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Abstract

We show the following: (1) The n*t symmetric prod-
uct of a continuum is countable closed aposyndetic.
(2) If X is a chainable continuum such that its second
symmetric product is mutually aposyndetic then X is
homeomorphic to [0, 1]. (3) A chainable continuum X
is indecomposable if and only if its second symmetric
product is strictly nonmutually aposyndetic.
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1 Introduction

Let X be a topological space and let n be a positive integer.
Then F,(X) = {A C X | A has at most n points} is called the
nt® symmetric product of X. Symmetric products were defined
by Borsuk and Ulam (see [B-U]) in 1931. Since then several
papers have been written about symmetric products see for
example [G-I], [I], [Ma], and [Mo]. In [Bor|, Borsuk claimed
that the third symmetric product of the unit circle, S, was
homeomorphic to S x §2, where §? is the two sphere, but
Bott showed that actually the third symmetric product of S?
is homeomorphic to the three sphere, 3 (see [Bot]).

R. W. FitzGerald (see [F], Corollary 2.1) showed that the
product of two continua is countable closed aposyndetic. We
will show that

Theorem 8. If X is a continuum, n > 1 and K is any
closed, countable subset of F,(X), then Tr,x)(K) = K, that
is, Fn(X) is countable closed aposyndetic. In particular, F,(X)
is m—point aposyndetic for each m € IN.

L. E. Rogers (see [R], Theorem 1) proved that if X and
Y are two chainable continua such that X x Y is mutually
aposyndetic then X and Y are homeomorphic to [0,1]. We
prove that

Theorem 15. If X is a chainable continuum such that F2(X)
is mutually aposyndetic then X is homeomorphic to [0, 1].

C. L. Hagopian (see [H], Theorem 10) showed that if X
is a chainable continuum, then X is indecomposable if and
only if the topological product X x X is strictly nonmutually
aposyndetic. We show that

Theorem 16. If X is a chainable continuum then X is in-
decomposable if and only if F5(X) is strictly nonmutually
aposyndetic.
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Definitions. If (Z,d) is a metric space, then given A C Z
and € > 0, the open ball around A of radius ¢ is denoted by
VZ(A), the interior of A is denoted by A°, its closure will be
denoted by A and its boundary by 9(A). The product of Z
with itself n times will be denoted by Z™, and we will consider
the metric D, on Z" given by D,((z1,...,2n),(21,-..,2,)) =
max{d(z;,2;) | 7 € {1,...,n}}. Az will denote the diagonal
of Z", 1. e., Azn = {(2,2,...,2) € Z™ | z € Z}. The symbol

IN will denote the set of positive integers.

A continuum is a nonempty, compact, connected, metric
space. A subcontinuum of a space Z is a continuum contained
in Z. A continuum is said to be colocally connected, provided
that each point of it has a local base of open sets whose comple-
ments are connected. A continuum X is connected im kleinen
at the point x of X, if for each open subset U of X there exists
a connected neighborhood V such that z € V° C V C U. If in
the previous definition, we ask V to be open then we say that
X s locally connected at x.

A continuum X is said to be aposyndetic at x with respect to
y, provided that there exists a subcontinuum W of X such that
€ W° CW cC X\{y}, it is said to be aposyndetic at z, if it is
aposyndetic at  with respect to any point of X \ {z}, and it is
said to be aposyndetic, if it is aposyndetic at each of its points.
The continuum X is mutually aposyndetic, provided that if = .
and y are two distinct points of X then there exist two disjoint
subcontiua W, and W, of X such that z € W2 and y € Wyc>
A continuum X is said to be strictly nonmutually aposyndetic
if each pair of subcontinua of X which have nonempty interior
intersect.

Given a continuum X, we define the set function 7x as

follows: if A C X then
X\ Tx(A) = {z € X | there exists a subcontinuum W of X

such that z € W° C W C X \ A}
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Bellamy wrote a good survey about the function 7 (see [B2]).
Let us observe that for any subset A of X, Tx(A) is closed
subset of X and A C Tx(A).

We say that the continuum X is aposyndetic at the closed
subset A, if Tx(A) = A. In particular, X is said to be m-
point aposyndetic (or countable closed aposyndetic), if X is
aposyndetic at each subset of it with exaclty m points (which
is closed and countable, respectively).

A chain is a finite collection {Uy, ..., Uy} of open sets such
that U; N Uy # 0 if and only if |j — k| < 1. The elements of a
chain are called links. For € > 0 an e—chain is a chain in which
each link has diameter less than €. A continuum is chainable
if for each € > 0, it can be covered by an é—chain. It is known
that every subcontinuum of a chainable continuum is chainable
(see [C-V], Theorem (9.C.4)).

Given a continuum X, we define its hyperspaces as the fol-
lowing sets:

2¥ = {AC X | Ais closed and nonempty},
C(X) = {Ae2¥| Aisa connected},
Fou(X) = {A€2¥| Ahas at most n points} (n € IN),
F(X) = {Ae2%| Ais finite}.
Let us observe that for each n € IN, F,(X) C F,41(X) and
that F(X) = U Fn(X). It is known that 2% is a metric space

n=1
with the Hausdorff metric, H, defined as follows:
H(A,B) =inf{e >0 | Ac VX(B) and B c VX(A4)},

(see [N1], (0.1)), and in fact, 2% and C(X) are arcwise con-
nected continua (see [N1], (1.13)). It is also known that each
Fn(X) is a continuum (see [B-U]), and then F(X) is a con-
nected space. On the other hand, 2% can be topologized with
the Vietoris Topology, defined as follows: given a finite collec-
tion, Uy, Us,, ..., Un, of open sets of X, we define
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<Upy...,Upn>={A€2* | Ac U, Uk
and ANUg#0 for each k € {1,...,m}}.
It is known that the family of all subsets of 2%X of the form
< U,...,Uy, >, as defined above, form a basis for a topology
for 2% (see [N1], (0.11)) called Vietoris Topology, and that the
Vietoris Topology and the Topology induced by the Hausdorff
metirc coincide (see [N1], (0.13)). To simplify notation, <
Ui,...,U, >, will denote the intersection of the open set <
Ui,...,Un >, of the Vietoris Topology, with F,(X).

It is important to note that given a continuum X, then
F1(X) is an isometric copy of X (using the Hausdorff metric)
contained in each of the hyperspaces defined above.

A map f: X — Y between continua is said to be open if it
sends open subsets of X into open subsets of Y. The map f is
said to be confluent, provided that for each subcontinuum @
of Y, each component of f~!(Q) is mapped onto @ by f.

2 The Theorems

We begin with some elementary results.

Lemma 1. Let X be a continuum and let n be a positive
integer. If D,, denotes the metric on X™ given by

D, ((z1,...,2n), (2], ..., 20)) = max{d(z1,2}),...,d(zn,z.)},

where d is the metric on X, then the function f,: X™ — F,(X)
given by
fal(z1y- - yzn)) = {z1,. .. 20}

is onto and satisfies the following inequality:

H(fn((xla’xn))’fn((mllaam;z)))
S Dn((mlv'-'amn)a(m,l)""x;z))’
for each (z1,...,z,) and (2},...,2)) in X™.
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Proof: Clearly the map f, is onto. Let (z1,...,z,) and
(z,...,z,) be two points fo X™. Suppose that D,((z1,..., ),
(z,...,z.)) =randlete > 0begiven. Hence D,((z1,...,Zx),
(zf,...,2.)) < r+e. This implies that for each j € {1,...,n},
d(z;,z%) < r+¢e. Thus, for each z; € fo((z1,...,2,)), We
have that = € fn((z},...,2,)) and d(z;,2;) < r+e. This
shows that fn((z1,...,2.)) C VE.(ful(2h,...,2}))). Simi-
larly, fu((2},...,2})) C VE.(fal(z1,-..,20))). Thus
H(ful(z1,- .. 20)), fu((2], -, 20))) < 7+ €. Since the ¢ was
arbitrary, we obtain that H(f,((z1,...,z.)), fa((2],...,25))) <

r. O

Lemma 2. If X is a continuum and n € IN then X is locally
connected if and only if F,(X) is locally connected.

Proof: Clearly if X is locally connected then F,(X) is locally
connected. Thus, suppose that F,(X) is locally connected and
n > 1. Let o € X and let U be an open subset of X containing
zo. Since F,(X) is locally connected, there exists a connected
open subset W of F,,(X) such that {zo} e W CW C< U >,.
Let ¢ > 0 be given such that V2" ({ze}) N Fi(X) c Wn
Fi(X).

Since W is a subcontinuum of 2% and W N C(X) # 0,
then UW is a subcontinuum of X (see [N1], (1.49)). On the
other hand, since W C< U >,, we have that UW C U. Let
z € VX(zo), then {z} € V") ({z0}) N Fi(X) c W N Fi(X).
Hence, z € UW. Therefore, VX(z0) C UW, and UW is a
connected neighborhood of zo contained in U. Thus, X is

connected im kleinen at each of its points and then X is locally
connected (see [H-Y], Theorem 3-11). O

In her B. S. Thesis (see [G]), R. Garcia, essentially, showed
that if X is a continuum then F(X) is colocally connected, a
modification of her proof, shows that for each n > 1, F,(X)
is colocally connected, we include that modification for com-
pleteness.
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Lemma 3. Let X be a continuum with metricd, let n > 1 be
given. Let {zy,...,zx} € Fo(X), and let € > 0 be given such
that d(z;,z,) > € for each zj,z¢ € {z1,...,2x} and z; # ;.
Then Fn(X)\ < VX(z1),...,VX(zx) >, is connected.

Proof. Let A = < VX(z1),...,VX(zx) >, and let p be a
point of X such that d(p,z;) > ¢ for each j € {1,...,k}. Let
{b1,..., b} € Fu(X) \ A. We are going to show that there is
a connected set in F,(X) \ A containing {b,...,bn} and {p},
this will prove the Lemma.

Recall that, by definition, K € A if and only if K C

k
U VX(x;) and K N VX (z;) # 0 for each j € {1,...,k}. Since

j=1

k
{b1,...,bm} & A, we have that either {by,...,b,} ¢ U VX(z))
i=1

k
or {b1,...,bn} C UV;X(:DJ) and {by,...,b,}NVX(z;) = 0 for

Jj=1
some j € {1,...,k}.

k
Suppose that {b1,...,b,} ¢ U VX (z;). Suppose first that

i=1

k
m = 1. Then b ¢ U VX (z;). Let fg,y and f,) be functions
=1
from X to Fr(X) given by fr,3(z) = {z}U{b} and fi,)(z) =
{z}U{p}. By construction, for each z € X, f;,3(z) and f,(x)
both have at most two elements. Hence both functions are well
defined. It is easy to see that they are continuous. Let Ky =
fp3(X) and Ko = f;3(X), then Ky and K5 are subcontinua of
Fa(X). Since {p,bi} € s N ICa (foy(p) = 1pr b} = figy (b)),
we have that K = Ky UK, is a subcontinuum of F,(X). Let
us observe that for each K € K, either b, € K or p € K, hence
KN A=10{. Therefore K C F.(X) \ A.
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k
Now suppose that m > 1 and {b1,...,bn} ¢ U VE(z;).
=1

]_
Then there exists j € {1,...,m} such that b; € {by,...,bn}
and b; & VX (z,) for any £ € {1,...,k}. Without loss of gener-
k

ality, we may assume that j = m, i. e, b, & U VX (zy). Let

£

fio1): X = Fu(X) be given by fr,3(z) = {z} U ({b1,...,bm} \
{61}). Then fy,y is well defined and continuous. Let K; =
fp3(X), then Ky is a subcontinuum of F,(X). Observe that
Dotr-rbm} = foy(br) and that f,)(p) = {pybar- b}
Since by, € {b1,...,bm} \ {b1}, then for each K € fg,1(X),
we obtain that b, € K, thus £; N A = (. Hence we have K;
is a subcontinuum of F,(X) \ A containing {by,...,b,} and
{p,b2,...,bm}.

Let fu,3: X — Fo(X) be given by fu,(z) = {z} U
({p,b2,...,bm} \ {b2}). Then fy,) is well defined and continu-
ous. Let K3 = f3,)(X), then K3 is a subcontinuum of F,(X)
such that {p7 b2) AR bm} € ’CZ (f{bz}(bZ) = {pa bg, RS bm})
Observe that fu,3(p) = {p,bs,...,bm}, L2N A = 0 and
{p,b2,...,bm} € K1NK,. Thus, K£; UK, is a subcontinuum of
Fn(X) \ A containing {b1,b,...,b,} and {p, bs,...,bn}.

Repeating this process, we can find subcontinua K, ..., K,,_;

of F.(X)\ A such that {p,bs,...,bn} € Ks—y N K, for each

m—1
¢€{2,...,m—1} and {p} € K,n_1. Hence X = U K; is
3=1
a subcontinuum of F,(X) \ A containing {b1,bs,...,b,} and
{p}. This finishes this case.

k
Suppose that {b1,bs,...,bn} C U VX (z;) and
=1
{by,ba,...,b,}NVX(z;) = 0 for some j € {1,...,k}. We may
assume that {by,b,...,b,} N VX(z) = 0. Suppose also that
b] € VEX(.’IZI)
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Let A be the component of VX (z;) containing 4;. By the
Boundary Bumping Theorem (see [N2], Theorem 5.7), we have
that AN O(VX(z,)) #0. Let c€ AN d(VX(zy)). Let f:1 A —
Fo(X) be given by f(z) = {e}U({b1,b2,...,bm}\{b1}). Then
f is well defined and continuous. Thus f(A) is a subcontinuum
of Fu(X), {b1,b2,...,bn} € f(A) (f(b1) = {b1,ba,...,bm}).
Since ¢ € A ﬂ ovx (xl)), we have that {c,b,...,b,}is not

contained in U VX (z;). Hence, by the first case, there exists a
j=1

subcontinuum, £y, of F,(X)\ A containing {c, bs, ..., bn} and
{p}. By the election of ¢, we have that for each j € {2,...,k},
AnVX(z;) =0, thus f(A)NA = 0. Let £L = L,U f(A). Then
L is a subcontinuum of F,(X) \ A containing {b1,bs,...,bn}
and {p}. This finishes the proof of the second case and the
proof of the Lemma. O

As a Corollary of this Lemma we have the following results.

Theorem 4. If X is a continuum and n > 1 then F,(X) is
colocally connected. In particular, F,,(X) is aposyndetic.

Corollary 5. If X is a continuum and n > 1 then for each
{z1, 22, ..., 2k} € Fu(X), Fu(X)\{2z1, 22, ..., 2k} is connected.

Proof: Let N € IN be such that

1 .
N < min{d(z;, ;) | zj,z¢ € {z1,22,...,2x} and z; # z4}.

Observe that {z1,zs,..., 2%} = ﬂ < V1 (z1), VX(:ck) >,

By Lemma 3, we have that for each £> N, Fo(X)\
<V{¥(z1),...,V¥(zx) >n is connected. Then
£ £

fn(X) \ {.’D],.?)g,...,&?k}
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— fn(X) \ ﬁ < V?(J}l), ce ,V%X(-rk) >n
{=N

(o)

= U (BN <V @) V(@) >0)

(=N

and this set is connected, being a union of connected sets with
nonempty intersection. O

R. W. FitzGerald proved the following result (see [F], Corol-
lary 2.1).

Theorem 6. If X; and X, are compact Hausdorff continua
and K is any closed, countable subset of X; x X,, then we have
that Tx,xx,(K) = K. Hence X; x X3 is n—point aposyndetic
for all n € IN.

D. P. Bellamy showed the following (see [B], Lemma 14).

Theorem 7. If f: X — Y is an onto map between continua
and B C Y then Ty(B) C fTx f~*(B).

As a consequence of Theorems 6 and 7 we have the following
result.

Theorem 8. If X is a continuum, n > 1 and K is any
closed, countable subset of F,(X), then Tr,x)(K) = K, that
is, Fn(X) is countable closed aposyndetic. In particular, F,(X)
is m—point aposyndetic for each m € IN.

Proof. Let f,: X* — F,(X) given by fn((z1,...,2,)) =
{z1,...,z,}. By Lemmal, f, is continuous and onto. Observe
that for each A € F,(X), we have that f;'(A) has at most n!
elements.

Since K is a closed, countable subset of F,(X), we have
that f-1(K) is a closed, countable subset of X™. By Theo-
rem 6, Tx~ (f,;'(K)) = f71(K). By Theorem 7, Tz, (x)(K) C
[ Tx» (1K) = faf7'(K) = K. Since K C Tx,(x)(K), we
have that 77, (x)(K) =K. O
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Lemma 9. If X is a continuum, then the map f;: X x X —
F2(X) given by fo((z1,22)) = {z1,z2} is open.

Proof. Let (z1,z;) be a point of X? and let € > 0 be given,
we will show that f,(VX*((z1,2,))) is open in Fp(X). Let
{ynm} € AVE((e1,2)). 1y # g, then let § <
min{d(y1,y2),€ —d(z1,y1), e —d(z2, y2), D2((y1, y2), Ax2)}. We
claim that 4 = < V¥(y1),V¥(y2) >2 is contained in
F2(VX*((21,%,))). Let {21,2,} € U, without loss of general-
ity we may assume that z; € V¥ (y1) and z; € V¥ (y2). Then

d(z1,21) < d(z1,91) + d(y1,21) < 8+ d(y1,21)
< e —d(z1,y1) +d(y1, 1) = €.

Similarly, we have that d(z3,z2) < €. Hence, we have that
(z1,22) € VX*((z1,27)) and f5((21,22)) = {21,22}. Therefore
U C (VX ((21,22)))- |

If y; = y; = y then let § < min{e — d(z1,y),€ — d(z2,y)},
and W =< V& (y) >;. We will show that W C fo(VX*((z1, 22)))-
Let {z1,22} € W. If z; # 23, then

d(Zl,IU]) S d(zh Zl) + d(y,:v1) < 6+ d(y’ml)
< e—d(z,y) +d(y,z1) =e¢.

Similarly, d(z3,z;) < €. Hence (z1,23) € VX ((21,22)) and
fa((z1,22)) = {21, 22}. Finally, if z; = z; = z then

d(z,z1) < d(z,y)+d(y,z1) <6+ d(y,z1)
S g — d(xlay) + d(yv$l) = €.

Similarly, d(z,z;) < €. Thus (z,z)2 € sz((xl,xz)) and
f2((z,2)) = {2}. Therefore W C fo(VX"((z1,22))). O

Lemma 10. If X is a continuum and ¢: X% — X? is the map
given by £((z1,22)) = (2,1) then ¢ is a homeomorphism and
fao& = fy and fy 0 &' = fa, where f, was defined in the

previous Lemma.
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From now on, we will use the following notation. If W is
a subset of X2 then W* = £(W). fo: X2 — Fo(X) will be the
map given by fa((z1,22)) = {z1,z2}.

Lemma 11. Let X be a chainable continuum and let zo and
yo be two distinct points of X. If C is a subcontinuum of X?
containing (zo,yo) and (yo,zo) then C N Ax2 # 0.

Proof: By Lemma 10, C* is a contiuum. Let D = C' U C*.
Since (zo,y0) € C' N C*, we have that D is a continuum and
D* = D. This equality implies that 7 (D) = m2(D), where
7; denotes the projection map from X? to the jth factor, 7 €
{1,2}. Note that 71(D) is a chainable continuum (see [C-
V], Theorem (9.C.4)). Since any two maps from a continuum
onto a chainable continuum have a coincidence point (see [N2],
Corollary 12.26), we have that there exists a point (z1,22) € D
such that z; = m1|p((21,22)) = m2|p((z1,22)) = 2z2. Then the
point (z1,21) € C N Ax2. O

Lemma 12. Let X be a continuum and let W be a subcon-
tinuum of Fy(X). If W is a component of f;*(W) then W* is
a component of f7'(W) too and f;'(W) =W U W~

Proof: Let W be a subcontinuum of F,(X) and let W be a
component of f;'(W). Since W* = £(W), we have that W*
is a subcontinuum of X?. By Lemma 9, f, is open, hence it
is confluent (see [W], Theorem 7.5, p. 148). Hence fo(W) =
W and fo(W*) = fo0 (W) = fo(W) = W. If C were the
component of f; (W) containing W* then £(C) would be a
subcontinuum of X? containing W and f,0£(C) = fo(C) = W.
Hence {(C) =W and C = W™,

The equality f; (W) = W U W* follows from the fact that
for each element A € F»(X), f;'(A) has at most two elements.
O

Corollary 13. Let X be a chainable continuum and let W be
a subcontinuum of F5(X). Then f;'(W) is connected if and
only if f;1(W)N Axz # 0.
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Proof: If f;(W) is connected then, by Lemma 11, we have
that f; (W) N Ax2 # 0. Suppose f;'(W)N Axz # 0 and let
W be a component of f;'(W). By Lemma 9, f is open, hence
confluent. Since f;'(W)NAx2 # 0, we have that WNFy(X) #
. Thus W N Ax2 # 0. Then W = W* and f;'(W) =W. O

Lemma 14. Let X be a continuum and let W be a subcontin-
uum of Fy(X) with nonempty interior. If W is a component
of f7*(W) then W has nonempty interior.

Proof: Let W be a subcontinuum of F,(X) with nonempty in-
terior. If f;1(W) is connected then the result is clear. Suppose
then that f;'(W) is not connected and let W be a component
of f71(W). Since f, is at most 2 to 1, the only other compo-
nent of f;'(W) is W*. Since W and W* are interchanged by
the homeomorphism of X? that switches the factors, W and

W* both have interior if the union does, completing the proof.
O

Theorem 15. If X is a chainable continuum such that Fa(X)
is mutually aposyndetic then X is homeomorphic to [0, 1].

Proof: Let (z1,z;) and (y1,y,) be two distinct points of X2,
and suppose that fo((z1,22)) # f2((y1,92)). Since Fp(X) is

mutually aposyndetic, then there exist two disjoint subcon-
tinua Wy and W, of F5(X) such that fo((z1,z2)) € WY and
fol(y1,y2)) € Ws. Let Wi and W, be the components of
f71Wh) and f;1(W;,) containing (1, x2) and (y1,ys), respec-
tively. Then W; and W, are two disjoint subcontinua of X2.
By the proof of Lemma 14, we have that (z1,z2) € W} and
(y1,92) € W3,

In order to finish the proof let us observe that in the proof of
[R], Theorem 1, Rogers just needed to find disjoint subcontinua
of the product of two chainable contina containing points of the
form (z,¢) and (y, ¢) (or (¢,z) and (q,y)) in their interiors to
conclude that those chainable continua were homeomorphic to
[0,1]. Since we have shown that we can find disjoint subcon-
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tinua having those types of points of X? in their interior, then
the Theorem follows from the proof of Rogers’s Theorem. O

Theorem 16. If X is a chainable continuum then X is in-
decomposable if and only if F5(X) is strictly nonmutually
aposyndetic.

Proof: Suppose that X is decomposable, then there exists a
proper subcontinuum W of X with nonempty interior. Let U
be any open subset of X such that UNW = 0. Let K = W xW
and H = [UX X] U [X X m Then K and H are disjoint
subcontinua of X? each having nonempty interior. Observe
that K = K* and H = H*, hence f2(K) N fo(H) = . Since
f2 is open (by Lemma 9), we have that f>(K) and fo(H) are
disjoint subcontinua of F3(X) having nonempty interior. It
follows that F»(X) is not strictly nonmutually aposyndetic.

If F>(X) is not strictly nonmutually aposyndetic then there
exist two disjoint subcontinua K and H of F3(X) having non-
empty interior. Let K and H be components of f;!(K) and
f51(H), respectively. By Lemma 14, K and H have nonempty
interior. Therefore, K and H are two disjoint subcontinua of
X?. Hence, by [H], Theorem 10, X is decomposble. O

Let us observe that in order to show that if F3(X) is strictly
nonmutually aposyndetic then X is indecomposable, we did
not use the fact that X was chainable. Hagopian did not use
chainabilty of X either to show that if X? is strictly nonmutu-
ally aposyndetic then X is indecomposable. Thus we have the
following:

Theorem 17. Let X be a continuum. If either X? or Fy(X)
is strictly nonmutually aposyndetic then X is indecomposable.
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