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Abstract 

We construct a Hausdorff countably compact space 
in which no pair of distinct points have disjoint closed 
neighbourhoods, and hence on this space every contin­
uous real-valued function is constant. 

Spaces on which every continuous real-valued function (or, 
more generally, spaces on which every continuous function into 
a given space R) is constant, are examined in [1]-[4], [6]-[8] 
and [11]-[15]. None of them is countably compact. All con­
structions of these spaces make use of an auxiliary space T 
containing two points a, b such that f( a) = f( b), for every 
continuous real-valued function f of T (or, f(a) == f(b), for 
every continuous function f of T into the given space R) and of 
a condensation process. The points a, b having this property 
are called by van Douwen [3], twins. While it is easy to con­
struct a regular countably compact space containing two points 
not separated by a continuous real-valued function - (consider 
the countably compact non-normal space in [5, 8L] on which 
every continuous real-valued function is constant on a deleted 
neighbourhood of the corner point, and then apply the method 
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of [9]) - none of the condensation processes (nor the c-process 
[10]) yield a countably compact space. 

We construct a Hausdorff countably compact space having 
the property that no pair of distinct points have disjoint closed 
neighbourhoods. Obviously from this property follows that on 
such a space every continuous real~valued function is constant. 
The construction is a modification of the van Douwen's con­
struction in [3]. 

Proposition There exists a Hausdorff countably compact space 
on which every continuous real-valued function is constant. 

Proof: Let [0,0] be the closed ordinal space and let [0, O]i, i E 
I, \11 = \[0,0]\ be disjoint copies of [0,0]. To the topological 

sum X = U[O, O]i we add the open ordinal space [0,0) and we 
iEI 

consider the set Y = X U [0,0). We define the bases of open 
neighbourhoods of the points of [0, 0) in Y as follows: Let 
V(x) be an open neighbourhood of x in [0,0) and let V(Xi) be 
the copy of V(x) in [O,O]i. Then a basis of open neighbour­

hoods of x in Y is the collection of sets V(x) U (U C), where 

C is the set consisting of all but a finite number of V (Xi). 
It can be easily proved that the space Y is regular and that 

X is an open dense subspace of Y. Observe that since [0, 0) 
is countably compact, every sequence frequently in Y \ {f!i : 
i E I} has an accumulation point (either in X or in [0,0)). 
Therefore the only not accumulating sequences in Y, are those 
whose all but finitely many of terms belong to L = {Oi : i E I}. 

Since the set L and the set D of isolated points of X have 
the same cardinality there exists an one-to-one mapping 9 of 
L onto D. On the quotient space 

z = {x, (f2i , 9 (f2 i )) : x E (X \ L U D) U [0, f2), i E I} 

we define a weaker topology T as follows: Let U(O) be an 
open neighbourhood of 0 in [0,0] and let U(f2i ) be the copy of 
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u(o,) in [O,o']i. Let also 1r be the natural projection of Y onto 
Z. For every Xi E X \ L U D a basis of open neighbourhoods 
is the collection of open sets O(Xi) for which 

where k varies through all positive integexs for which, for some 
finitesequenceofpositiveintegersnl, ... ,nm, nm = k, g(nnl) E 

V(Xi), and for alII:::; j < m, g(f!nj+l) E U(f!nj)' For every 
x E [0, f!) a basis of open neighbourhoods is the collection of 
open sets O(x) for which 

where k again varies through all positive integers for which, 
for some nl, ... ,nm, nm == k, g(f!nl) E UC, and for all 
1 :::; j < m, g(o'nj+l) E U(f!n

J
·). For every point (f!i' g(Oi)) 

a basis of open neighb~rhoods is the collection of open sets 

o((ni,9(ni))) for which 

where now for k and nl, ... , nm, nm == k, g(f!nl) E U(f!k), and 
for alII:::; j < m, g(f2nj+1 ) E U(f!nj)' 

We observe that the open sets in 7 are just those open sets 
of the quotient topology each of whose inverse images under 1r 

is a (saturated) open set for which i, V(Xi), and U(O) are fixed 
and k varies through the smallest set so needed. Obviously 
(Z, 7) is countably compact. 

We prove that (Z,7) is Hausdorff. Let Xi E X \ L U 

D and B = (f!i,g(f!i))' There exist open neighbourhoods 
V(Xi), U(f!i) in Y of Xi and Oi, respectively, such that V(Xi) n 
U(Oi) = 0 and g(Oi) tt V(Xi)' Hence the sets 

E1 (V(Xi)) = V(Xi) u {nk : g(nk ) E V(Xi)} 
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and 

are disjoint. Consequently, for appropriate open neighbour­
hoods U(Ok), V(Oz) in Y of the points Ok and Oz, respectively 
the sets 

En+! (V(Xi)) = En (V(Xi)) u U U(Ok) 
g(Ok)EEn(V(xi)) 

and 

En+1 (U(B)) = En (U(B)) U U U(OI) 
g(Oz)EEn(U(B)) 

for n==1,2, ... , are disjoint. Therefore the sets 

E(V(xd) = 0En (V(Xi)) 
n=l 

and 

E ( U(B)) = 0E1t ( U(B)) 
n=l 

are disjoint open in Y, and such that the sets 7l" ( E (V (xd ) ) , 

7l"(E(U(B))) are disjoint open in (Z,r). 
Similarly are proved and the other cases. Therefore (Z, 7) 

is Hausdorff. 
That every continuous real-valued function of (Z, 7) is con­

stant is obvious since by the definition of topology, no pair of 
distirlct points of Z have disjoint closed neighbourhoods. 

We observe that the space (Z, 7) is neither regular nor first 
countable nor separable. 
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