (15) 

Observe too that 

Z.r\II.r([Z\F(i)] x 7r(c)) == 

II.r(F(i) x C) U II.r([Z\F(i)] x [C\7r(c)]). 

Hence, IT.r([Z\F(i)] x 7r(c)) ~ Z.r\IT.r(F(i) x C). Then, as S 
is a component of !{ n (Z:r\II.r(F( i) x C)), to prove S is a 
component of !{ n (II.r([Z\F(i)] x 7r(c))) it suffices to show 
S ~ II.r([Z\F(i)] x 7r(c)). Thus it suffices to show that if 
IT.r( Zo, co) E Z.r \II.r( [Z\F( i)] x 7r (c)) then II.r(Zo, co) ~ S. 
Also, as II.r(F(i) x C) n S == 0, we can assume II.r(zo, co) E 

IT.r( [Z\F( i)] x [C\ 7r (c)]). So II.r(Zo, co) == IT.r(Zt, Ct) for some 
(Zt, Ct) E [Z\F(i)] x [C\7r(c)]. Hence, 

Zo == Zt E Z\F(i). (16) 

Now 7r (Co) = II.r (Zo, co) = II.r (Zl , Cl) == 7r (Cl) =1= 7r (C). Thus 
7r(co) n 7r(c) == 0. Then, as U£i is dense in C by hypothesis, 
there exists (ab) E I( c, i) with 

7r(CO) ~ C\(ab). (17) 

We have 
C E 1r(c) ~ (ab) and a, b ~ C. (18) 

Let Vi == [Z\F(i)] x [(ab) n C]and Vi = [Z\F(i)] x [C\(ab)]. 
Then, by (3) or (5), Vi and Vi are open inverse sets of IIF · 

whose union is [Z\F(i)] x C. Also, Ui n Vi == 0, so from (1) and 
the initial hypothesis on S in (14) we have 

S ~ Z:r\IT.r(F(i) xC) == II.r([Z\F(i)] xC) == II.r(Ui ) III.r(Vi). 
(19) 
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Then by (15) and (18) we have (z, c) E Vi. So II;:(z, c) E 
5 n II;:(Ui ). Thus, as 5 is connected, it follows from (19) that 

(20) 

Now, by (16) and (17), (zo, co) E Vi. Hen~e II;:(zo, co) E II;:(Vi). 
Therefore, by (20), II;:(zo, co) ~ 5. This completes the proof of 
(14). We now prove the following. 

If i E {-I, I}, then !< n II;:(F(i) X C) =I- 0. (21) 

Assume !<nII;:(F(i) x C) == 0. Then !( == !<nZF\IIF(F( i) x C), 
so !< is a component of !< n Z;:\II;:(F( i) x C). Moreover, 
since 0 =I- !< ~ Z;: == IIF(Z X C), IIF(z, c) E !< for some 
(z, c) E Z x C. Therefore, by (14) (with 5 == !<) we have 
that !< is a component of !< n (II;:([Z\F(i)] x 7r(c))). Hence 
!( ~ II;:([Z\F(i)] x 7r(c)). Thus, 'P(!{) == <P;:(K) == {7r(c)}. 
But this contradicts (13). So (21) holds. We also make this 
claim: 

If i E {-I, I} and 5 is a component of !( n (ZF\II;:(F(i) x 
C)), then Cl1«5) n IIF(F( i) x C) =1= 0 and S is not compact. 

(22) 

For, since F( i) X C is compact and IIF is continuous, IIF(F( i) x 
C) is compact. Hence, by (21), 

IIF(F(i) X C) is closed in Z;: and intersects !(. (23) 

Let E' == !<nIIF(F( i) X C). Then, since 5 ~ ZF\IIF(F( i) X C), 

5 n E' == 0. 

Now, by (21), !( n II;:(F( -i) x C) =I- 0. Moreover, F( -1) n 
F(I) == 0 by hypothesis, and hence 0 =1= !< n IIF(F( -i) x C) ~ 

!( n II;:([Z\F(i)] x C) == 
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!{n(ZF\IIF(F( i) X C)) == !{\E'. Also, by (23), E' is a nonempty 
closed subset of !{. Thus, !{\E' is a nonempty, proper open 
subset of the continuum !{. Then, as S is a component of 
!{\E', it follows (from Theorem 2-16 in [2]) that CIK(S) n 
E' =1= 0. Therefore, since E' == !{ n IIF(F(i) x C), we have 
CIK(S) n IIF(F(i) x C) =1= 0. Furthermore, because S n E' == 
o=1= CIK(S) n E', we have S =1= CIK(S). Hence S is not com
pact. This completes the proof of (22). There are two more 
facts that we will need to show c.p is monotone. 

Assume i E {-1,1}, C E C, 1r(c) E c.p(!{), and N is a 
component of c.p-l(1r(c)). Then N n IIF(F(i) x 1r(c)) =1= 0. 

(24) 

To see this, first note that c.p-l(1r(c)) is a closed subset of !{ 

and N is a closed subset (being a component) of c.p-l(7r(C)). 
Thus 

N is a closed subset of !{. (25) 

Now suppose N n IIF(F(i) X 1r(c)) == 0. By the definition of 
N (and the definition of c.p as a restriction of <I> F), we have 
N ~ II.r-([Z\F(i)] x 1r(c)). Hence, as 1r(c) E c.p(!{), 

o=1= N ~ IIF([Z\F(i)] x 1r(c)) ~ ZF\IIF(F(i) x C). (26) 

Thus there exist z' E Z\F(i) and c' E 7r(c) with II.r-(z', c') E N. 
Then, by (25) and (26), we have 

IIF(z', c') E !{ n N n [2F\IIF(F(i) x C)]. (27) 

Now let S be the component of !{ n [2F \IIF (F( i) x C)] con
taining IIF(z', c'). Then, by (14), S is a component of !{ n 
IIF([Z\F(i)] X1r(c')). But 1r(c') == 1r(c) and !{nIIF([Z\F(i)] x 
7r(c)) ~ !( n II:F(Z x 7r(c)) == c.p-l(7r(c)), so S is a connected 
subset of c.p-l (7r(c)) containing I1:F( z', c'). Therefore, as N is 
the component of c.p-l(7r(c)) containing II:F(z', c'), 

o=1= S ~ N. (28) 
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By (22), CIK(S)nIIF(F(i) x C) -# 0. Then ClK(N)nIl;:-(F(i) x 
C) =1= 0, by (28). Therefore, by (25), N n II;:-(F(i) x C) i= 0. 
Thus, there exists (zo, co) E F(i) x C with IIF(zo, co) E N. 
Then, as II;:-(zo, co) E N ~ 'P-1 (7r(c)), we have 'P(ll;:-(zo, co)) == 
7r(c). But cp(ll.r-(zo, co)) = <I>;:-(ll;:-(zo, co)) = 7r(co). Hence 
7r(co) == 7r(c), and Co E 7r(c). Thus II;:-(zo, co) E N n II;:-(F( i) x 
7r(c)). Therefore, N n Il;:-(F(i) x 7r(c)) =1= 0, as desired. The 
last fact to be proved is the following. 

Suppose i E {-I, I} and C E (C\E) U Uf i . Let B be the set 
IlF1 (I{) n ([Z\F(i)] X"7r(c)). Then the restriction 1 == Il.r-IB 
maps B homeomorphically onto !( n Il;:-([Z\F(i)] x 7r(c)). 

(29) 

To establish (29), note first that IlF maps compact subsets of 
Z x C onto compact subsets of Z.r-. Hence, IIF is a closed map
ping. Moreover, B is an inverse set of IIF. Thus, by Theorem 
1 in Section 13, Chapter I of [4], 1 is a closed mapping. Notice 
too that 1 is continuous and, because C E (C\E) U U£i, 1 
is one-to-one. So T is indeed a homeomorphism from B onto 
!( n IIF([Z\F(i)] x 7r(c)). 

We now show 'P is monotone. Suppose C E C. If 7r(c) ~ 

'P(I{) then cp-l(7r(C)) is empty, and hence is connected. So as
sume 7r(c) E 'P(I{). Let Nand N' be components of 'P-1(7r(c)). 
We will show N == N' by proving that N n N' =I 0. Observe 
that 

Nand N' are subcontinua of !(. 

Consider first the case that 

By (24) there exist, for each i E {-I,l}, z(i) E F(i) and 
c(i) E 7r(c) with IIF(z(i),c(i)) E N. Similarly by (24), there 
exist, for each i E {-I, I}, z'(i) E F(i) and c'(i) E 7r(c) with 



216 Robert Pierce 

TI:F(z'(i), c'(i)) EN'. Then, since F( -1) and F(l) are assumed 
to be disjoint, 

TI:F(z( -1), c( -1)) E N n]{ n TI:F([Z\F(l)] x 7r(c)), and 
TI:F(z'( -1), c'( -1)) E N' n!{ n TIF ([Z\F(l)] x 7r(c)). 

Let S be the component of ]{ n TI F ([Z\F(l)] x C) that con
tains the point IIF(z( -1), c( -1)), and S' be the component 
of!{ n ZF\TIF (F(l) x C) containing TIF (z'(-l),c'(-l)). Let 
H be the component of II.r1 

(]{) n ([Z\F(l)] x 7r(c)) contain
ing (z( -1), c( -1)), and let H' be the component of II;-l(]{) n 
([Z\F(l)] x 7r(c)) containing (z'( -1), c'( -1)). Then 

H ~ II.r1 (!{) n ([Z\F(l)] x {c(-l)}) ,and 
H' ~ IIF1 (!{) n ([Z\F(l)] x {c'(-l)}). 

Let Cl(H) denote the closure of H inIIF1 
(]{) n ([Z\F(l)] x 

{c(-l)}, and let Cl(H') denote the closure of H' in IIF1 (!{) n 
([Z\F(l)] x {c'( -I)}. We claim that 

Cl(H) is a subcontinuum of Z x {c(-l)} that intersects 
both F(l) x {c(-l)} and F(-l) x {c(-l)}. 

(30) 

For consider the component S of !< n ZF\TI:F(F(l) x C) that 
contains II:F(z( -1), c( -1)). By (14) and (22), S is a non-compact 
component of the set !{ n IIF([Z\F(l)] x 7r(c( -1)). Thus, as 
c( -1) E 7r (c), 

S is non-compact and a component of !<nIIF ([Z\F(l)]x7r(c)). 
(31) 

Let 1 be the restriction of IIF to II;-l(]{) n ([Z\F(l)] x 7r(c)). 
By (29), Y maps Il;-l(I{)n([Z\F(l)] X7r(c)) homeomorphically 
onto ]{ n IlF([Z/\F(l)] x 1r(c)). Therefore, by (31), 
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y-1in(s) is non-compact and a component of 

IIF
1 (I{) n ([Z\F(l)J x 7r(c)). 

Also, (z(-l), c( -1)) E [Z\F(l)J x 7r(c), and (from above) 
IIF(z( -1), c( -1)) E I{ n IIF([Z\F(l)J x 7r(c)). Consequently 
(z( -1), c( -1)) E 1-1 (3). Hence, as 1-1 (3) is the component 
of IIF1 (I{) n ([Z\F(l)J x 7r(c)) containing (z( -1), c( -1)), we 
have Y-1(S) == H. Then, as y-1 is a homeomorphism, it fol
lows from (31) that H is not compact. Moreover, 

H ~ [Z\F(l)J x {c(-l)}, 

since (z( -1), c( -1)) E H ~ [Z\F(l)J x 7r(c) and H is con

nected. Then, as H is not compact, there exist points 
(zl,c(-l)), (z2,c(-1)), ... , in H which converge to some 
(zo,c(-l)) E [Cl(H)J\H. Note that H U {(zo,c(-l))} is con
nected. Also, (zo, c( -1)) E II;.l(I{), since (Zk' c( -1)) E H ~ 
II.1:.1(I{) for k 2: 1, and II;.l(I{) is closed in Z x C. Hence, 
as (zo,c(-l)) E II;.l(I{) and as H U {(zo,c(-l))} is a con
nected subset of IT;.1 (I{) that properly contains the component 
H of ITF1 (I{) n ([Z\F(l)J x {c(-l)}), vile have (zo,c(-l)) ~ 
[Z\F(l)J x {c(-l)}. That is, Zo E F(l). Then, because 
(zo,c(-l)) E Cl(H) n (F(l) x {c(-l)}) and (z(-l),c(-l)) E 

Cl(H)nF(-l) x {c(-l)}, (30) holds. Symmetric to (30), one 
also has 

Cl(H') is a subcontinuum of Z x {c'(-l)} that intersects 
both F(l) x {c'(-l)} and F(-l) x {c'(-l)}. 

(32) 

By (30) and (32), and since c(-l),c'(-l) E 7r(c), 

IT:F(Cl(H)) ~ <p-1(1r(c(-1))) == <p-1(1r(c)) 

== <p-1 ( 1r (C' ( -1 ))) 2 IT:F(C1(H') ). 
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Moreover, IIF(Cl(H)) is, again by (30), a continuum in 
'P-1 (7r(c)) containing IIF(z( -1), c( -1)). Thus, as N is the com
ponent of 'P-1 (7r(c)) containing IIF(z(-l),c(-l)), IIF(Cl(H)). 
is a subcontinuum of N. Similarly, IIF(Cl(H')) is a subcontin
uum of N'. Now let Rand R' denote the projections of Cl(H) 
and Cl(H'), respectively, onto Z. Then R ~nd R' are subcon
tinua of Z each of which intersects both F(l) and F( -1) (by 
(30) and (32)). Thus, by hypothesis (*) of Lemma 4, there 
exists Z ERn R' n F(l). Consequently, (z, c( -1)) E Cl(H) 
and (z,c'(-l)) E Cl(H'). Hence, as c(-l),c'(-l) E 7r(c) and 
c E (C\E) U U£1, we have 

IIF(z, c( -1)) == IIF(z, c'( -1)) E 

IIF(Cl(H)) n IIF(Cl(H')) ~ N n N'. 

Thus, N n N' =1= 0. Hence N == N'. 
The proof that N == N' when c E (C\E) U U£-1 is sym

metric to the argument just given. This completes the proof 
of Lemma 4.0 

3 An Example 

Let ~ denote a fixed plane triangle with vertices (Xi, Yi) for 
i == 0,1,2. For any real number z let ~(z) denote the triangle 
~ X {z} in R3

, and let Vi(z) be the vertex (Xi,Yi,Z) of ~(z). 

For i == 0,1,2, let Ii denote the closed vertical line segment 
joining Vi(O) to Vi(l). Let Z' be the continuum defined by 

00 

z' = 10 U 11 U 12 U U~(n/(n +1)) U ~(1). 
n=O 

For 0 :::; n < 00 let i(n) == n mod 3, and let On be the open 
subarc of Ii(n) with missing endpoints Vi(n) (n~l ) and Vi(n) (~t~ ). 
Let 0 == U~=O On and 

z" == Z'\O. 
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Define Z to be the union of Z" with its reflection through the 
plane z == o. It is not difficult to verify that Z', Z" and Z are 
colocally connected continua. Define 

F(l) == {VO(l), Vi(l), Y;(1)} and 
F(-l) == {VO(-l), Vi(-l), Y;(-1)}. 

Observe that 

Each subcontinuum of Z intersecting both F(l) and F( -1) 
contains at least two of the three points in F(l) and at least 
two of the three points in F( -1). 

(33) 

Let F == {F( -1), F(l)}, and let the ordering of the compo
nents of 51 \ C be as stated in Lemma 3. Then Z:F is colocally 
connected by Lemma 3. Also, by (33), if Rand R' are sub
continua of Z each of which intersects both F(l) and F( -1), 
then R n R' n F(l) =I- 0 =I- R n R' n F( -1). Hence, by Lemma 
4, <I>:F is an hereditarily monotone mapping of Z:F onto the 
simple closed curve 1r(C). Choose a homeomorphism r from 
1r(C) onto 51. Then h == r 0 <I>:F is an hereditarily monotone 
mapping of Z:F onto 51. 
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