Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT ${}_{\bigodot}$ by Topology Proceedings. All rights reserved.

A Hausdorff Countably Compact Space On Which Every Continuous Real-Valued Function Is Constant

V. Tzannes

Abstract

We construct a Hausdorff countably compact space in which no pair of distinct points have disjoint closed neighbourhoods, and hence on this space every continuous real-valued function is constant.

Spaces on which every continuous real-valued function (or, more generally, spaces on which every continuous function into a given space R) is constant, are examined in [1]-[4], [6]-[8] and [11]-[15]. None of them is countably compact. All constructions of these spaces make use of an auxiliary space T containing two points a, b such that f(a) = f(b), for every continuous real-valued function f of T (or, f(a) = f(b), for every continuous function f of T into the given space R) and of a condensation process. The points a, b having this property are called by van Douwen [3], twins. While it is easy to construct a regular countably compact space containing two points not separated by a continuous real-valued function-(consider the countably compact non-normal space in [5, 8L] on which every continuous real-valued function is constant on a deleted neighbourhood of the corner point, and then apply the method

of [9])— none of the condensation processes (nor the c-process [10]) yield a countably compact space.

We construct a Hausdorff countably compact space having the property that no pair of distinct points have disjoint closed neighbourhoods. Obviously from this property follows that on such a space every continuous real-valued function is constant. The construction is a modification of the van Douwen's construction in [3].

Proposition There exists a Hausdorff countably compact space on which every continuous real-valued function is constant.

Proof: Let $[0,\Omega]$ be the closed ordinal space and let $[0,\Omega]_i,\ i\in I,\ |I|=|[0,\Omega]|$ be disjoint copies of $[0,\Omega]$. To the topological sum $X=\bigcup_{i\in I}[0,\Omega]_i$ we add the open ordinal space $[0,\Omega)$ and we

consider the set $Y = X \cup [0,\Omega)$. We define the bases of open neighbourhoods of the points of $[0,\Omega)$ in Y as follows: Let V(x) be an open neighbourhood of x in $[0,\Omega)$ and let $V(x_i)$ be the copy of V(x) in $[0,\Omega]_i$. Then a basis of open neighbourhoods of x in Y is the collection of sets $V(x) \cup (\bigcup C)$, where C is the set consisting of all but a finite number of $V(x_i)$.

It can be easily proved that the space Y is regular and that X is an open dense subspace of Y. Observe that since $[0,\Omega)$ is countably compact, every sequence frequently in $Y \setminus \{\Omega_i : i \in I\}$ has an accumulation point (either in X or in $[0,\Omega)$). Therefore the only not accumulating sequences in Y, are those whose all but finitely many of terms belong to $L = \{\Omega_i : i \in I\}$.

Since the set L and the set D of isolated points of X have the same cardinality there exists an one-to-one mapping g of L onto D. On the quotient space

$$Z = \{x, (\Omega_i, g(\Omega_i)) : x \in (X \setminus L \cup D) \cup [0, \Omega), i \in I\}$$

we define a weaker topology τ as follows: Let $U(\Omega)$ be an open neighbourhood of Ω in $[0,\Omega]$ and let $U(\Omega_i)$ be the copy of

 $U(\Omega)$ in $[0,\Omega]_i$. Let also π be the natural projection of Y onto Z. For every $x_i \in X \setminus L \cup D$ a basis of open neighbourhoods is the collection of open sets $O(x_i)$ for which

$$\pi^{-1}(O(x_i)) \cap X = V(x_i) \cup \bigcup U(\Omega_k),$$

where k varies through all positive integers for which, for some finite sequence of positive integers $n_1, ..., n_m, n_m = k, g(\Omega_{n_1}) \in V(x_i)$, and for all $1 \leq j < m, g(\Omega_{n_{j+1}}) \in U(\Omega_{n_j})$. For every $x \in [0,\Omega)$ a basis of open neighbourhoods is the collection of open sets O(x) for which

$$\pi^{-1}(O(x)) = V(x) \cup \bigcup C \cup \bigcup U(\Omega_k),$$

where k again varies through all positive integers for which, for some $n_1, ..., n_m$, $n_m = k$, $g(\Omega_{n_1}) \in \bigcup C$, and for all $1 \leq j < m$, $g(\Omega_{n_{j+1}}) \in U(\Omega_{n_j})$. For every point $(\Omega_i, g(\Omega_i))$ a basis of open neighbourhoods is the collection of open sets $O((\Omega_i, g(\Omega_i)))$ for which

$$\pi^{-1}\Big(O\Big((\Omega_i, g(\Omega_i))\Big)\Big) \cap X = \{g(\Omega_i)\} \cup \bigcup U(\Omega_k),$$

where now for k and $n_1, ..., n_m, n_m = k, g(\Omega_{n_1}) \in U(\Omega_k)$, and for all $1 \leq j < m, g(\Omega_{n_{j+1}}) \in U(\Omega_{n_j})$.

We observe that the open sets in τ are just those open sets of the quotient topology each of whose inverse images under π is a (saturated) open set for which $i, V(x_i)$, and $U(\Omega)$ are fixed and k varies through the smallest set so needed. Obviously (Z,τ) is countably compact.

We prove that (Z, τ) is Hausdorff. Let $x_i \in X \setminus L \cup D$ and $B = (\Omega_i, g(\Omega_i))$. There exist open neighbourhoods $V(x_i)$, $U(\Omega_i)$ in Y of x_i and Ω_i , respectively, such that $V(x_i) \cap U(\Omega_i) = \emptyset$ and $g(\Omega_i) \notin V(x_i)$. Hence the sets

$$E_1(V(x_i)) = V(x_i) \cup \{\Omega_k : g(\Omega_k) \in V(x_i)\}$$

and

$$E_1(U(B)) = \{g(\Omega_i)\} \cup U(\Omega_i) \cup \{\Omega_l : g(\Omega_l) \in U(\Omega_i)\}$$

are disjoint. Consequently, for appropriate open neighbourhoods $U(\Omega_k)$, $V(\Omega_l)$ in Y of the points Ω_k and Ω_l , respectively the sets

$$E_{n+1}\Big(V(x_i)\Big) = E_n\Big(V(x_i)\Big) \cup \bigcup_{g(\Omega_k) \in E_n(V(x_i))} U(\Omega_k)$$

and

$$E_{n+1}(U(B)) = E_n(U(B)) \cup \bigcup_{g(\Omega_l) \in E_n(U(B))} U(\Omega_l)$$

for n=1,2,..., are disjoint. Therefore the sets

$$E(V(x_i)) = \bigcup_{n=1}^{\infty} E_n(V(x_i))$$

and

$$E(U(B)) = \bigcup_{n=1}^{\infty} E_n(U(B))$$

are disjoint open in Y, and such that the sets $\pi(E(V(x_i)))$, $\pi(E(U(B)))$ are disjoint open in (Z, τ) .

Similarly are proved and the other cases. Therefore (Z,τ) is Hausdorff.

That every continuous real-valued function of (Z, τ) is constant is obvious since by the definition of topology, no pair of distinct points of Z have disjoint closed neighbourhoods.

We observe that the space (Z, τ) is neither regular nor first countable nor separable.

Acknowledgment. The author wishes to express his gratitude to the referee for his helpful suggestions and comments.

References

- [1] S. Armentrout, A Moore space on which every real-valued continuous function is constant, Proc. Amer. Math., Soc. 12 (1961), 106-109.
- [2] H. Brandemburg and A. Mysior, For every Hausdorff space Y there exists a non-trivial Moore space on which all continuous functions into Y are constant, Pacific J. Math., 111 (1984), no 1, 1-8.
- [3] E.K. van Douwen, A regular space on which every continuous real-valued function is constant, Nieuw Archief voor Wiskunde, **20** (1972), 143-145.
- [4] W.T.van Est, and U.H. Freudenthal, Trennung durch stetige Functionen in topologischen Raumen, Indagationes Math., 13 (1951), 359-368.
- [5] L. Gillman, and M. Jerison, Rings of Continuous Functions, Springer-Verlag, 1976.
- [6] H. Herrlich, Wann sind alle stetigen Abbildungen in Y Konstant? Math. Zeitschr., 90 (1965), 152-154.
- [7] E. Hewitt, On two problems of Urysohn, Analls of Mathematics, vol. 47 No 3, (1946), 503-509.
- [8] S. Iliadis, and V. Tzannes, Spaces on which every continuous map into a given space is constant, Can. J. Math., 38 6 (1986), 1281-1298.
- [9] F.B. Jones, Hereditarily separable, non-completely regular spaces, Proceedings of the Blacksburg Virginia Topological Conference, Springer-Verlag, **375** (1973), 149-151.
- [10] A. Kannan, and M. Rajagopalan, Constructions and Applications of Rigid Spaces I, Advances Math., 29 (1978), 89-130.

- [11] J. Novak, Regular space on which every continuous function is constant (English summary) Casopis Pest Mat. Fys., 73 (1948).
- [12] V. Tzannes, A Moore strongly rigid space, Can. Math. Bull., **34** (4) (1991), 547-552.
- [13] V. Tzannes, Two Moore spaces on which every continuous real-valued function is constant, Tsukuba J. Math., 16 (1) (1992), 203-210.
- [14] J.N. Younglove, A locally connected, complete Moore space on which every real-valued continuous function is constant, Proc. Amer. Math. Soc., 20 (1969), 527-530.
- [15] J. Williams, Nested sequences of local uniform spaces, Trans. Amer. Math. Soc., (1972), 471-481.

University of Patras Patras 261 10, Greece