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Abstract 

We consider the dynamical system (M, S) where 
M is the orbit closure of a nonperiodic recurrent se­
quence of O's and 1's (for example, the Morse sequence) 
and 5 is the shift map. The enveloping semigroup is 
E(M) == {sn : n E Z}, where the closure is taken in 
the topology of pointwise convergence. H. Furstenberg 
was the first to establish the existence of relationships 
between recurrence, IP sets, and idempotents in the 
enveloping semigroup, and the first author has proven 
that the closure of the set of idempotents coincides with 
the IP cluster points. In this paper the authors com­
pute this set for (M, 5) and shed light on other com­
binatorial properties of generalized Morse sequences. 
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1 Introduction 

An IP subset of N (or Z) is one which coincides with the set of 
finite sums taken from an infinite sequence (Pn)~=1 of distinct 
elements in N (or Z). The notion of IP sets gained interest 
in combinatorial mathematics when Hindman proved in 1974 
that if N == C1 U ... U Ck, then there exists an index j such 
that Cj contains an IP set [Hi]; a theorem first conjectured by 
Graham and Rothschild [GR]. This prompted Furstenberg to 
investigate the relationship between IP sets, recurrence, and 
idempotents in the enveloping semigroup of a dynamical sys­
tem [F]. Several papers followed in this new vein, most notably 
by Auslander and Furstenberg [AF], Berend [B], Bergelson and 
Hindman [BH], and Furstenberg and Weiss [FWl], [FW2]. 

In this paper, we investigate connections linking dynamical 
systems with combinatorial number theory for a special class of 
spaces which are subshifts of the full shift on two symbols and 
include the space COllsisting of the orbit closure of the standard 
Morse sequence in {a, I}Z [M]. 

If X is a compact topological space and T : X ----t X is con­
tinuous, we will call the dynamical system (X, T) an N-cascade 
when we allow only positive iterations of T and a Z-cascade, 
if T is a homeomorphism and both positive and negative iter­
ations of T are allowed. Consider X x, the space of all func­
tioris from X to itself, equipped with the product topology, 
and define E(X) == {Tn: n E Z}, a topological subspace of 
Xx. E(X) is a compact semigroup in Xx, called the envelop­
ing semigroup of X [El]. If we put H(X) == E(X) -;- {isolated 
points of E(X)}, then H(X) is also a compact semigroup in 
X x [H , proposition 3.1]. A well known theorem by Ellis (see for 
instance [E2], corollary 2.10) states that a nonempty compact 
semitopological semigroup must contain idempotents. Thus 
H(X) contains idempotents, and we will denote the set of 
idempotents in H(X) by J(X). 
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Definition 1.1 An IP set in N (or Z) is a subset P ofN (or 
Z) which coincides with the set of finite sums Pnl +.·.+Pnk' 
nl < ... < nk, taken from a sequence (Pn)~=l of distinct ele­
ments in N (or Z). The sequence (Pn )~=l is called the gener­
ating sequence of P. 

In [H], the first author introduced the notion of an IP clus­
ter point in H(X) along an IP set P to be the following: 

Definition 1.2 For a N (or Z) cascade, an element f zn 
H(X) is an IP cluster· point (IPCP) along an IP subset P 
of N (or Z) if given a neighborhood U of f in Xx, the set 
{n E P : Tn E U} contains an IP subset of P. 

Let I(X) denote the set of IP cluster points along N (or Z). 
In [H] is a study of IP cilister points, from which we need two 
results: 1) I(X) is never emptyr [H, theorem 3.1] (the proof 
involves a standard compactness argument) and 2) I(X) == 
J(X) for all compact systems ()(, T) [H, corollary 3.2]. This 
explains our interest in the study of IP cluster points. 

We will compute J(X) and I(X) when X is the orbit 
closure under the shift map of a nonperiodic recurrent se­
quence (in the sense of Keane), and show that in every case, 
J(X) == I(X), a set with finite cardinality. 

The authors would like to thank K. Berg and H. Fursten­
berg for many helpful discussions during the preparation of 
this paper, and the referee for nllmerous helpful comments. 

2 Preliminaries 

In [K], Keane introduced ttle following notation to express in­
finite sequences of zeros and ones: A sequence b == [bob l ... bm ] 

of zeros and ones is called a block, whose length m + 1 will be 
denoted by l(b). The block obtained from b by interchanging 
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the zeros and ones is called the dual of b and is denoted by 
b. We can define an operation "x" on blocks by first setting 
b x 0 = b, b x 1 = band then for a fixed block C= [COCI ... cn], 
defining bxcto be bxco+bxCI+ .. .+bxcn, where "+" denotes 
concatenation. If Co = 0, then b x c is simply an extension of b. 
The operation x just defined is associative, and if bO, bl , b2 , ••• 

are chosen so that b& = 0 and l(bi ) > 1 for every i 2:: 1, then 
the sequence bO X bl X b2 X ... is well defined and infinite. Such 
a sequence shall be called a recurrent sequence. It is shown in 
[K, lemma 1] that a recurrent sequence is periodic if and only 
if there exists a kEN U {O} such that bk x bk+1 X ... equals 
either [00000 ... ] or [010101 ... ]. 

Denote {O, I}Z by nand {O, I}N by X. Let S be the shift 
map defined on n or X by S(x)(n) = x(n + 1) for x E n 
or X and n E Z or N. Let B be the set of finite blocks of 
O's and l's, and for z in n or X, if a E Z and bEN, let 
z(a, b) = [ZaZa+1 ... Za+b-I]. Let Bz ~ B be the set of all finite 
blocks occurring in z: 

Bz = {b E B: 3k E Z such that z(k,l(b)) = b}. 
The orbit {snw : n E Z} of a point wEn will be denoted 
by O(w). For each x E X, we define the subset Ox of n by 
setting: 

Ox = {w En: Bw ~ Bx}. 
It is shown in [K, lemma 4] that if x is a recurrent sequence, 
then there exists a point w E Ox with [WOWIW2 ..• ] = x. Keane 
constructs w in the following manner: 

Let x = bO X bl X b2 
• •'., and for any b = [bobl ••• bn ] E B, 

set b= [bn . .. b1bo]. 
For i E N U {OJ, define 

. {b
i 

if b;(bil-l = 0 
if = bi otherwise 

lThen x := do X d X d2 X ... is well defined and belongs to x. 
Now define w by 
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[WOWI ] :== x 

[W-IW-2 ] :== x. 
Keane goes on to show that W thus defined is indeed in Ox. 
A similar argument shows that the point constructed by using 
the dual of the entries at the negative subscripts of W is also in 
Ox. We write the pertinent information in the following two 
corollaries: 

Corollary 2.1 Let x be a recurrent sequence and W E Ox with 
x == [WOWI ... ]. Let v == [... W-2W-IWOWI' ..]. Then v E Ox, 
and wand v are the only elements of Ox which agree with x at 
all non-negatively indexed positions. 

Thus a recurrent sequence x can be extended to the left in 
two and only two ways so that the extension is in Ox. Fur­
thermore, the two left extensions are dual of each other. Note 
that wand v are positively asymptotic, whereas wand Z; are 
negatively asymptotic. 

Corollary 2.2 Let et == bO X bl X ... X bt and denote the length 
ofet by It. Set C == {N: 1::; N::; t and bN ends with a i}. 

tIf IC I is odd, then W ( -It, 2lt ) == ct + e and if ICI is even, then 
tw( -It, 2lt) == et + e . 

For the rest of the paper, x == bO X bl X b2 ..• will denote 
a fixed nonperiodic recurrent sequence in X and wand v will 
be as above. As before, set ln == l([bO X bI x b2 

••• X bn]). 
Set M == O(w), and S the shift on M. Since v E Ox and 
Ox C O(w), we have v E M. Now take ( E M. By the 
definition of M, for every LEN we can find n E Z such that 
sn(u.;)(-L,2L + 1) == ((-L,2L·+ 1). Since x is not periodic, 
the symbol "I" appears somewhere in bt X bt+1 X ... for every 
t, and thus the dual of (( -L, 2L + 1) must appear somewhere 
in w. This shows that ( EM=} "( E M. 
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3	 IP Cluster Points and Idempotents 
in H(M) 

In this section, we show that when (M, S) is viewed as a Z­
cascade, the IP cluster points and idempotents coincide and 
form a set of cardinality 4. One can prove this either by ex­
plicitly finding the IPCP's, or by computing J(X), getting a 
finite set, and then using the fact that J(X) == I(X.). Either 
method requires factoring M onto a simpler space, comput­
ing the set of idempotents there, and then working back up to 
(M, S). It is the second method which we shall adopt in this 
section as it is more elegant. 

In order to factor M onto a simpler space, we first give a 
general definition of a factor of a dynamical system and then 
describe the particular systems we will use for our problem. 
This set up is motivated by [M]. 

A dynamical system (X, T2 ) is said to be a factor of a dy­
namical system (Y, T1 ) if there exists an onto continuous map 
1r : Y ---+ X such that T2 0 1r == 1r 0 T1 . We also say that (Y, T1 ) 

is an extension of (X, T2 ). The extension is said to be almost 
one to one if 1r is one to one on X - X' where X' is a subset 
of X of first category. 

We construct a factor of (M, S) in two stages. First, define 
Y == M/{Id, ¢J} where ¢J : M ---+ M is defined by ¢J(() == (, 

and let 1rl be the quotient map of this "identification. Thus 1rl 

identifies dual elements of M. Denote 

1r1 (w) == 1r1 ( w) by Y1 and 1r1 ( v) == 1r1 (v) by Y2. 

Denote the projection of S onto Y again by S. Thus snY1 == 
1rl(snW) == 1rl(snW) and snY2 == 1rl(snV) == 1rl(snV). Yl and Y2 
are then positively asymptotic. (M", S) is now an extension of 
(Y, S). 

Next, set G == {(an)~=l : 0 :::; an < In and an == an+l(modln)}. 
Let 1 denote the element (1, 1, ... ) in G and 0 the element 
(0,0, ... ). Let p : G ---+ G be defined by p(g) == 9 + 1 where 
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addition is mod in in the nth coordinate. (G,p) is a dynamical 
system and one can construct an almost one to one extension 
1r2 : Y --4 G as follows: 

Note that if ( == limki~oo Ski(w) then for every n, an == 
limi~oo(ki (mod in)) exists [M, lemma 4b]. If in addition, (" == 
limkJ'~oo Skj(w), then by corollary 2.2 and [M, proposition 5], 
liilli~oo(ki (mod in)) == limj~oo(kj (mod in)). So the map 1r2 : 
Y --4 G sending y == 7f1(limki~oo Ski(w)) to (an)~=l where an == 
liilli~oo (ki (mod in)) is well defined, and by [M, proposition 
5], 1r2 is one to one off the orbit of 0 in G and two to one 
otherwise. So (Y, S) is an almost one to one extension of (G, p). 
In particular, we have 1r2(Y1) == 1r2(Y2) == 0 [M, proposition 5] 
and similarly, 1r2(sny1) == 1r2(sny2) == pn(o) for every n E Z. 

This construction leads to the following commutati,re dia­
gram: 

SM .M 

7f1~11 
Sy 

1r2 1~2 
p .G 

Setting 7f == 7f2 0 7f1, we can summarize the preceding facts 
with the following properties: 

1) 11r-1(g)1 == 2 for every 9 not in 0(0), the orbit of 0 under 
p. 

2) 17r-1(g)1 == 4 for every 9 E 0(0).
 
3) 1r(1]) == 7r(fJ) for every 1] E M.
 
4) 7r(snw) == 1r(snv ) == pn(o) for every n E Z.
 
We will now compute I(M) and J(M). We first compute
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I (M) in the N -action case. We do this by finding I (G) first 
and then working our way back to I(M). The following three 
lemmas give us the necessary tools; the first one tells us how 
IP cluster points of a system relate to those of its extension. 

Lemma 3.1 Given an extension (A, a) of (B, 13) with (A, a) 
and (B,f3) N-cascades, 

A a .A 

~j j~
 
B (3. B 

IPCP's of AA project to IPCP's of BB, Le. If f E AA is an 

IPCP along an IP set P and 7r 0 f == f' 0 7r then f' is an IPCP 
in BB along P. 

Proof: 
Let V' be a neighborhood of f' in BB. Then we can find 

kEN, points bl , b2 , ••• , bk in B and open subsets V{, V~ ... V~ 

of B such that 

For each i E {1,2, ... ,k}, pick ai E A such that 7r(ai) == bi 
and let Ui == 7r- 1 (VI), an open subset of A. Then 7r(f(ai)) == 
f'(7r(ai)) == f'(bi ) E VI, so f(ai) E Vi. Thus if V == n7=l{g E 
AA : g(ai) E Vi}, then V is a neighborhood of f in AA. 

We are assuming f is an IPCP along P, thus {n E P : an E 
U} contains an IP set. However: 

{nEP:anEV} 
== {n E P : an (ai) E Ui} for every i 

C {n E P : 7r 0 an (ai) E 7r ( Vi)} for every i 
== {n E P : f3n 0 7r(ai) E 7r(Ui)} for every i 

== {n E P : f3n( bi) E UI} for every i 
{n E P : f3n E U'}. 
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Therefore {n E P : f3n E V'} contains an IP set and f' is 
an IPCP in BB along P. D 

Lemma 3.2 Let (X, T) be a metric N-cascade. Suppose that 
X contains two positively asymptotic points x and y. Then 
() E H(X) :::} ()(x) == ()(y). 

Proof: We will prove this by contradiction. Assume ()(x) :f. 
()(y) and pick E so that d( ()(x), B(y)) > 4E. We can then find 
V and V, E neighborhoods of ()(x) and ()(y) respectively, and 
define 

W == {g E XX : g(x) E V} n {g E XX : g(y) E V}. 

Notice that () E Wand U and V are disjoint. 
Since x and y are positivel~y asymptotic, we can find N 

such that for every n > N, d(Tn x, Tn y ) < E. This means that 
if Tm(x) E U and m > N, then Tm(y) ~ V. Thus 

I{n : Tn(x) E V} n {n : Tn(y) E V}I < 00, 

which says that {n : Tn E W} is finite. But this contradicts () 
being a limit point of {Tn} and thus () cannot belong to H(X). 
o 

LeITlITla 3.3 For a minimal cascade (Y, S), if Y is not distal,
then every minimal left ideal of _E(Y) contains more than one 
idempotent. 

Proof: (In this proof we use SOITle basic facts from topological 
dynamics, for which we refer the reader to [A]. In [A], the 
author uses the notation xT to express a function T acting on 
an element x. We use T(x). Tllis explains why, in the proof 
below, minimal left ideals are used instead of [A]'s minimal 
right ideals.) 
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Recall that (Y, S) is minimal iff Y =1= 0 and Y = O(y) for 
every y E Y. This in turn implies that every y E Y is almost 
periodic, i.e. for every neighborhood U of y, the set of return 
times of y to U under the map S occurs with bounded gaps. 
(see [AJ theorem 7, page 11). 

Now let I be a minimal left ideal of E(Y) and set J to 
be the set of idempotents in I n H(I). Since every y E Y 
is almost periodic, for each y E Y there exists u E J such 
that uy = y (see [AJ, theorem 12, page 88). If J contains 
only one element, J = {u}, then we have uy = y for every 
y E Y. So u is the identity on Y and E(Y) contains no proper 
minimal left ideals. Clearly, the function u x u belongs to 
H(Y x Y) (if snk --t u then (S X s)nk --t U xu). Also, E(Y x Y) 
contains no proper minimal left ideals, since every idempotent 
v E E(Y x Y) must be of the form VI x VI where VI is an 
idempotent in E(Y), implying that the identity on Y x Y is the 
only idempotent of E(Y x V). But now (u x u)(x,y) = (x,y) 
for every (x, y) E Y x Y. This implies that every· point in 
Y x Y is almost periodic (again see [AJ, theorem 12, page 88) 
and hence (Y, S) is distal (see [AJ, corollary 4, page 68). 0 

A dynamical system (X, T) is said to be equicontinuous if 
given f. > 0, there exists 8 > 0 such that whenever d(x, y) < 
8, then d(Tn x , Tn y ) < t: for every n. Furthermore (X, T) is 
equicontinuous if and only if X can be given a group structure 
which makes it a compact topological group, and there is an 
element Xo E X such that Tx = xox for all x E X and such 
that the orbit of Xo under the group action is dense in X [P, 
theorem 2.11, page 154]. Using this characterization, one can 
easily verify that the factor (G, p) of (M, S) is equicontinuous 
(if I = (11 ,12 , ... ) then G can be thought of as the group of 
l-adic integers, equipped with the product topology, and the 
element 1 E Gplaystheroleofxo). So (G,p) isequicontinuous, 
which implies that E( G) is a group [A, theorem 3, page 52] . So 
J(G) = {Ida}. Since I(G) = J(G), we have I(G) = J(G) = 
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{Ida }. 

By lemma 3.1, the only candidates for I(Y) are the ele­
ments of E(Y) which project to I da . In other words, we are 
looking for! E E(Y) such that 7r2 0 ! == Ida 0 7r2' Since 7r2 is 
almost one to one, we know such an ! must be the identity off 
the orbits of Yl and Y2. On the orbits of Yl and Y2, the only 
possibilities are Idy ,!I,!2,/3, where: 

for each n E N U {O}, 11 (sn y1 ) == 11 (sn y2 ) == sn y1 , 
for each n E N U {O}, 12(sny1 ) == 12(sny2 ) == sny2 , and 

for each n E N U {O}, 13(sny1 ) == snY2 and 
!3(sny2 ) == sn y1 . 

By lemma 3.2, 13 and I dy are not in H(Y) and thus not in 
I(Y). Since I(Y) =f 0, one of 11 or 12 must be in I(Y); since 
Y is not distal (it contains aSYillptotic points) by lemma 3.3, 
both 11 and 12 belong to I(Y). 

We now have I(Y) == J(Y) == {II, 12}' 

Moving up the tower (still in. the N-action case only), the 
candidates for I(M) are the functions 9 which project to either 
11 or 12. In other words, we are looking for 9 E E(M) such 
that 7rl 0 9 == 11 0 7rl or 7rl 0 9 == 12 0 7rl. In the first situa­
tion, we must have g( {w, w, v, 17}) C {w, w} and in the second, 
g({w,w,v,17}) C {v,17}. We are further restricted by the ne­
cessity that 9 must preserve duals, because if 9 ==limi~ooSni, 

then g(() ==limi~ooSni (() == limi~oo(Sni() == limi~oo(Sni() == 
limi~oo(Sni() == g((), with the second to last equality hold­
ing by the continuity of the shift map S. Thus the possible 
candidates for I(M) can be divided into 8 classes, denoted by 
G1 through Gg , and listed below according to their effect on 
w, w, v and 17 (note that every map in G1 through Gg commutes 
with the shift on the orbits of w, w, v or v): 

G1 : w ~ w, v ---+ W, v ---+ W 

G2 : v ~ v, w ---+ v, W .-+ V 

G3 : w ~ w, 17 ---+ w, v ---+ W 

G4 : v ~ 17, w ---+ v, W ---+ 17 
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G5: w ----+ W, W ----+ W , 17 ----+ W, 1/ ----+ W 

G6: W ----+ 17, W ----+ 1/ , 17 ----+ 17, 1/ ----+ 1/ 

G7 : W ----+ W, W ----+ W , 17 ----+ W, 1/ ----+ W 

Gs: W ----+ 1/, W ----+ 17 , 17 ----+ 17, 1/ ----+ 1/ 

The only idempotents from the above list are the maps 
gi E Gi , i == 5, 6, 7, 8 which are the identity off the orbits of 
W,W,1/ or 17 . Thus J(M) is finite and since I(M) == J(M), we 
have I(M) == J(M). Now by lemma 3.2 (still in the N-action 
case), 95 and 96 are not in H( M) since 9i(w) =I 9i( 1/) for i == 5,6. 
By lemma 3.3, J(M) == {g7,gS}. And so, I(M) == {g7,gS}. 

The above computation was for (M, S) viewed as an N­  
action. To extend to the Z-action case, we make use of the 
following elementary proposition. 

Proposition 3.4 Let P be an IP subset of Z, generated by 
{Pn}~=l. If Pn is positive for an infinite number of n, we de­
note by P+ the IP set generated by the positive Pn 'so If Pn is 
negative for an infinite number of n, we denote by P- the IP 
set generated by the negative Pn 'so Then f is an IPCP for a 
Z-action cascade along an IP set P iff f is an IPCP for at 
least one of the corresponding Z+ or Z- actions, along P+ or 
p- respectively. (Z+ stands for N). 

Now the arguments used to compute I(M) for the N-action 
case can be repeated to yield that for the Z- -action case, 
I(M) == J(M) == {95,96} (negative instead of positive asymp­
toticity accounts for the difference in the final result). We leave 
the details of the computation in the Z- case to the reader. 

Altogether, we have proven the following theorem: 

Theorem 3.5 The dynamical system (M, S) has I(M) 
J(M) == {95,96,97,9s}. In particular, the idempotents in the 
enveloping semigroup exactly correspond to the IP cluster points. 

Our theorem produces the following corollaries: 
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Corollary 3.6 Let 9 be a map in E(M) such that g(w) E 
{w, v}. Then there exists a neighborhood U of 9 such that 
{n EN: sn E U} does not contain an IP set. 

Corollary 3.7 Let 9 be a map in E(M) such that g(w) E 

{w, v} and such that 9 interchanges 'fJ and fj for some 'fJ f/. 
O(w) U O(v) U O(w) U 0(17). Thf~n there exists a neighborhood 
U of 9 such that {n EN: sn E U} does not contain an IP set. 
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