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Abstra.'ct 

Experience shows that there is a strong parallel 
between metrization theory for compact spaces and 
for linearly ordered spaces in terms of diagonal con
ditions. Recent theorems of C;ruenhage, Pelant, Kom
barov, and Stepanova have described metrizability of 
compact (and related) spaces in terms of the off- di
agonal behavior of those spaces, i.e., in terms of prop
erties of X2 -~. In this paper, we show that these 
off-diagonal results have no analogs for linearly ordered 
topological spaces by constructing a non- metrizable, 
first countable LOTS X that is paracompact off of the 
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diagonal, has a locally finite rectangular open cover of 
X 2 -~, and admits a collection U of subsets of X 2 - ~ 

that is a-locally finite in X 2 - ~, covers X 2 - ~, and 
consists of co-zero subsets of X 2 • Provided b = WI, 

our example contains a Lindelof subspace Y that has 
a countable rectangular open cover of y2 - ~ and yet 
does not have a Gs-diagonal, thereby answering a ques
tion of Kombarov. In addition, we consider the role of 
much stronger off-diagonal covering conditions such as 
the Lindelof property and hereditary paracompactness. 

1 Introdllction. 

Experience has shown that there is a parallelism between cer
tain metrization theorems for compact Hausdorff spaces and 
for linearly ordered topological spaces. The best known ex
ample is: if X is a compact Hausdorff space or a linearly 
ordered space then X is metrizable if it has a Gs-diagonal 
([S], [Ll]). Another example is: if X is paracompact and can 
be p-embedded in a compact space or in a LOTS, then X 
is metrizable if it has a Gs-diagonal ([Bo],[O],[Ll]). A more 
recent example is: if X has a small diagonal, then X is metriz
able if X is a Lindelof linearly ordered space [BL], or if the 
Continuum Hypothesis holds and X is a compact Hausdorff 
space [JS]. Theorems of this type might well be called "diag
onal metrization theorems" and an attempted explanation of 
the parallelism appears in [L2]. 

Recently, there have been metrization results that involve 
the behavior of a compact space X off of the diagonal, i.e., that 
involve properties of the subspace X 2 

- ~ == {(x, y) E X 2 
: x =J 

y} of X 2
. For example, Gruenhage ([G]) proved that a compact 

Hausdorff space is metrizable if it is paracompact off of the 
diagnoal, i.e., if the subspace X 2 

- ~ of X 2 is paracompact. 
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This result was generalized to the class of paracompact L;

spaces in [GP]. A related result, due to Kombarov [K], shows 
that a paracompact L;-space X has a Gs-diagonal if and only 
if there is an open cover of X 2 

'- ~ that is locally finite in 
X 2 

- ~ and consists of rectangular open sets, i.e., sets of the 
form G x H where G and H are open in X and disjoint. In 
what follows, we will refer to such an open cover of X 2 - ~ 

as a Kombarov cover. Finally, E. Stepanova [St] proved that a 
paracompact p-space X is metrizable if and only if some family 
of subsets of X 2 

- ~ is a a-locally finite (in X 2 
- ~) cover of 

X 2 
- ~ by functionally open (i.e., co- zero) subsets of X 2

• 

Based upon the parallelism between compact and linearly 
ordered spaces for diagonal metrization theorems, it is rea
sonable to ask whether the off-diagonal results of Gruenhage, 
Pelant, Kombarov, and Stepanova have analogs for linearly or
dered spaces with the usual open interval topology. The bot
tom line is that they do not, as vie show in Sections 2 and 3, 
below. There are two primary examples in our paper. Each 
is a linearly ordered topological space, is paracompact off of 
the diagonal, has a Kombarov cover and a functionally open 
cover of the type studied by Stepanova, and is non-metrizable. 
The first is extremely simple - it is a reordered version of the 
usual space of ordinals less than or equal to WI, with all count
able ordinals made discrete. Unfortunately that space is not 
first countable, and to obtain a first countable example one 
must work harder. Our second example is a linearly ordered 
space M* constructed from the familiar Michael line (see 2.2, 
below). In addition to the properties mentioned above, under 
CH or b = WI, this space contairLs a subspace L* that gives a 
consistent answer to a question posed by Kombarov in [K]: L* 
is regular, Lindelof, and admits a countable rectangular open 
cover of (L*)2 - ~, and yet does not have a Gs-diagonal. It 
is interesting to note that, even though they do not guarantee 
metrizability in a LOTS, the special covers studied by Kom
barov and Stepanova are of interest in ordered space theory 
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because they do yield paracompactness. (Indeed, they yield 
paracompactness in the larger class of monotonically normal 
spaces - see 3.4.) Finally, Section 4 begins the study of stronger 
off-diagonal conditions for an ordered space X, e.g., that X is 
Lindelof off of the diagonal or hereditarily paracompact off of 
the diagonal. 

By a linearly ordered topological space (LOTS) we mean 
a linearly ordered set with the usual open interval topology 
of the given ordering. Subspaces of a LOTS might fail to 
be linearly ordered spaces because their subspace and order 
topologies might not coincide. Such spaces are called gener
alized ordered spaces and can be characterized internally as 
Hausdorff spaces with a linear order that have a base for their 
topology consisting of convex sets. There is a significant differ
ence between metrization theory for LOTS and for GO-spaces. 
For example, the Gs-diagonal metrization theorems for com
pact Hausdorff spaces and for linearly ordered spaces lhave no 
analogs for generalized ordered spaces. 

A note on notation: Because the underlying linearly ordered 
sets in this paper are often lexicographic products whose points 
are ordered pairs, familiar interval notation will be a special 
problem. For example, there seems to be no right way to de
note the interval stretching from one ordered pair in a lexi
cographic product to another. In this paper, we will adopt 
a suggestion of K.P. Hart. and use the symbol < a, b > to 
denote an ordered pair, reserving symbols such as (a, b) and 
[a, b) to denote intervals in linearly ordered sets. For example, 
[< a, b >, < c, d » might denote a half open interval in the 
lexicographic square. 
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A non-metrizable LOTS that is 
paracompact off of the diagonal 

We begin with a very easy example showing that the results 
of Gruenhage and Pelant have no analog for linearly ordered 
spaces in general. 

2.1 Example. There is a Lindelv.l LOTS that is non-metrizable 
and hereditarily paracompact off of the diagonal. 

Proof: Let Z denote the usual set of all integers. Consider the 
lexicographically ordered set X == ([O,WI) X Z) U {< WI, 0 >} 
with its open interval topology. 1'his space is a Lindelof, non
metrizable LOTS and one easily checks that it is paracompact 
(and even hereditarily paracompact) off of the diagonal. 0 

Unfortunately the space in (2.,1) is not first countable. To 
get a first countable example, we let P, Q, and R denote, re
spectivel:y", the usual sets of irrational, rational, and real num
bers, and we consider an extension of the familiar Michael line 
M. 

f 
2.2 Example. There is a first countable) non-metrizable LOTS 
that is paracompact off of the diagonal. 

Proof: Consider the lexicographically ordered set M* == (R x 
{O}) U (P X Z). This linearly ordered space contains the usual 
Michael line M as the closed subspace R x {O}, and M* is first 
countable, hereditarily paracompact, and even quasi-developable. 
However, it is not perfect and not metrizable. 

To see that the space M* is paracompact off of the diago
na.l, we invoke the following easily proved result. In the next 
proposition, we will use X d to denote the derived set of a space 
X, i.e. ~ the set of all non- isolated points of X. 

2.3 Proposition. Sfuppose X is a hereditarily paraco'mpact 
space in 1vhich points are G8 -sets. If X d is the union of count
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ably many closed, discrete subsets of X, then X is paracompact 
off of the diagonal. 

Proof: Let U be any open cover of X 2 -~. For each p E X d , U 
is an open cover of Y; == ({p} X X) - {< p, P >}. Because 
X - {p} is paracompact and is an F(J in X, there is a locally 
finite (in X) collection Vp ( n) of open subsets of X such that 
if Vp == U{Vp(n) : n 2: I}, then {{p} x V : V E V;} refines 
U and covers Y;. For each V E Vp choose U(p, V) E U with 
{p} x V C U(p, V). 

Write X d == U{D(n) : n 2: I} where each D(n) is a closed, 
discrete subset of X. Find open sets G(p, n) of X such that 
p E G(p, n) and such that {G(p, n) : p E D(n)} is a discrete 
collection in X. Let W(n) == {(G(p, n) x V) n U(d, V) : p E 
D(n), V E Vp(n)}. Then U{W(n) : n ~ 1} is the required 
a-locally finite open cover of X 2 

- ~ that refines U. 0 

2.4 Corollary. If X is a GO-space that is first countable 
and paracompact, and if X d is the union of countably many 
closed, discrete subsets of X, then X is paracompact off of the 
diagonal. In particular, the space M* in (2.2) is paraco'mpact 
off of the diagonal. 

Proof: If a GO-space is first countable and paracompact, then 
it is hereditarily paracompact, so that (2.3) yields the desired 
conclusion. 0 

2.5 Remark. Given suitable set theory, we can sharpen Ex
ample (2.2). If CH holds, or if b == Wl, then there is a set 
p' C P that is concentrated on the rationals ([vD, Theorem 
10.2]). Then topologize L == Q U p' as a subspace of M and 
construct L* as in (2.2). The resulting space L* is a non
metrizable, first countable, Lindelof LOTS that is paracompact 
off of the diagonal. (The GO-space L is due to E. Michael [M]. 
See (3.6) below for further details.) 

The property of paracompactness off of the diagonal com
bines in interesting ways with other properties of linearly or
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dered spaces. A result due to Gruenhage and Pelant [GP] 
shows: 

2.6 Proposition. Suppose X is a Lindelof LOTS that is para
compact off of the diagonal. Then X has a point-countable 
base. 

Proof: Gruenhage and Pelant [Gl)] have shown that if X is any 
space that is Lindelof and paraCOITlpact off of the diagonal, then 
X admits a point-countable open cover U with the property 
that if a #- b are points of X, then some U E U has a E U C 

X - {b}. If X is a LOTS, then \ve can assume that members 
of U are order-convex. Let B == {fJI n U2 : Ui E U}. Then B is 
the required point-countable base for the LOTS X. 0 

The space in (2.5), constructed under CH or b == WI, is 
Lindelof and paracompact off of the diagonal, and it has a 
base that is point countable in a very strong way - the base 
is actually a-disjoint. That makes one wonder whether, with 
suitable set theoretic hypotlleses, one could strengthen the con
clusion of (2.6) to "X has a a-point finite base." One approach 
would be to determine whether slLch a space has Property III 
(see [BL2]), a necessary and sufficient condition for an ordered 
space with a point countable base to have a a-paint-finite base. 
A related question would be to determine whether there can be 
a Souslin space (i.e., a non-separable LOTS with the countable 
chain condition) that is paracompact off of the diagonal. Such 
a space would be a Souslin space \vith a point-countable base, 
but could not have a a-point-finite base. It is already known 
that the existence of a Souslin space with a point-countable 
base is consistent with ZFC ([B],[l)]). 
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3 A non-metrizable LOTS with spe
cial covers of X 2 - ~ 

Neither the existence of a Kombarov cover for a LOTS X 
(i.e., a locally finite cover of X 2 - ~ by open sets of the form U x 
V where U and V are disjoint open sets in X) nor the existence 
of a co-zero cover of X 2 - ~ of the type studied by Stepanova 
(see Section 1) forces X to be metrizable or (equivalently) to 
have a G8-diagonal. The easiest example is: 

3.1 Example. The non-metrizable space X of(2.1) is a LOTS' 
that admits a J<ombarov cover and a (J-locally finite open coveT 
of X 2 

- ~ by subsets of X 2 
- ~ that are co-zero sets in X 2 

. 

Proof: For each a < WI, let H(a) == (a,wI] X {a} and V(a) == 
{a} X (a,wI]. Let W == {H(a), V(a) : a < WI}. Then W 
is a locally finite open cover of X 2 

- ~ by sets that are both 
rectangular and are co-zero subsets of X 2 • 0 

As noted before, the space in (3.1) is not first countable. M* 
gives a first-countable example. 

3.2 Example. The non-metrizable LOTS' M* of (2.2) adm1:ts 
a J<ombarov cover but does not have a G8-diagonal. In ad
dition) there is a (J-locally finite coveT of (M*)2 - ~ by open 
subsets of (M*)2 - ~ that are co-zero subsets of (M*)2. 

Proof: Throughout this proof we will write X == M*. Because 
X is a non-metrizable LOTS, it cannot have a G8-diagonal. It 
remains to show that X has a locally finite, rectangular open 
cover of X 2 - ~ and a (J-Iocally finite (in X 2 - ~) cover by 
open co-zero subsets of X 2 • 

Husek and Pelant [HP] have proved that every metrizable 
space Y has a Kombarov cover of y2 -~. In particular, if 
Y == R is the usual space of real numbers, there is a family 
C == {C(a) : a E A} that is locally finite in y 2 

- ~, has 
UC == y2 - ~, and consists of sets of the form C(a) == G(a) X 
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H(a) where G(a) and H(a) are disjoint open sets in the usual 
topology of the real numbers. Note that the index set A must 
be countable. 

Write G(a) as the union of its convex components, say 
G(a) == U{G(a,i) : i ~ 1} 'where the sets G(a,i) == 
(a( a, i), b( a, i)) are pairwise disjoirlt open intervals. Similarly, 
H(a) == U{H(a,j) : j 2: I} where the sets H(a,j) == (c(a,j), 
d( a, j)) are pairwise disjoint open intervals. Notice that 
G(a, i) n H( a, j) == 0 for every choice of i and j. 

For each real number x, define u(x) == 0 == v(x) if x is ra
tional, and for any irrational x let u(x) == +00 and v(x) == 
-00. For irrational x, the ordered pairs < x, u(x) > and 
< x, v(x) > are gaps of the lexicographically ordered space 
X == M* of (2.2), while for a rational number x, the pair 
< x,u(x) > == < x,O > == < x,v(x) > is a point of X. We 
will use these gaps or points as ends of certain convex subsets 
of X == M*. For example, « 2,1,,(2) >,< 7r,v(7r) » == {< 
~r, k > EX: 2 < x < 7r}. We begin with the following easily 
verified fact: 

(~laim 1: For any real numbers a < b, « a, u(a) >, < b, v(b) » 
is a covex open set in X and a point < x, k >E X belongs to 
« a, u(a) >, < b, v(b) » if and only if a < x < b. 

Next, for a E A and i, j ~ 1, let 

G*(a, i) == « a(a, i), u(a(a, i)) >, < b(a, i), v(b(a, i) »; 

G*(O') = U{G*(O'"i) : i 2: I}; 

H*(a,j) == « c(a,j), u(c(a,j)) :>, < d(a,j), v(d(a,j)) »; 

and 
H* (0') = U{H* (0'" j) : j 2: I}. 

Let C* == {G*(a) X H*(a) : a E A}. Then one easily verifies: 

Claim 2: G*(a) and H*(a) are disjoint open subsets of X so 
that UC* c X 2 -~. 
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Claim 3: Let « x, m >, < Y, n »E X 2 -~. Then 
« x, m >, < Y, n »tf. UC* if and only if x == yEP. 
To verify "=>," suppose that« x,m >,< y,n »tf. UC* 
and yet x =I- y. Then for some a E A and i,j ~ 1 we have 
< x, y >E G(a, i) X H( a, j). It follows from Claim 1 that 
«x,m >,< y,n »E G*(a,i) x H*(a,j) c UC*, contrary 
to« x,m >,< y,n »tf. UC*. Thus, x == y. But then we 
have« x,m >, < x,n» ==« x,m >, < y,n» E X2_~ 

which forces m =I- n so that x E P. Conversely, if x == yEP 
then in the light of Claim 1, « x, m >, < x, n »tf. G*(a, i) x 
H*(a,j) for each a E A because G(a, i) n H(a,j) == 0. 
Claim 4: The collection C* is locally finite in X 2 -~. To verify 
that claim, we first consider a point « x, m >, < y, n »E 
X 2 - ~ with x =I- y. Because C is locally finite in y2 - ~, there 
are rational numbers p, q, r, 8 with p < x < q and r < y < 8 

such that the set N == (p, q) x (r, 8) C M 2 
- ~ and meets only 

a finite number of members of C. But then the set 

N* == « p,O) >,< q,O » x « r,O >,< 8,0 » 

meets only a finite number of members of C*. Next consider 
a point « x, m >, < x, n »E X 2 -~. Then x E P and, 
because of Claim 3, « x, m >, < x, n » belongs to no 
member of C*. Then N* == {« x, m >, < x, n »} is a 
neighborhood of « x, m >, < x, n » meeting no member of 
C*. This establishes Claim 4. 

It now follows that S == C* U {{« x,m >,< x,n »} : 
x E P and m =I- n} is a locally finite rectangular open cover of 
X 2 

- ~, as required. 

To prove the final assertion in (3.2), we will construct a 
collection D of subsets of X 2 - ~ such that: 

a) D is a-locally finite in X 2 
- ~; 

b) each member of D is a co-zero set in X 2
; 

c) V covers X 2 - ~. 
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For each a E A and i,j 2: 1 let V(a,i,j) = {G*(a,i) X 

H*(a,j)}. Being a product of two co-zero sets in X, each 
G*(a,i) x H*(a,j) is a co-zero set in X 2 • Because A is count
able, the collection U{V(a, i,j) :: a E A, i,j 2: I} is a a
locally finite collection in X 2 -~. Furthermore, U{G*(a, i) x 
H*(a,j) : a E A,i,j 2: I} = ljC*. We now let V(O) be 
the collection of all sets {« x, m >, < x, n »} that are 
contained in X 2 - U C* and have x E P and m and n are 
distinct integers. Then D(O) is a locally finite collection in 
X 2 

- ~ whose members are open co-zero subsets of X 2 , so 
that U{D(a,i,j) : a E A,i,j 2: I} UV(O) is the required open 
cover of X 2 -~. 0 

Even though the special covers of X 2 - ~ as in (3.2) do not 
yield a Gs-diagonal for a LOTS )(, they do have interesting 
consequences. We begin with a technical proposition about 
certain stationary sets with their lLsual topologies. 

3.3 Proposition. Let S be a stationary subset of an uncount
able regular cardinal~. Then theT'e is no [{ombarov cover of 
S2 - ~ and no a-locally finite open cover of of S2 - ~ by subsets 
of S2 - ~ that are co-zero sets (OT' even Fa-sets) in S2. 

Proof: In this proof, if L C S then the term "convex compo
nent of L" will mean "convex COITLpOnent of L in the set S." 
As a first step in the proof the reader can apply the Pressing 
Down Lemma to the stationary set Sd of all non-isolated points 
of S to prove: 

(*) If ,[ is a a-locally finite open cover of S, then the family 
of all L E ,[ that have a convex coroponent that is cofinal in S 
is non-empty and finite. 

Now, for contradiction, suppose that C = {U(a) X ~(a) : a E 
A} is a locally finite open cover of 3 2

- ~ where U(a) and 
V( a) are disjoint open subsets of ,So For each s E 3 d , apply 
(*) to the subspace (3 - {s}) X {.s} of 3 2

- ~ to find some 
a(s) E A such that s E V (a(s)) and some convex component 
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of U (a( S )) is cofinal in 5. For each S E 5d
, there is a point 

f(s) E 5 with f(s) < sand 5 n (f(s),s] C V(a(s)). Apply 
the Pressing Down Lemma to the function f to find a point 
So E 5 and a stationary subset T C 5d such that f (t) == So for 
each t E T. 

Let to be the first element of T. Then to > So, and local 
finiteness of C forces the set F == {a E A : to E V( a),. and U( a) 
has a convex component that is cofinal in 5} to be nonempty 
and finite. Furthermore, if t E T - {to} then we have to E 

(so, t] == (f(t), t] C V(a(t)) so that a(t) E F for every t E T. 
Because F is finite, for some j3 EF we conclude that the set 
T* == {t E T : a(t) == j3} is stationary in 5. 

Because U(;3) contains a convex component that is cofinal 
in 5, we may choose Xl E U(;3) n (So, -.t). Because T* is 
stationary in 5 we may choose t l E T* with t l > Xl. But 
then we have Xl E (So, t l ] == (f(t l ), t l ] C V(a(t l )) == V(;3) so 
that < Xl, Xl >E U(;3) X V(;3) and that is impossible because 
U(;3) X V(;3) C 52_~. That contradiction completes the proof 
that no Kombarov cover of 52 - ~ can exist. 

For the second half of the proof, suppose that U is a (J"

locally finite collection of subsets of 52 - ~ that covers 52 - ~ 

and whose members are each Fer-subsets of 52. Write U == 

U{U(n) : n ~ 1} where each U(n) is locally finite in 52 - ~. 

The Pressing Down Lemma shows: 

(**) if K is an Fer-subset of 52 with !{ c 52 - ~, then for 
some;3 < K, !{ n ((;3,---+))2 == 0. 

For each a E 5, let H(a) == (5 n (a,---+)) X {a}. In the 
light of (*) above, for each a E 5 there is an n == n( a) such 
that some member U(a) E U(n) contains a tail of H(a), i.e., 
contains ([/,,-.t) n 5) X {a} for some /' E 5. Define 5(k) == 

{a E 5 : n(a) == k}. Then for some k ~ 1, 5(k) is stationary 
in [0, K). Fix such a k. For each a E 5(k), choose U(a) E U(k) 
such that U(a) contains a tail of H(a) and then, using (**), 
choose (3(a) E (a, K) such that U(a) n ((,B(a), K))2 == 0. 
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By a f3 interlaced net we will mean a strictly increasing, 
well ordered net {a p, : f.1 < M} such that ail E S( k) and if 
f1 < v < M then ap. < f3( ail) < ave Let C == {, < K : I 
is the supremum of some f3-interlaced net}. It is easy to see 
that C is a closed, unbounded subset of [0, K) so that, S( k) 
being stationary, we may choose 8 E ens(k ). Let M be the 
cofinality of 8 and find a f3-interlaced net {ail: f.1 < M} having 
8 as supremum. For each f.1 < 1\1, as noted above, U(ail) 
contains a tail of H(ap.), say ([17il" K) n S) X {ail} C U(ail ). 
Because 8 < K and K is regular, 1]* == sup{ 17il : f.1 < M} is 
less than K. Thus ([17*, K) n S) X {ail} C U(ail ) so that each 
point of the set H* == ([17*, K) n Sf) x {8} is a limit point of 
U{([17*, K) n S) X {ail} : f.1 < M} and hence also a limit point 
of U{U(ail) : f1 < M}. But that is impossible because the 
sets U(ail ) are all chosen from U(k) which is a locally finite 
collection and no point of H* is a limit point of any set U(ail). 
o 
3.4 Corollary: Suppose X is monotonically nor'mal and ad
nlits a !(ombarov cover of X2 - ~ or a (J" -locally finite collection 
of subsets of x 2 - ~ that covers X"2 - ~ and consists of open 

,Fa-subsets of X 2 
• Then X is hereditarily paracompact. In par

tl:cular) any GO space X that admits such a cover of x 2 
- ~ 

is hereditarily paracompact. 

Proof: If X is not hereditarily paracompact, then (by a result 
of Balogh and Rudin [BR]), X contains a subspace S that is 
homeomorphic to a stationary set in some regular uncountable 
cardinal. Restricting the given covering of X 2 

- ~ to S2 - ~ 

yields a contradiction of (3.3). The second assertion of the 
corollary now follows, because every GO-space is monotoni
cally normal [HLZ]. 0 

In his paper [K], Kombarov pointed out that a regular 
hereditarily Lindelof space X will have a Gs-diagonal provided 
there is a countable open cover of )(2 - ~ by rectangular open 
sets. (It is enough to know that X is perfect for Kombarov's as
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sertion to hold.) He then asked whether the same result holds 
for spaces that are Lindelof, but not hereditarily so. Using the 
Continuum Hypothesis (CH) or the weaker hypothesis b = WI, 

we will construct a subspace of the space M* in Example (2.2) 
that answers Kombarov's question in the negative. 

We begin by constructing a countable open cover of (M*)2
~ by rectangular open sets .. This contrasts with the rectangu
lar open cover constructed in (3.2) which was not countable. 

3.5 Lemma. Let M* be the space of (2.2). Then there is a 
countable cover of (M*)2 - ~ by rectangular open sets. 

Proof: Let R, P, Q, and Z denote, respectively, the usual 
space of real numbers and the sets of irrational numbers, ratio
nal numbers, and integers. Because R2 is hereditarily Lindelof, 
there is a countable rectangular open cover {Un X Vn : n 2: I} 
of R 2 

- ~ where each Un and Vn is an open interval in R with 
rational endpoints. Write Un = (an, bn) and Vn = (cn, dn), 
and in the space M* define U~ = « an,O >, < bn,O » 
and Vn * = « cn,O >, < dn,O ». For each n E Z define 
Gn = {< x, n >: x E Pl. Tllen Gn is an open subset of X and 
it is easy to verify that the collection 

{U~ X Vn * : n 2: I} U {Gm x Gn : m, n E Z and m =I n} 

is the required countable, rectangular open cover of (M*) 2 - ~. 

o 
3.6 Example. Assume CH or b = WI. Then there is a Lindelof 
linearly ordered space Y that admits a countable rectangular 
open cover of y2 - ~ and yet does not have a Gs-diagonal. 

Proof: Recall that, assuming the Continuum Hypothesis (or 
even the weaker hypothesis that b = WI), there is an uncount
able dense-in-itself subset L of R that contains and is con
centrated on the set Q. As Michael noted [M], when topolo
gized as a subspace of M, L is a Lindelof non-metrizable space. 
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Starting with L, one creates the lexicographically ordered set 
L* == (L x {O}) U ((P nL) x Z). \iVith its usual open interval 
topology, L* is a Lindelof LOTS and is a subspace of the space 
M* of (2.2). It is easy to see that 1~* inherits a countable rect
angular open cover from M*. Because the LOTS L * contains 
the non-metrizable subspace L, we know that L* cannot have 
a G8-diagonal. 0 

4 Stronger off-diagonal properties. 

There are two natural ways to strengthen the property "para
compact off of the diagonaL" One is to strengthen the covering 
condition from paracompact to a stronger property such as Lin
delaf, and the other is to consider hereditary paracompactness 
off of the diagonal. 

For a regular space to be Lindelaf off of the diagonal is a 
very strong hypothesis and immediately gives a G8-diagonal. 
It is easy to prove: 

4.1 Lemma. A regular space X is Lindelof off of the diagonal 
'if and only if X 2 is Lindelof and .x" has a G8-diagonal. 

Proof: First, suppose X is' Lindelaf off of the diagonal. Fix 
p EX. Because X - {p} embeds in X 2 

- ~ as a closed subset, 
we see that X is a Lindelof space. :E~ecause ~ is homeomorphic 
to X, we see that X 2 == (X2 

- ~) U ~ is the union of two 
Lindelof subspaces, so that X 2 is ljndelof. Next observe that 
because X 2 is regular and X 2 

- j~ Lindelof, we may cover 
X 2 

- ~ with countably many open s'ubsets of X 2 whose closures 
in X 2 miss ~. Hence ~ is a G8-subset of X 2 . 

Conversely, if X has a G8-diagoILal and X 2 is Lindelof, then 
X 2 

- ~ is an Fa-subset of a Lindelaf space, so that X is Lindelaf 
off of the diagonal. D 

4.2 Proposition. Suppose X is a LOTS or is a generalized 
ordered space that can be p-embedded in some LOTS. If X is 



52 Harold Bennett and David Lutzer 

Lindelof off of the diagonal, then X is metrizable and there is 
a monotonic homeomorphism from X onto a subspace of the 
real line. 

Proof: According to (4.1), X has a Gs-diagonal and it is 
known that a generalized ordered space that can be p-embedded 
in a LOTS and has a Gs-diagonal is metrizable [L1]. Lemma 
4.1 also establishes that X is a Lindelof space, so X is separable 
and metrizable. To complete the proof, recall that any separa
ble metrizable LOTS embeds in the real line by a monotonic 
homeomorphism. 0 

Certain local conditions on a LOTS X combine with the 
property "X is paracompact off of the diagonal" to give metriza
tion theorems. For example: 

4.3 Corollary. A linearly ordered space X is metrizable if it 
is paracompact off of the diagonal and is one of: 

a) locally compact 
b) locally connected 
c) locally separable. 

Proof: Because b) implies a), it will be enough to verify that 
a) and c) each yield metrizability. If X is paracompact off 
of the diagonal then it is paracompact, so that it is enough 
to prove local metrizability in each case. If a) holds, then 
Gruenhage's theorem gives local metrizability. So suppose c) 
holds. Because a space that is separable and paracompact off 
of the diagonal is actually Lindelof off of the diagonal, we know 
that locally the space X is a LOTS that is Lindelof off of the 
diagonal. Then (4.2) yields. local metrizability, as required. 0 

From 4.2 we obtain a structure theorem for arbitrary gen
eralized ordered spaces that are Lindelof off of the diagonal, 
namely: 

4.4 Lemma. Let X be any generalized ordered space that 1:S 

Lindelof off of the diagonal. Then X is homeomorphic to a 
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space obtained by modifying a subspace of the real line by iso
lating certain points and by makiTtg Sorgenfrey modifications 
at certain other points. 

Proof: Let T be the given topology of X and let I be the 
open interval topology of the given ordering of X. Then the 
LOTS (X,I) is Lindelof off of the diagonal, so that (4.2) gives 
a monotonic homeomorphism froITL (X,I) onto a subspace S 
of the real line. Examining the wa~y that T is obtained from I 
completes the proof. D 

Proposition 4.2 and Lemma 4.4 raise as many questions 
as they answer. For example, one might wonder whether the 
hypothesis that the GO-space X can be p-embedded in some 
LOTS is actually necessary in (4.2). Might it be true that any 
generalized ordered space that is I.Jindelof off of the diagonal 
nlust be metrizable? Lemma (4.3) reduces the problem to ask
illg about certain generalized ordered modifications of certain 
subspaces of the real line. For such special GO-spaces, could 
one show that if X is a GO-space constructed on the real line 
and X is Lindelof off of the diagonal, then X must be separa
ble? As our next examples show, both of those questions have 
axiom-sensitive answers. 

4.5 Examples. Assuming CH) there is a non-metrizable GO
space that is Lindelof off of the diagonal. 

Proof: E. Michael [M] showed that, assuming CH, there is an 
uncountable subset X of what is now called the Michael line 
such that X X X is a Lindelof space. This space X is a GO
space and, because X 2 has a Gs-diagonal, (4.1) shows that X 
is Lindelof off of the diagonal. This example shows that the 
hypothesis about p-embedding is essential in (4.2) and that 
one cannot prove separability for a GO-space that is Lindelof 
off of the diagonal. D 

Isolated points are at the heart of Example 4.5. But even 
without any isolated points, there is plenty of pathology. 
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4.6 Example. The existence of separable) non-metrizable GO
spaces that are Lindelof off of the diagonal is axiom-sensitive. 

Proof: Under CH, Michael [M] showed that there is an un
countable dense-in-itself subset X of the Sorgenfrey line such 
that X 2 is Lindelof but X 3 is not normal. This X is a GO
space that is Lindelof off of the diagonal and is not metrizable, 
showing once again the need for the p-embedding hypothesis 
in (4.2). On the other hand, Baumgartner [Ba] and Todorcevic 
[T] proved (respectively) that, under PFA and OCA, X 2 can
not be Lindelof for any uncountable subset X of the Sorgen
frey line. A more extensive discussion of this issue appears in 
[BMo], near their Theorem 3.5. D 

A second very strong covering hypothesis for X 2 - ~ is 
hereditary paracompactness. At the present time, the ramifi
cations of that hypothesis are not well understood. We begin 
with an easy example showing that one will need additional 
assumptions such as first countability if interesting results are 
to be obtained. 

4.7 Example. The non-first countable space X of (2.1) is 
a non-metrizable LOTS and is hereditarily paracompact off of 
the diagonal. 

In contrast to (4.7), ordered spaces that are first countable and 
hereditarily paracompact off of the diagonal do have certain 
strong properties. For example, it is well known that if X 
is any topolgical space such that the product of X with the 
convergent sequence {~ : n ~ I} U {O} is hereditarily normal, 
then X is perfectly normal. Essentially the same proof shows: 

4.8 Proposition. Suppose X is a first-countable GO space 
such that X 2 - ~ is hereditar-ily normal. Then X is perfectly 
normal. 
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Proposition 4.8 shows that the space M*, used several times 
above when a first countable exanl.ple was needed, will not be 
useful in the study of hereditary paracompactness off of the 
diagonal, because M* is certainly not perfectly normal. It is 
possible to give a more direct proof that M* is not hereditarily 
paracompact off of the diagonal, as follows. 

4.9 Example. The space M* of (2.2) is not hereditarily para
compact off of the diagonal. 

Proof: Let Q, P be th.e usual sets of rational and irrational 
numbers, respectively. To verify that M* is not hereditarily 
paracompact off of the diagonal, it will be enough to prove 
that if M denotes the usual Michael line, then Y == M 2 - ~ is 
not hereditarilty paracompact, because Y can be embedded in 
(M*)2 - ~. 

Fix a rational number q and let Z == {< x, Y >E Y : if' x == 
q, then yEP}. Let Wo == Z - ({q} X M) and for each x E P 
let Wx == (M X {x} ) nz. Then W == {Wx : x == 0 or x E P} is 
an open cover of Z. For contradiction, suppose there is a locally 
finite open cover U of Z that refines W. For each x E P choose 
U(x) E U with (q,x) E U(x). Because Wx is the only member 
of W that contains (q, x), we kno,iV that U(x) C Wx so there 
is a positive e(x) such that (q - e(x),q+ e(x)) X {x} C U(x). 
Let Pn == {x E P : e(x) 2:: ~}. Because P == U{P(n) : n 2:: I}, 
some set P (n) has a rational limit point s in the usual topology 
of the real numbers. Choose a rational number t E (q - ;, q) 
with t =I s. Then (s, t) is a limit point of the set U{U( x) : x E 
P(n)} in the space Z even though (s, t) t/. cl(U(x)) for every 
x E P(n), and that is impossible because U is locally finite in 
Z. 0 

One of the first questions that one encounters when study
ing hereditary paracompactness ofr of the diagonal in linearly 
ordered spaces is suggested by the result of Gruenhage and 
Pelant (see 2.6, above): 
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4.10 Question. Suppose X is a LOTS that is first countable 
and hereditarily paracompact off of the diagonal. Must X have 
a point-countable base? 

Perhaps Souslin spaces - linearly ordered topological spaces 
that are not separable and yet have countable cellularity 
might be a source of examples in the study of hereditary para
compactness off of the diagonal. (Note that no connectedness 
or completeness is assumed for Souslin spaces.) Such spaces are 
always first countable, Lindelof, and perfect, and it is known 
that such spaces can have point countable bases ([B] and [P]). 
It would be interesting to know: 

4.11 Question. Is it possible that a Souslin space can be 
hereditarily paracompact off of the diagonal? 

The techniques that Mary Ellen Rudin used in [Ru] can be 
slightly modified to show that a Souslin space whose order is 
complete cannot be hereditarily paracompact., or even heredi
tarily normal, off of the diagonal, and this limits the kinds of 
examples that one might find. 

The distinction between LOTS and GO-spaces is likely to 
be important in studying the role of hereditary paracompact
ness off of the diagonal. The consistent example of Michael 
described in (4.6) makes it clear that for GO- spaces, the hy
pothesis of hereditary paracompactness off of the diagonal (or 
even the property of having a hereditarily Lindelof square) 
gives almost nothing in terms of special base properties such 
as point-countable bases or metrizability. 
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