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Abstract

For the function spaces Co(X) and C,(X) associ-
ated with compactifications aX and yX of a Tikhonov
space X such that aX < vX, we investigate the small-
est cardinal number which is the cardinality of a set
F C Cy(X) such that C.,(X) is the uniform closure of
the algebra generated by Co(X)U F. We apply this

1991 Mathematics Subject Classification: 54D40, 54D35, 54D30.

Keywords and phrases: Compactification, remainder, function space,
algebras of functions, cardinal number, weight, sequential compactness,
metrizability, dimension.

165



166 Teresa Dwornik-Orzechowska and Eliza Wajch

number to the comparison of some topological proper-
ties of aX and vX. Furthermore, we show that, for
every cardinal number k, there exist a locally compact
Hausdorff space X and its compactifications aX < vX
such that, for some f € C*(X), the algebra C,(X) is
generated by Co(X )U{f} but the collection of all those
fibres of the natural quotient map m,, : YX — aX
which are not singletons is of cardinality . This an-
swers a question posed by G. D. Faulkner.

Introduction

All the spaces considered below are assumed to be completely
regular and Hausdorff, i.e. Tikhonov.

For a space X, denote by C'(X) the algebra of all continuous
real functions defined on X, and by C*(X) the subalgebra of
C(X) consisting of all bounded functions f € C(X).

Let £(X) be the collection of those sets F' C C*(X) for
which the diagonal map ep = A f is a homeomorphic em-
bedding. If F € £(X), then the closure of ep(X) in RF is
a compactification of X which is said to be generated by F
and which is denoted by e X. The compactification epX is
the minimal compactification of X over which each function
f € F is continuously extendable (cf. e.g. [1], [3], [4], [14] and
[15))

For a compactification aX of X, denote by C,(X) the col-
lection of all those functions f € C*(X) which are continu-
ously extendable over aX. For f € C,(X), let f* be the
continuous extension of f over aX and, for FF C C,(X), let
Fe = {f: f e F} Clearly, Cs(X) = C*(X) where X is the
Cech-Stone compactification of X.

If F C C*(X), let the symbol (F) stand for the smallest
subalgebra of C*(X) which contains F. Denote by F' the clo-
sure of F' in C*(X) equipped with the topology of uniform
convergence.
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It is well known that, for every compactification aX of
X, the algebra Co(X) belongs to £(X) and ec,(x)X = aX.
Furthermore, if F' € £(X), then C.,(X) is the smallest sub-
algebra of C*(X) which is closed under uniform convergence,
contains F' and all constant functions (cf. [3; Thm. 3.1]).
Those observations give efficient tools to the comparison of
compactifications. Namely, for sets F,G € £(X), we have
erX < egX if and only if C,,(X) C Cer(X) (cf. [5; Thm.
2.10]). Accordingly, for every compactification aX of X and
for each F' C C*(X), the set Gop = Co(X) U F lies in E(X)
and generates a compactification yX such that X < X and
Cy(X) = (Co(X) U F). Of course, if @X and yX are any com-
pactifications of X such that a X < X, then there exists a set
F C C*(X) with Cy(X) = (Ca(X) U F). Therefore, for every
pair of compactifications aX and vX of X with aX < ~X, it
seems natural to introduce the cardinal number €,,(X) which
is the smallest cardinal number & for which there exists a set
F C C*(X) of cardinality « such that C,(X) = (Ca(X) U F).
This cardinal number must have an essential influence on possi-
ble differences between some topological properties of X and
vX. Our purpose is to investigate e,4(X).

We shall make a frequent use of the following theorem
proved in [3]:

0. Theorem For every compactification aX of X and for
every F' C C*(X), we have F € £(X) and ep X = aX if and
only if FF C Co(X) and F* separates points of aX.

The results

For a compactification aX of a space X, B. J. Ball and Shoji
Yokura introduced in [1] the following cardinal number which
was further investigated, e. g. in [2], [4] and [14]:

e(aX)=min{|F|: F € £(X) and erX =aX}.
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It is known that e(aX) is the smallest cardinal number & such
that X is embeddable in the cube I*; furthermore, if e(aX) is
infinite, then it is equal to the weight w(aX) of aX (cf. [1], [4],
[14]). The cardinal number ¢(aX) depends only on the space
aX; therefore, since every compact space is a compactification
of any of its dense subspaces, given a compact space Y, we
have defined the cardinal number e(Y).

According to our notation, for compactifications X and

~X of X such that aX < ~vX, we have

Eva(X) = min{|F|: F CC"(X) and Cy(X) = (Co(X)U F)}
= min{|F|: F C C*(X) and e X =X
where G = Co(X)U F}.

The following proposition is an immediate consequence of

Theorem 0 and [1; Thm. 4.3]:

1. Proposition For every pair aX,vX of compactifications
of X such that aX <X, the inequalities

Eya(X) S e(7X) <e(aX) + &ya(X)
hold. Moreover, if e(vX) is infinite, then

e(1X) = e(aX) + eya(X).

Clearly, the assumption that e(yX) > w cannot be omitted
in the second part of Proposition 1 even when ¢(aX) is finite.

Example For the open interval X = (0;1), let vX be the unit
interval I = [0;1]. If X is the one-point compactification of
X, then o X < ~X, whilee(aX) =2,e(vX) =1 and e,4(X) =
1; hence e(7X) < e(aX) + e,a(X).
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For compactifications aX and yX of X such that aX <
X, put
Pro={y € aX : |n5(y)] > 1}

where 7., : X — aX is the natural quotient map witnessing
that o X <~X.

2. Proposition For compactifications aX and vX of X such
that aX < ~vX, the following inequalities hold:

Sup{e(52(1)) 1 ¥ € Pra} < £ra(X) <

|Pyal - sup{e(n75(y)) 1 y € Pra}.
Furthermore, if the set P,, is finite, then

Eva(X) = sup{e(n7,(y)) : y € Pra}.

Proof: Put x = sup{e(r;(y)) : y € Pya}. Suppose first
that C(X) U F generates vX. Since, in view of Theorem 0,
the set (Co(X) U F)" separates points of vX and, moreover,
each function from C,(X)"” is constant on the fibres of 7.,
we have that F7 separates points of 77} (y) for any y € P,..
This, together with Theorem 0, implies that {f” | #7l(y) :
fe F}e&(r;i(y)) for any y € Py,. Hence & < |F| and, in
consequence, £ < €44(X).

For each y € P, let us choose a set F, € £(n7)(y)) such
that |Fy| < k. Extend each function f € F, to a function
f e C(vX) and put F = UyePﬂ,a{f ' X : f € F,}. Then,
by Theorem 0, the set C,(X) U F' generates vX. Since |F| <
| Pyo| - &, we have that e,4(X) < [Pyl - &.

Now, assume that the set P,, is finite. If « is infinite, then
the set G of all possible combinations 7,¢p  f, of functions
fy € F, with y € P,, is of cardinality < s. All the functions
from G are continuous on the compact set 77 (Pya). If we
extend each function ¢ € G to a function § € C(yX), then we
obtain a set F'={g [ X : g € G} of cardinality < « such that
Co(X) U F generates vX; hence .4(X) < k.
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If both P,, and & are finite, let Fyy = {f1,4,..., fay} fory €
P,o. Fori1=1,...,k, denote by f; the combination \ ¢p , fi,y
of the functions f;, with y € P,,. Extend each function f; €
C*(754(Pya)) to a function fieC(yX)and put F = {f; | X
i=1,...,k}. Then Co(X)U F generates vX, which implies
that €,4(X) < k. This completes the proof. O

The following example shows that the assumption that the
set P,, be finite, cannot be omitted in the second part of
Proposition 2:

Example Let Z be the well-known double arrow space, i.e.
the interval [—1;1) equipped with the topology having as a
base for open sets the collection of all the sets of the form:

[—b; —a) U [a;b)

where 0 < a < b < 1. Since Z is a compact perfectly normal
space, there exists a compactification YN of the space N of
positive integers such that Z = YN\ N (cf. [11]). The function
f:Z — I defined by f(z) = |z| for z € Z is continuous. It
follows from Magill’s theorem (cf. [5; Thm. 7.2]) that there
exists a compactification aN of N such that N < 4N, aN\N =
I and 7\ [ Z = f. Then

sup{e(m 4 (y)) 1y € Pya} = 1.

Since YN is of weight 2¢, we have ¢(yN) = 2*. The compact-
ification aN of N is metrizable; thus e(aN) + w = w. All this
taken together with Proposition 1 implies that ,4(N) = 2¢.

3. Theorem For any compactifications aX and v X of X such
that aX < X, the following equality holds:

w(vX) = w(aX) + e4a(X).

Proof: If e(yX) is infinite, then w(yX) = e(yX); hence, by
Proposition 1, w(yX) = e(aX)+eqya(X) < w(aX)+e,o(X). If
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e(yX) is finite, then w(yX) = w, which implies that w(yX) <
w(aX)+eya(X). On the other hand, since aX is a continuous
image of vX, we have w(aX) < w(yX); moreover, the inequal-
ities €44(X) < e(7X) < w(yX) always hold. In consequence,
w(aX) + ey(X) Sw(yX). O

Mimicking the proof of Theorem 4 of [15], we can get the
following lemma:

4. Lemma For a set F C C*(X), denote by Bp the collection
of all sets of the form

() £ ((ais b))

1=1

where a; < b; are rational numbers and f; € F fori=1,... n.
Then F' € E(X) if and only if the collection B is an open base
for X.

5. Theorem For any compactifications aX and vX of X such
that aX <X, the following equality holds:

w(yX \ X) = w(aX \ X) + eya(X).

Proof: Let us take a set F' C C*(X) such that |F| = e,4(X)

and C,(X) = (Ca(X) U F). Since cozero-sets of aX serve as
an open base for aX, there exists a set G C C,(X) such that
|G| < w(aX \ X) and the collection of all sets of the form

(X \ X) N (g*)7'((0; 1)),

where g € (G, is an open base for X \ X. Denote by B the
collection of all sets of the form

n

(vX \ X) N [()(A) ™ ((ai; b:)

=1
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where a; < b; are rational numbers and h; € GU F for : =
1,...,n. We shall show that B is an open base for yX \ X. To
this end, consider any open set V C vX and any z € (X \
X)NV. Let y = my(z) and suppose that 77 (y) € V. The
mapping 7., being closed, there exists an open neighbourhood
U of y in oX \ X such that 77;(U) € V. There exists a
function g € G such that y € (X \ X) N (¢%)71((0;1)) C U.
Then z € 77, (y) € (g )' ((0; 1) V.

Assume now that 773 (y)\V # 0. Since F” separates points
of w74 (y), it follows from Theorem 0 and Lemma 4 that there
exist functions fj € F and rational numbers a; < ¢; < d; < b;,
such that

z € 7, (y)N ﬂ(f”) H((e53d5)) € moa (y)N| (f’) "((aj;0;)) € V.

The set A = (X \ V)NV, (f])7"([ej; d5]) is closed in vX
and it does not meet 77} (y). Therefore, since 7., is a closed
map, there exists a function g € G such that

T (y) € (97)7H((0;1)) S 4X \ A.

Then
ze(g" ﬂ ((¢j;d;)) C V.

All this taken together implies that B is an open base for y.X \
X. Since |B] < w(aX \ X) + €4o(X), we have w(yX \ X) <
w(aX \ X) + eyo(X). The mapping mye | (vX \ X) being
perfect, in view of Theorem 3.7.19 of 7], the inequality w(a X'\
X) < w(yX \ X) always holds. According to Theorem 4.1
of [1], there exists a set F' C C,(X) such that F” separates
points of vX \ X and |F| < w(yX \ X). This, along with
Theorem 0, yields that also e,,(X) < w(yX \ X). Hence
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w(aX \ X)+ey0(X) < w(yX \ X), which concludes the proof.
u

Recall that s is the smallest among those cardinal numbers
which are the cardinalities of splitting families in [w]* (cf. [6;
p. 115)).

6. Theorem Let aX and vX be compactifications of X such
that X < vX. If aX is sequentially compact and €.,,(X) < s,
then v X s sequentially compact.

Proof: Let (p,) be a sequence of points of y.X. Since the space
aX is sequentially compact, the sequence (m,4(p,)) contains
a convergent in aX subsequence. For simplicity, assume that
(mya(pn)) converges in X to a point p. It is easily seen that the
set P = {p, : n € N} Un }(p) is compact. Since e,4(X) < s,
the space 7, (p) is embeddable in the Tikhonov cube I* for
some » < 5. This implies that the space P is of weight < 5. As
every compact space of weight < s is sequentially compact (cf.
[6; Thm. 6.1] or [13; Thm. 5.12]), the sequence (p,) contains
a convergent in P subsequence (p,,). Then the sequence (p,,)
is convergent in y.X. O

Using similar arguments, we can prove the following theo-
rem:

7. Theorem Let aX and vX be compactifications of X such
thataX <~X. If aX\X is sequentially compact and e,,(X) <
s, then vX \ X s sequentially compact.

Remark. The inequality €,4(X) < s cannot be replaced by
€va(X) < 51in Theorems 6 and 7. Indeed, since s < 2¥, we can
consider a compact space K of weight s which is not sequen-
tially compact but which is the remainder of a compactification
~N of N. Now, for the one-point compactification wN of N, we
have e,,(N) = s, the space wN is sequentially compact, while
both the spaces yN and YN\ N are not sequentially compact.

For a set ' C C*(X) and a positive integer n, let M™(F')
be the collection of all functions of the form ¢ o AL, f; where
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peC*(R") and f; € Ffore=1,...,n. Then,if F C C*(X)is
non-void, the collection M(F) = [ J7_, M™(F) is a subalgebra
of C*(X) which contains F' and all the constants (cf. [2] and
[14]). Furthermore, ' C C*(X) generates a compactification
aX of X if and only if the algebra M (F') is dense in Cy(X) with
the topology of uniform convergence (cf. [14]). In general, the
algebra M(F') need not be closed under uniform convergence
(cf. [14]).

For compactifications aX and yX of X such that aX <
~X, define

Me(X) = min{|F| : M(Ca(X) U F) = C,(X)}.

Clearly, €44(X) < m,o(X). The cardinal number m.,,(X) has
the following interesting property:

8. Theorem Let aX and vX be compactifications of X such
that aX < ~yX. If m,o(X) is countable, then e,,(X) is finite.

Proof: Take a countable set F' = {f1, f2,...} C C*(X) such
that M(Co(X)U F) = C,(X). Suppose, if possible, that for
each positive integer n, the set Co(X) U {f1,..., fn} does not
generate vX. Then, for each n € N, there exists y, € aX \
X such that the set {f],..., f?} does not separate points of
the fibre W;O}(yn). There exist an infinite set Ny C N and a
collection {V,, : n € Ny} of pairwise disjoint open subsets of
aX, such that y, € V,, forn € Ng. Put U,, = W;;(Vn) and Y, =
Toa(yn) for n € Ny. Since, for n € Ny, the family {f7,..., 7}
does not separate points of Y,,, there exists a function g} €
C(Y,) which cannot be represented in the form do A, f' [ Y,
with ¢ € C*(R"). We may assume that 0 < ¢gf < 1. For
n € Ny, define

[ gi(z) whenze€l,,
n() = { 0 when z € vX \ U,.
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As the compact set Y, U (yX \ U,) is C*-embeddable in v.X,

we can extend the function h, to a continuous function h,

~vX — 1. Let .
h = —h,,.
> gk
n€Np

Then h € C(7X). Since M(Co(X) U F) = Cy(X), for some
k,m € N, there exist functions gi,...,9x € Co(X) and ¢ €
C*(RF+™), such that

h1 X =¢o[(ALig) DAL ).

Choose n € Ny such that n > m. For (z1,...,2k4n) € RE+7
define

’(/)*(<Zl, e 7Zk+n)) = ’I,Z)((Z], e Zk+m)).
The function ¥* € C*(RF*™) is such that

hTX =90 [(ALg) AN )]
Then
h1Y, =9 o [(AL g ) AN 1Y,

The functions g; are constant on Y,. Take any z € Y, and, for
(z1,...2,) € R™, define

A" ((z1,- -, 20)) = V" ((91(2), .. ., gk(2), 215 . -, 20)).
We have ¢* € C*(R") and
hIY,=¢"0 AL f] [ Ya

This implies that g} is of the form ¢ o A, f7 | Y, for some
¢ € C*(R") because h [ Y, = %gn But this is impossible.
The contradiction obtained proves that Co(X) U {f1,..., fn}

generates C,(X) for some n € N. In consequence, e,(X) is
finite. O

We do not know if m.,(X) must be countable when e.,4(X)
is finite.
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Our next theorem is related to the theory of dimension. We
refer the reader to [8] for more information about dimensions.

9. Theorem Let o X and vX be compactifications of X such
that X < vX. If aX is metrizable and finite-dimensional,
then the following conditions are equivalent:

(i) mya(X) is finite;

(i)

(it}) £,a(X) is finite;
)

(iv) vX is metrizable and finite-dimensional.

Mao(X) is countable;

Proof: Implication (¢) = (i) is obvious. That (z2¢) implies
(z22) is a consequence of Theorem 8. Implication (zi2) = (¢v)
follows from Proposition 1.

Assume (wv). Then e(yX) is finite; hence, we can choose
a finite set F' = {f1,...,fa} C C,(X) which generates vX.
Then every function h € C,(X) is of the form h = ¢ o AL, f
for some ¢ € C*(R") (cf. [2] and [14]), which implies that
M™(F) = C,(X). Accordingly, M(Co(X)U F) = C,(X) and
thus (iv) = (2). -

Remark. Let X be an arbitrary locally compact non-pseudo-
compact space. Then the Hilbert cube I“ is the remainder of
a compactification vX of X (cf. [12]). Obviously, for the one-
point compactification wX of X, we have e,,(X) = w. Hence,
if X is second countable and finite-dimensional, then wX is
metrizable and finite-dimensional, but v X is a metrizable space
which is not finite-dimensional. This shows that, in condition
(22) of Theorem 9, the cardinal number m.,(X) cannot be
replaced by eyq(X).

Example 4.8 of [1] shows that it may happen that e(yX) is
finite, while ¢(aX) is infinite for some aX < yX. To state a
more general fact, we will need the following lemma:
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10. Lemma For every metrizable compactification aX of a
metrizable separable finite-dimensional space X, there ezists a
metrizable compactification vX of X such that X < ~vX and
~vX preserves the dimension of X.

Proof: In view of Theorem 3.3 of [16], there exists a compat-
ible totally bounded metric d on X such that X is generated
by the collection Uj;(X) of all bounded uniformly continuous
with respect to d functions f : X — R. By Theorem 1.7.2 of
8], there exists a compatible totally bounded metric d on X
such that d(z,y) < d(z,y) for any z,y € X, and the metric
completion 7X of the metric space (X, d) is a compactification
of X which preserves the dimension of X. Making use of The-
orem 3.3 of [16] once again, we deduce that vX is generated
by the collection U7(X) of all bounded uniformly continuous

with respect to d functions f: X — R. Since d(z,y) < cZ(:c,y)
for any z,y € X, we have Uj(X) C U3(X). This implies that
aX <~X. O

11. Theorem For every metrizable compactification 6X of
a second countable finite-dimensional non-compact Tikhonov
space X, there exist metrizable compactifications aX and vX
of X, such that 6 X < aX < ~vX, the cardinal number e(yX) s
finite, while e(aX) is infinite. Furthermore, we may demand

that the compactification yX should preserve the dimension of
X.

Proof: Take a point yo € 6X \ X and put Y = 6X \ {yo}-
Since the space Y is locally compact and non-pseudocompact,
every metric continuum is a remainder of Y (cf. [12]). In
consequence, there exists a compactification aY of Y such that
aY \'Y = I“. The space X being dense in Y, we can consider
aY as a compactification aX of X. Since X C Y and 6 X is the
one-point compactification of Y, we have 6 X < aX. As the
space Y is locally compact and second countable, the space a X
is also metrizable. Of course, the dimension of aX is infinite,
which implies that e(aX) = w. It follows from Lemma 10 that
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there exists a metrizable compactification yX of X such that
aX < ~vX and vX preserves the dimension of X. Then ¢(yX)
is finite. O

For compactifications aX and X of X such that aX <
vX, G. D. Faulkner considered in [9] conditions under which
Cy(X) = (Ca(X) U {f}). He proved that if X is locally com-
pact and the set [J{n J(y) : ¥ € Py} is finite, then there
exists f € C*(X) such that C,(X) = (Co(X) U {f}). More-
over, if C,(X) = (Co(X) U{f}), then all the fibres of 7., are
finite. However, he did not know if the set P,, must be finite
if Cy(X) = (Ca(X) U{f}). The following theorem gives an

answer to Faulkner’s question:

12. Theorem For every cardinal number k, there exist a
locally compact space X and a compactification a X of X, such
that |Pso| = k and

C*(X) = (Ca(X) U {f})
for some f € C*(X).

Proof: In view of Theorem 3 of [9], it suffices to consider the
case when k is infinite.

For an infinite cardinal number «, denote by wD the one-
point compactification of the discrete space D of cardinality
k. There exists a locally compact space Y such that gY \
Y = wD (cf. [5; Coroll. 4.18]). Let X =Y x {0,1}. Then
BX = BY x {0,1}. Denote by aX the compactification of
X which arises from BX by identifying each one of the sets
{(d,0),(d,1)} with a point p; where d € wD. Then 7}, (pa) =
{(d,0),(d,1)} for each p; € aX \ X; hence |Pg,| = k. Let
us define f(y,z) =i fory € Y and 7 = 0,1. We shall show
that C*(X) = (Ca(X) U {f}). To this end, for a function
h € C*(X), let us put go(y,2) = h(y,0) and g1(y,?) = h(y,1)
where y € Y and 7 = 0,1. Then go, g1 € C,(X) and, moreover,
h = go+ fg1 — fgo, so that A € (Co(X)U{f}). This completes
the proof. O
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Finally, let us notice that if, for compactifications X and
vX of X, there exists a countable set F' C C,(X) such that

C4(X)

= (Co(X) U F), then aX < 4X and the number

m.o(X) is countable; hence €.,,(X) is finite.
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