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ON A GENERALIZATION OF
 
TOTALLY BOUNDED AND
 

COMPACT METRIC SPACES
 

Alberto Barbati and C~amillo Costantini 

Abstra.ct 

We study two suitable generalizations of the notions 
of totally bounded and compact metric spaces, to es­
tablish comparisons and similarities with the classical 
case. 

Introduction 

The notions of GTB and GK space have been first introduced 
in [3], and used to calculate the density of the hyperspace of a 
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metric space, endowed with the Hausdorff or the locally finite 
hypertopology. The notion of GK space is also implicit in [6], 
\vhen considering metric spaces whose extent is not achieved 
(see, in particular, section 2). 

According to an elementary topological argument, the total 
boundedness of an (infinite) metric space (X, d) implies a strict 
restriction on its density, namely d(X) = No. Hence, we can 
say that (X, d) is totally bounded if and only if d(X) = No 
and for every E > 0 there exists an E-dense subset of X having 
cardinality less than d(X). 

Now, it is natural to wonder what happens in the preceding 
definition if we exclude the condition: d(X) = No. This leads 
exactly to the notion of GTB space, which is one of the main 
subjects of this paper. A parallel generalization deals with 
compacteness, and gives rise to the GK metrizable spaces: X 
is said to be GK if every open cover of X has a subcover of 
cardinality less than d(X) (see §3). 

In the following, we will investigate these two concepts and 
their mutual relationships, with special regards to possible ex­
tensions of results concerning the corresponding classical no­
tions. The exposition is completed by several examples. 

We note as a peculiarity the frequent use of generalized 
sequences indexed by singular cardinals (in fact, cardinals of 
cofinality No); this is not common in similar frameworks, such 
as radial and pseudo-radial spaces, or w,-t-rnetrlzable spaces, 
where only regular cardinals are involved. 

In the following, the symbol IAI will denote the cardinality 
of the set A, while cof (lJ) will be the cofinality of the cardinal 1/. 

For other undefined syrnbo]s and notions the reader is referred 
to [.5]. 
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Generalized total boundedness 

Definition: A metric space (X, d) is said totally bounded 
in the generalized sense or sim.ply GTB iff for every c > 0 
there exists an c-dense subset N of X with INI < d(X). 

A totally bounded metric space is a GTB space, as it is 
known that such a space is separable (i.e. has density ~o). 

An equivalent definition of generalized total boundedness 
is given by the following theoren1. In practice, it says that 
uniformly discrete subsets of a G~rB space cannot achieve the 
highest cardinality (we recall that a subset D of a metric space 
(X, d) is said unifo'f'n1ly discrete if there exists c > 0 such that 
d(x,y) ~ c for distinct x,y ED). 

Theorem 1 A 'metric space X is GTB iff every uniformly dis­
crete subset of X has cardinality less than d( X). 

Proof: See [3, Theorem 4]. 0 

The fact that a metric space (X, d) is GTB implies a con­
dition on the density of X. On the other hand, every cardinal 
nurrlber satisfying such a condition is the density of a suitable 
GTB metric space. 

Theorem 2 If(X,d) isa GTBrnetricspace J thencof(d(X)) = 
No. For every cardinal ~ such that cof (~) = No there exists a 
GTB metric space (X, d) such that d(X) = ~. 

Proof: See [3, Theorem 5 and Example 6]. 0 

We demonstrate here a natural technique for constructing 
GTB metric spaces of density greater than No. 
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Theorem 3 If (vn)nEN is a sequence of infinite cardinals such 
that v == sUPnEN Vn is greater than each of the Vn) and for every 

"n E N) (Xn, dn) is a metric space of density Vn) with dn :::; 
1) then) fixing any sequence (rn)nEN of positive real numbers 
such that limnEN rn == 0) the metric space (X, d)) where X == 

I1nEN X n and 

is a GTB space of density v. 

Proof: Clearly, d is in fact a compatible metric on X == 

I1nEN X n . Now, let us prove that, given any c > 0, there 
exists an c-dense subset D of X having cardinality less than v. 

Indeed, take n E N such that ri :::; ~ for i > n. For every 
i E N with i :::; n, take a dense subset Di of X'i with IDil == Vi, 

while, for i > n, let D i == {Xi} be a fixed one-element subset 
of Xi (which is nonempty by hypothesis). Then, putting D == 
I1iEN Di , we have that IDI == VI··· .·Vn == max {VI, ... , Vn } < V; 

moreover, if (ai)iEN is an arbitrary point of X, then selecting 
for every i :::; n an Xi E Di with dn (ai, Xi) < ~, it is easily seen 

that d (( Xi )iEN , (ai )iEN) == sUPiEN ri . di (Xi, ai) < c. 
Thus, all we have to show is that d(X) == v. On the one 

hand, it is clear that d(X) 2:: 1/. On the other hand, as each 
factor in the definition of X has density less than (or equal to) 
v, and trivially 21/ 2: No, we have that d(X) :::; v by the Hewitt­
Marczewski-Pondiczery theorem (see [5, Theorem 2.3.15]). 0 

Corollary 4 If the cardinals Vn and V are as in the preceding 
theorem and) "for every n E N) X n is a metrizable space of den­
sity vn) then the space X ==' I1nEN X n has density v and can be 
endowed 7.1Jith a compatible GTB metric. 

Several properties of classical totally bounded spaces can 
be carried out in a suitable form to GTB spaces. In particular, 
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let us observe that if M is a subspace of a GTB space (X, d), 
such that d(M) == d(X), then M also is a GTB space. 

A very natural question in this vein is to establish if the 
first statement of Theorem 2 can be inverted, in which case 
the preceding corollary would be obtained as a particular con­
sequence; moreover, such a result would generalize the fact 
that a metrizable space· is separable if and only if it admits a 
totally bounded compatible metric. 

The answer is positive, as we are going to show below. The 
proof of this theorem is due to J. Ftelant, to which the authors 
are very grateful. He improved on a preceding proof in a pre­
liminary version of this paper, which needed the Generalized 
Continuum Hypothesis. 

Theorem 5 If (X, d) is a metric space with cof(d(X)) == ~oJ 

then there exists a metric p equivalent to d such that (X, p) lS 

a GTB space. 

Proof: The case d(X) == ~o is well-known; thus, we can sup­
pose v > ~o. 

Let A == UnEN An be a a-uniformly discrete base for X; 
that is, for every n E N there exists en > 0 such that 

where Dd (A, B) == inf {d (x, y) Ix E A, y E B}. Observe that 
each An' as a collection of pairwise disjoint open subsets of 
X has cardinality ~ v. Furthemore, splitting up some of the 
collections An into countably many pairwise disjoint subcol­
lections, each with cardinality less than v, we can suppose 
IAnl == Vn< v for every n E N. 

Given n E N, let H lJn == (UaElJn([0, l[x {a})) U {l} be the 
hedgehog of spininess V n , which can be obtained, as it is well-
known, by adding to the disjoint union UaElJn ([0, l[x {a}) of 
V n many copies of the segment [0, 1[, the point 1 having as a 
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fundamental system of neighbourhoods the family {Vm I mEN}, 
where 

for every mEN (in the literature, it is more frequent to use 
copies of the segment] 0, 1] and the added point Q.). Each H Vn 

is a metrizable space of density lJn , and hence by Corollary 4 
the product space H == ITnEN H vn has density lJ and can be 
endowed with a compatible GTB metric h. 

For every n E N, write An == {An,a Ia E lJn}, where a ~ 

An,a is injective, and define 'Pn:X ~ Hvn by 'Pn(x) == 
(d(x,~n.o<) , a) if d (x, An,a) < En for a (necessarily unique) aE 

lJn, and 'Pn (x) == 1 otherwise. It is easily checked that each 
'Pn is continuous; if we can prove that the family {'Pn I n E N} 
separates points and closed sets, then the map 'P == 6 nE N yn 
would be a topological embedding of X into H, and hence 
p (x, y) == h ('P (x) ,'P (y)) would define a compatible GTB met­
riconX. 

Now, let C be a closed set in X and x E X \ C. Put 
r == d(x,C) > 0: as A is a base for X, there exist n E Nand 
a E lJn such that x E An,a ~ Sd (x, ~). This implies, by the 
triangular inequality, that d (y, z) 2:: ~ for every y E An,a and 
z E C; in particular, yn(C) n ([O,s[x {a}) == 0, where s == 
min { 2: ,I}. As [0, s[ x {a} is open in Hl/n , we also have that 

n 

Cl(yn(C)) n ([O,s[x {a}) == 0, and hence 'Pn(x) == (O,a) ~ 

Cl ('Pn (C)). 0 

3 Generalized compactness 

The notion of GTB space leads us in a natural way to introduce 
a generalization of compact spaces. We will say that a topolog­
ical space X is compact in the generalized sense (briefly, 
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G K) if for every open cover U of )C, there exists a subcover V 
such that IVI < d(X). We will consider only metrizable GK 
spaces. 

The two next characterizations genera.lize the vvell-kno\vn 
results that a metrizable space is compact iff it has no closed 
and discrete subset of cardinality ~o and iff every' compatible 
metric on it is totally bounded. 

Theorem 6 A 'm.etrizable space ..\: is GI(' if and only if it has 
no closed a'nd dl:screte subset of cardinality equal to d( .6\). 

Proof: See [3, Theorem 7]. 0 

Theorem 7 A 'm.etrizable space )( is GI\F lj' and only If every 
co'm,patible 'metric on ..\ is GTB. 

Proof: See [3, Theore111 8]. 0 

l\nother characterization of generalised cOlnpactness is pos­
sible by llsing a suitable cardinal function. 

For every topological space ..\F., let 

L( ..\") ==lnin {~ cardinal I V open cover U 01' ..\: 

3 cover v' ~ U: IVI ::; ~} 

a.nd 

L' (..\) == 111in{~ cardinal I V open cover U of ..\F: 

~ co\yer V ~ lA: 11)1 < ~}. 

']'hell L ( ..\) is the \vell-kno\vn I.Jindel()f llun1ber~ and the pre­
ceding definitions clea.rly sho\v that 
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Theorem 8 For every metrizable space X the following con­

ditions are equivalent:
 

1) X is GI(;
 

2) L' (X) ~ d(X); 
3) L' (X) == d(X); 
4) cof (L' (X)) == No. 

Proof: Equivalence between 1) and 2) follows immediately 
from the definitions, whereas 2){:==?3) is a consequence of (*) 
and of the equality d(X) == L (X) for metric spaces [7, Theo­
rem 8.1. (c)] . 

If X is GK, then cof(d(X)) == No (by Theorems 2 and 
7), and d(X) == L'(X) by 3): thus 4) holds. Conversely, if 
cof (L' (X)) == No, then L' (X) i- L (X)+ (as successor cardinals 
are regular): hence by (*)we have that L (X) == L' (X), and 
3) holds. 0 

Analogously to what happens for GTB metric spaces, it is 
possible to prove that for every cardinal v with cof (v) == No 
there exists a GK metrizable space X with d(X) == v. 

Example 9 Let v be any cardinal number 'lvith cof (v) == No 
and let (vn)nEN be a strictly increasing sequence of cardinals 

with sUPnEN V n == v. Consider a set X == (UnEN X n ) U {oo}) 
where each X n has cardinality vn ) the sets X n are pairwise dis­
joint and the point 00 does not belong to a'ny of the'm. Endo'lv 

X 'lvith a topology T by assuming that every point of UnEN X n 

is discrete) and giving 00 the fundamental system of nel:ghbour­

hoods {Vn In E N}) where Vn == (Unl>n Xnl) U {oo} for every 

n E N. Then X is a GI( metrizable space. 

Proof: See [3, Example 9]. 0 

In the following, we will use the above defined space X for 
further applications, an"a we will also consider the compatible 
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metric d on it, defined by: 

o if x = y 
- 1 if x E X m , y E X n and x =1= yd(x,y) = rn{m,n}{ if x E X n and y = 00, or vice-versa 

Note also that by a slight modification, the above example 
can be chosen to be connected (see also [5, Exc 4.1.H(b)]). 

Observe that, in the space X of the example, there is only 
one point where the local density equals the global density of 
X (the local density of a point is the minimum of the densi­
ties of its neighbourhoods). This is a special case of a general 
result which states that in a GK Jmetrizable space, the set of 
points where the local density equ.als the global density is al­
ways compact and nonen1pty (see [3, Lemmas 10 and 11] or [6, 
Lemma 1]). 

Now, let us deal with relatio:nships between generalized 
compactness and sequences. If X is a metrizable space with 
d(X) = ~, is it true that X is GK if and only if every ~-sequence 

in X possesses a convergent ~-subsequence? 

First of all, we say that (a"",6) ,6Es is a e-subsequence of 

(aa) aEc if j3 1---+ Q{3 is a nondecreasing function from ~ to ~ 

and the set {Q{31 j3 E ~} is cofinal to~. Such a definition seems 
in accordance with the general notion of subnet of a net [5, 
§1.6], and in the case ~ = No it \vorks the same way of the 
classical one (although it is less restrictive). 

Then the above question has a negative answer for ~ > No; 
as a matter of fact, it results too strong to impose the condition 
of the convergent subsequence on all the ~-sequences of X. 
Consider, for instance, the space )( defined in Example 9: let 
{an In E N} be a countable subset of Xl, where n r---t an is 
one-to-one. Define (xa)aEv by putting Xa = an for a E An = 
{a E v I Vn-l :::; a < vn }. It is apparent that no IJ-subsequence 

of (xa)aEv can converge to a point of X. 
Thus, to avoid degenerations" we must prevent the v­
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sequences in question from becoming, in fact, (-sequences with 
( < v. To this end, we will o·nly consider injective v-sequences. 
We have a result whose proof uses the Generalized Continuum 
Hypothesis. 

Theorem 10 (ZFC+GCH) Let (X, d) be a GI( 'metric space 
with d(X) == v. Then every injective v-seque'nce possesses a 
convergent v-subsequence. 

Proof: The case v == No is well-known. For v > No, put, 
as usual, lJ == sUPnEw vn , where n r--t Vn is strictly increasing 
and Vo == 0 (this is possible because cof (lJ) == No). Also, we 
can choose the cardinals V n in such a way that there exist 
corresponding 'regular cardinals Iln > No with: 

for every n E N (in particular, each l/n is in turn a successor 
cardinal) . 

Suppose that there exists an injective I/-sequence (xa)aEv 
in X having no convergent I/-subsequence. For every n E N, 
let Sn == {xc~ I CX' < I/n}. Then it is possible to find for every 
rt E N, r~ ~ 2, a subset An of An == {a E 1/ Il/n-l ~ a < I/n} 
such tha.t 

( 1) 

and 

(2) 

(the definition of the sets An will be completed by putting 
A1 == A 1 == 1/1). 

Indeed, let it E N with it 2: 2. Then the relation ISii-ll == 
I/ii-l implies that I(~l (k)ii-l ) I :::; 1/71,-1 No :::; l/i~-l Vfl.-} == 2V 

il,-1 == 

1/t-1 < 11t == I/n (by GC~I1 and the initial assumptions on 
the cardina.ls 1/,11,): hence, I{(\I E 1\1/, I ;t ev t/:. (;} (5'111,_1)} I == 1/11,. f3y 
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perfect normality of X, there exists a sequence (Wm)mEN of 
open subsets of X such that nmEI\l Wm == CI (Sn-I ); since 

I U{a E An IX a rt Wm}1 = I{a E An IX a rt Cl (Sn-l)}1 = V n 
mEN 

and Vn is regular, there exists m E: N such that 

Putting An == {a E An I X(X ~ Wm}, we have that 

Cl{ X a Ia E An} ~ X \ Wm, and hence Cl{ X a Ia E An} n 
CI (Sri-I) == 0. 

Now let us define, for every n ~= N: 

then we have by (2) and the definition of the S'n that, for 

n' < nil: Cn, n Cn" ~ CI (Sn') n C:n" ~ Cl (5'n"-I) n Cn" == 0. 
Thus the sets Cn are pairwise disjoint. We claim that the 
family {Cn In E N} is locally finite. 

By contradiction, suppose x E X be such that every neigh­
bourhood of x intersects infinitely many sets CYn . Let 
{[jn I n E N} be a fundamental system of open neighbourhoods 
for x with [jl ~ [j2 ~ [j3 ~ ... : \\ire will construct an increas­
ing sequence (a~)nEw of ordinals in v such that {a~ ITt E w} is 
cofinal to v. Put a~ == 0; if a~ is defined, and rnn E N is such 
that a~ E Amn , then, as the set Un is an open neighbourhood 
of x, there exists rnn+1 > Tn n such that Un n Cmn+1 f:. 0; [In 
open implies further that there exists Q'~+1 E Amn+1 ~ Amn+1 

such that 
Xu' E [In. (1)

n+l 

Thus it is clear that CY~+l > (J!~ (as (J!~+1 E A rnn +1 and (J!~j, E 
Amn ) and that the set {(J!~ ITt E u)} is cofinal to 1/; also, the 
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decreasing character of the neighbourhoods Un implies by (3) 
that limn~oo xa~ == X. Putting, for every (3 E v, 0'.{3 == 0'.~,6 ­

where n{3 == min {n E w I O'.~ ~ (3} -, we have that (3 r-t 0'.{3 is 
non-decreasing, the set {0'.{3 I fJ E v} == {O'.~ InEw} is cofinal 
to v and (x a /3) I3Ev converges to x, which is impossible. Thus 

the family {Cn \ n E N} is locally finite. 

For every nE N, as {xa10: E An} ~ Cn and IAnl = Vn 
by (1), we have that /l~ == Vn :::; ICnl ~ d(Cn)No :::; 2d 

(Cn
) == 

d(Cn )+ and hence /In :::; d(Cn ); on the other hand, d(Cn) :::; 

I{ X aI0: E An} I = Vn = f1~; this implies that d(Cn) is in any 

case a regular cardinal greater than No and hence Cn is not GK. 
Thus there exists a closed and discrete subset Dn of Cn with 
IDn \ == d(Cn ); putting D == UnENDn , we have that IDI == v 
and, since the family {Dn I n E N} is locally finite, D is closed 
and discrete in X. Clearly, this contradicts the fact that X is 
GK. 0 

The above theorem cannot be proved in ZFC, as the follow­
ing example shows. Observe that the assumption 2No == N +lW 

is compatible with ZFC, as cof (N w+l ) == NW +l > No (see [4, 
Theorem 1]). 

ExalTIple 11 (ZFC + (2No == ~w+l) Let lR be the real line 
with the euclidean topology, and X be the GK space defined in 
Example 9, with Vn == Nn for every n E N (hence v == Nw ). Put 
Y == lR EB X, the topological disjoint sum of lR and X. Clearly, 
d(Y) == Nw and it is easily proved that Y is GK. Indeed, given 
any open cover U of Y, there exist Ul , U2 ~ U with lUll:::; No, 
UUl ~ lR, IU2 ! < Nw and UU2 ~ X; thus Ul UU2 is a subcover 
of Y of cardinality less than Nw . 

On the other ha11d, for every n E N the subset ]n - 1, n[ of 
IR has cardinality 2No == NW +1 > Nn , and hence it is possible 
to find an injective fllnction Yn: An -t]n - 1, n[ (as in this case 
IAnl == Nn). Define (aa)aEN by CIa == Yn (a), where na is theaw 
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unique element of N such that a E: Ana. Then the Nw-sequence 
(aa)uE~w is injective and has no convergent subsequence (for 
otherwise it would be possible to take a point X n in ]n - 1, n[ 
for each n E N, in such a way that the sequence (xn)nEN have 
an accumulation point in lR). 0 

On the contrary, it is easily seen that the converse of Theo­
rem 10 is true in ZFC without need of additional assumptions. 

Theorem 12 L·et X be a metrizable space 1lJith d(X) == ~) and 
suppose that every injective ~ -sequence in X has a convergent 
~ -subsequence. Then the space X is GI(. 

Proof: Suppose X is not GK: then there exists a closed and 
discrete subset {xa I a E ~} of X, where a ~ Xu is one-to­
one. Then the injective ~-sequence (x a )uEe has no convergent 
~-subsequence. 0 

The attempt of characterizing GK spaces by means of gen­
eralized convergent sequences leads us to deal with another 
classical result for compact metric spaces, that is a metric space 
is compact if and only if it is complete and totally bounded. 

Let (X, d) be a metric space and let ~ be an arbitrary 
cardinal (in particular, we are interested to the case where 
~ == d(X)). We will say that a ~-sequence (xu) uEe ~ X is 
Cauchy if 

A metric space (X, d) with d()() == ~ is GC (complete in 
the generalized sense) if every injective Cauchy ~-sequence 

in X is convergent. It is not hard to prove that every metric 
space which is complete in the classical sense, is GC. 

Note that for every cardinal number v with cof (v) == No, 

the spa.ce (X, d) of Exa.mple 9 is ce. 
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Compatible with ZFC is the existence of some GK metric 
space which is not GC. The construction is very similar to 
Example 11. 

Example 13 (ZFC + (2No == ~w+l)) Consider the segment 
]0, 1[ of the real line, and put Y ==]O,l[EBX, where X is the 
space defined in Example 9. The metric p on Y defined by 

Ix - yl if x, y E]O, 1[
 
p(x,y) = 1(x,y) if x, y E X
{ if x E]O, 1[ and y E X or vice-versa 

is compatible with the topology of the disjoint sum. Tlle spa.ce 
Y is GK for the same reasons explained in Example 11. 

Nevertheless, (Y, p) is not GC. To see this, let us con­
struct an injective v-sequence (aa)aEv such that, for every 

n E N: {aa Ia E An} ~ ] n~l ' *[; then (aa )aEv is Cauchy, but 

it doesn't converge to any point of Y. 0 

On the other hand, it is easy to show in ZFC+GCH that 
every GK metric space is GC. Indeed, every injective Cauchy 
I)-sequence must have a convergent v-subsequence by Theo­
rem 10; and it is trivial to verify that, as for classical sequences, 
if the Cauchy IJ-sequence (aQ') aEv ha.s a IJ-SUbsequence which 
converges to a point a of X, then (aa) aEv itself converges to a. 

The following example, which can be obtained in ZFC, 
shows that in general GC+GTB~GK, and hence that the 
corresponding classical result cannot be generalized even by 
means of additional set-theoretic assumptions. 

Example 14 Let (X, d) be the space defined in Example 9, 

and put Y == X x N; define a. cOTI1patible metric p on Y by: 

if m' == mil 
p ( (x, m') , (y, mil) ) = { ~ (x, y) 

if m' i- m," 
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Clearly, d(Y) = (dens(X)) · ~o = 1/. For every mEN, 

it is possible to find an open partition Urn of X x {m} with 
IUrn I == Vrn · As X x {m} is open in Y, the collection Urn is still 
open in Y. Put U == UrnENUrn: then U is an open partition of 
Y and lUI == v. Thus Y is not G~~. 

The fact that (X, d) is GTB and GC is quite clear. 0 

For the classical notions, we know another fundamental re­
lationship between compactness and completeness, namely a 
metrizable space is compact if and only if every compatible 
metric on it is complete. We have already seen that the GK 
property for a metrizable space X implies that every compat­
ible metric on X is GC, only under GCH. What about the 
reverse implication? 

It turns out that the property in question holds, if we make 
sure in advance that the cofinality of d(X) is No. The reason 
for this is clear from the following easy result. 

Theorem 15 If (X, d) is a '(netTie space UJith cof(d(X)) > NOJ 

then (X, d) is CG. 

Proof: Let ( == d(X): if we can show that in (X, d) there is 
no injective Cauchy (-sequence, then, the result will trivially 
follow. Suppose (aa)aE( to be a Cauchy (-sequence in X: then 
for every n E N there exists an an E ( such that 

I /I ( 1Va ,a 2: an: d , a(.}!II) :::; -.a (.}! I 

n 

Let a == sUPnEN an: then & E ( as cof (() > No. Thus 

that is (a(.}!)(.}!E( is eventually constant. In particular, it is not 
injective. 0 

'l'herefore, we have the desired result in the following forln. 
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Theorem 16 If X is a 'metrizable space 1vith cof(d(X)) == ~o, 

such that every compatible 'metric on it is GC, then X is GI(. 

Proof: Let d(X) == v == sUPnEN Vn : if, by contradiction, X is 
not GK, then there exists a closed and discrete subset D of X 
with IDI == v. Write D == UnENDn, where \Dn\ == Vn for every 
n E N aI!-d the sets Dn are pairwise disjoint, and endow D by 
the compatible metric p, defined as: 

o if x == y
{p(x, y) == 1 

min{l(x),l(y)} if x =I- y 

where I (x) is, as usual, the unique n E N such that x E D n 

(see also the definition of the metric J of Example 13). Now, 
extend p by Hausdorff's theorem to a compatible metric p* on 
X. Indexing each Dn as Dn == {x a \Q' E An}, we see that the 
v-sequence (x a )aEv is Cauchy with respect to p*, but it cannot 
converge to any point of D, neither of X. 0 

One more question about transfinite sequences concerns a 
possible generalization of the well known fact that every metric 
space (X, d) is totally bounded (in the classical sense) if and 
only if every sequence on it admits a Cauchy subsequence. Is 
it possible to extend this property, in a suitable w_ay, to GTB 
spaces? We are going to see that only one implication may be 
preserved. 

Theorem 17 If (X, d) is a metric space 1vith d(X) == e, such 
that every i'njective e-sequence on it ad'mits a Cauchy e­
subsequence, then (X, d) is GTB. 

Proof: Fix any f, > 0: if, by contradiction, there existed an c­
uniformly discrete subset D of X with IDI == e, then indexing 
D as {x a IQ' E e} (with Q' r--4 X cx one-to-one) gives an injective 
e-sequence in X with no Cauchy e-subsequence. 

The converse of the above theorem is false, as the following 
example shows. 

0 



17 On a Generalization etc. 

Example 18 Fix a cardinal v > ~o with cof (v) == ~o, and a 
strictly increasing sequence (vn)nEN of infinite cardinals with 
sUPnEN Vn == v; then consider again the GTB metric space of [3, 
Example 6]. That is, fix pairwise disjoint sets X n for n E N, 
with \Xnl == Vn for every n, and on the set X == UnEN X n 
introduce the metric d defined by: 

if x == y 

d(x,y) = {~ if x "I y and l(x) == l(y) == n 
ifl(x)"I l(y) 

where, for x E X, I (x) is the uniq"ue n E N such that x E X n . 

For every n E N define (as in the proof of Theorem 10): 

- with va == 0 - and put X n == {.x a I Q' E An}, where Q' 1---+ X a 

is one-to-one on An. Then it is easy to see that the (injective) 
v-sequence (x a ) aEv has no Cauchy v-subsequence. 0 

In many cases, extensions of classical properties of compact 
(metrizable) spaces to GK spaces are possible provided that we 
take care of the density of the spaces which are involved. 

In general, for instance, we can. claim that a closed subset 
of a GK space is still GK, only if it has the same density of the 
first space. In the same way, if j~ is a continuous mapping from 
a GK space X to a metrizable space Y, then it is possible to 
infer that j~ (X) is GK only if d(X) == d(j~(X)). 

On the contrary, there is no sa.tisfactory generalization of 
the classical property that compact subspaces are closed. Con­
sider the space X of Example 9 an~d fix a subset {am 1m E N} 
of Xl (where m 1---+ am is one-to-one). Adjoin a point x* to X, 
and endow it with the fundamental system of neighbourhoods: 
{Vm }mEN' where Vm == {x*} U {am' 1m' 2 m} for every mEN. 
Then Z == XU {x*} is a (GK) metrizable space having density 
1/, but its GK subspace X is not closed in Z. 
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All we can say with respect to the last subject is that, if 
X is a GK subspace of a metrizable space Y, with d(X) == 
d(Y) == v, and each point in (CIX) \ X can be obtained as the 
limit of an injective v-sequence of points in X, then - under 
GCH - X is closed in Y. 

We deal now with product spaces, to give necessary and suf­
ficient conditions for a countable product of metrizable spaces 
to be GK. 

Lemma 19 Let X and Y be two metrizable spaces: then X x Y 
is GI{ if and only if X and Yare both GI{ and at least one of 
them is compact. 

Proof: First, suppose X to be GK and Y compact. Clearly, we 
can suppose X infinite; thus, if d(X) == v, then d(X x Y) == v, 
too. 

If, by contradiction, there exists a closed and discrete subset 
D of X X Y with IDI == v, let D l == prl (D) (where prl and 
pr2 are the canonical projections from X x Y on X and Y, 
respectively). For every x E D l , the set {y E Y I(x, y) E D} is 
finite (since otherwise it would have an accumulation point iJ, 
and hence (x, y) would be an accumulation point for D, which 
is impossible). Thus ID l / == IDI == v. 

For every x E D l , select Yx E Y such that (x,Yx) E D. 
As X is GK with d(X) == v, the set D l cannot be closed and 
discrete in X, and hence it has there an accumulation point 
x. Thus we can find an injective sequence (xn)nEN ~ D l such 
that limn~oo X n == x. Correspondently, the sequence (YXn)nEN 
in Y must have a subsequence (Yx nm ) mEN converging to a point 
iJ E Y. It results that (fE, y) is an accumulation point for D, 
in contrast with the assumption that this set is closed and 
discrete. 

Suppose now that X X Y is G1<: we can suppose also, 
without loss of generality, that d(X) == v 2:: d(Y). Therefore 
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d(X X Y) == d(X) == v and X == prJ (X X Y) is GK. Thus we 
only have to show that Y is compact. 

Suppose the contrary: then there exists a closed and dis­
crete subset D" == {Yn In E N} of Y, where n I---t Yn is one-to­
one. Write, as usual, v == sUPnf;:N Vn with n I---t Vn strictly 
increasing: for every n EN, there exists a closed and dis­
crete subset D~ of X with ID~I :== Vn . We claim that D == 
UnEN (D~ X {Yn}) is a closed and discrete subset of X X Y hav­
ing cardinality v, thus contradicting the assumption that X X Y 
is GK. 

Indeed, if (x, y) t/:. D, then either Y t/:. D" - in which case 
there exists an open neighbourhood V of Y such that V n D" == 
0, and hence X X V is an open neighbourhood of (x, y) not 
intersecting D -, or Y == Yii for some n E N and x ~ D~ 

- in which case there exist U, V open neighbourhoods of x, Y 
respectively, such that U n D~ == 0 and V n D" == {Yii}, and 
we have also (U X V) n D == 0. Consider now an arbitrary 
point (x, Yn) of D (with x E D~): there exist again U, V open 
neighbourhoods of x, Y respectively such that U n D~ == {x} 
and V n D" == {Yn}, and hence (U X V) n D == {(x,Yn)}. 0 

Theorem 20 A countable product X == IlnEN X n of metriz­
able spaces is G!( if and only if tllere exists n E N such that 
X n is G!( and each Xn, 1JJith n' =/:. 'n is compact. 

Proof: If the above condition is satisfied, then Iln/~n Xn, 
is compact by the Tychonoff theorem and hence X ~ X n X 

(Ilnl;i:n Xnl) is GK by Lemma 19. 

Conversely, suppose that X is GK. If all the X n spaces 
are compact, then the thesis is satisfied. Thus, suppose that 
there exists a n E N such that X'n is not compact: as X ~ 

X n X (Iln# Xn), by the preceding lemma X n is GK and the 

product Iln;i:ii X n is compact. Hence the thesis follows from 
the Tychonoff theorem. 0 
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Another question arises from the well known fact that every 
totally bounded metric space (or, equivalently, every separable 
metrizable space) can be (topologically) embedded in a suitable 
compact metrizable space, namely in the product of ~o many 
copies of the interval [0,1] (the "Hilbert cube"). Can such a 
result be extended to GTB and GK spaces, respectively? In 
Theorem 3 we showed that every GTB metric space of den­
sity v can be embedded in a countable product of metrizable 
spaces, whose densities have v as their supremum; neverthe­
less, Theorem 20 above shows that such a product fails to be 
GK, and hence this doesn't solve our problem. 

In the following example, we give a negative answer to the 
above question; this emphasizes the different behaviours be­
tween the classical and the generalized case. 

Example 21 For every cardinal nu'mber v 1vith v > No and 

cof (v) == No) there exists a 'metrizable space X 1vith d(X) == v 
such that X cannot be embedded in any GI( metrizable space 
having density v. 

Proof: Given v as above, let X be the GK metrizable space 
of Example 9: then X = UnEN X n U {oo}, where the sets X n 

are pairwise disjoint and d(Xn ) == Vn for every n E N; fur­
thermore, we can suppose that each Vn is regular. Consider 

y = UO'E~l (X X {a}), and endow Y with the topology of the 

disjoint sum of N1 many copies of X. Then Y is a metrizable 
space with d(Y) == v . N1 == v. We claim that Y cannot be 
embedded in a GK metrizable space having the same density. 

By contradiction, suppose that it is possible to envisage 
Y as a subspace of a GK metrizable space Z of density v, 
and let d be a compatible metric on Z. Consider the subset 
M == {( 00, a) Ia E N1 } of Y: then M is discrete and hence 
d( M) == N1 . By [3, Lemma 2], choosing for every n E N a 
Mn E UVTax(M), we have that sUPnEN IMnl == d(M) == N1 ; it 

follows th:t there exists n E N such that IMn I == N1 . 
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Let A == {a E N1.l (00, a) E M ii,}: then IAI == N1. For every 
a E ~l, the ball Sd ((oo,a), }ii) is an open neighbourhood of 
(00, a) in Z: this implies, in particular (by the definition of the 
topology of X), that there exists n,cx E N such that {(00, a) } U 

{(x, a) Ix E Un>n 
a 

Xn} ~ Sd ((00, a), 3~)' For every n E N, 

let An = {a E-A InO/ ::::; n}: then A = UnENAn and hence 

there exists n* E N such that IJin*1 == N1 ; fix a countable 
subset A* == {am 1m 2: n*} of An*, where m~ am is one-to­
one. For every m 2: n*, the set )(m x {am} is discrete, and 
hence d(Xm x {am}) == IXm X {am} I == Vm; again, by [3, 
Lemma 2] and regularity of Vm, it is possible to find a Pm E N 
and a --L-uniformly discrete subset Pm of Xm X {am} such that 

Pm, 

IPml == Vm· 

Now, consider the set D == Um>n* Pm: it is clear that IDI == 
2:m>n* Vm == v; we will obtain a-contradiction with the GK 
character of Z by showing that D is discrete and closed in Z. 
Indeed, let z be an arbitrary point of Z, and consider the open 
ball Sd (z, 3~): if it doesn't intersect D, then we have nothing 
more to prove; if Sd (z, 3~) nD -=I 0, then there is a unique in 2: 
n* such that Sd (z, 3~) n Pm =f. 0 (as if m' =f. mil with m', mil 2: 
n* then Dd (Pml, Pm") 2: Dd (Xml X {amI} ,Xm" X {am"}) 2: 
3
1ii' since Xm, X {amI} ~ Sd ((00, (:Y m/), 3~)' Xm" X {am"} ~ 

Sd ((00, am")' 3~) and d((oo,am/) , (00, am")) 2: *). In this 

case, the open ball 3d ( z, min { 3~' 2;m }) intersects at most 
one point of D, and hence it is also possible to find a suitable 
neighbourhood of z which either cloesn't intersect D or has 
in common with D the only point z. Thus D is closed and 
discrete. 0 

To conclude this paper, the authors wish to thank A. Bella 
and J. Pelant for reading the original manuscript and giving 
suggestions and contributions, in particular the present proof 
of Theorem 5. 
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