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Abstract 

We show the following: (1) The nth symmetric prod­
uct of a continuum is countable closed aposyndetic. 
(2) If X is a chainable continuum such that its second 
symmetric product is mutually aposyndetic then X is 
homeomorphic to [0,1]. (3) A chainable continuum X 
is indecomposable if and only if its second symmetric 
product is strictly nonmutually aposyndetic. 
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1 Introduction 

Let X be a topological space and letn be a positive integer. 
Then F n (X) = {A c X I A has at most n points} is called the 
nth symmetric product of X. Symmetric products were defined 
by Borsuk and Ulam (see [B-U]) in 1931. Since then several 
papers have been written about symmetric products see for 
example [G-I] , [I], [Ma], and [Mo]. In [Bor], Borsuk claimed 
that the third symmetric product of the unit circle, 8 1 , was 
homeomorphic to 51 X 52, where 52 is the two sphere, but 
Bott showed that actually the third symmetric product of 51 
is homeomorphic to the three sphere, 53 (see [Bot]). 

R. W. FitzGerald (see [F], Corollary 2.1) showed that the 
product of two continua is countable closed aposyndetic. We 
will show that 

Theorem 8. If X is a continuum, n > 1 and J( is any 
closed, countable subset of Fn(X), then TFn(x)(J() = J(, that 
is, Fn(X) is countable closed aposyndetic. In particular, Fn(X) 
is m-point aposyndetic for each m E IN. 

L. E. Rogers (see [R], Theorem 1) proved that if X and 
Yare two chainable continua such that X x Y is mutually 
aposyndetic then X and Yare homeomorphic to [0,1]. We 
prove that 

Theorem 15. If X is a chainable continuum such that F 2(X) 
is mutually aposyndetic then X is homeomorphic to [0,1]. 

C. L. Hagopian (see [H], Theorem 10) showed that if X 
is a chainable continuum, then X is indecomposable if and 
only if the topological product X x X is strictly nonmutually 
aposyndetic. We show that 

Theorem 16. If X is a chainable continuum then X is in­
decomposable if and only if F 2(X) is strictly nonmutually 
aposyndetic. 
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Definitions. If (Z, d) is a metric space, then given A c Z 
and c > 0, the open ball around A of radius c is denoted by 
V: (A), the interior of A is denoted by Aa, its closure will be 
denoted by A and its boundary by 8(A). The product of Z 
with itself n times will be denoted by zn, and we will consider 
the metric Dn on zn given by Dn((Zl, ... ,zn),(z~, ... ,z~)) = 
max{ d(Zj, zj) I j E {I, ... , n} }. ~zn will denote the diagonal 
of zn, i. e., ~zn = {(z,z, ... ,z) E zn I z E Z}. The symbol 
IN will denote the set of positive integers. 

A continuum is a nonempty, compact, connected, metric 
space. A subcontinuum of a space Z is a continuum contained 
in z. A continuum is said to be colocally connected, provided 
that each point of it has a local base of open sets whose comple­
ments are connected. A continuum X is connected im kleinen 

at the point x of X, if for each open subset U of X there exists 
a connected neighborhood V such that x E va eVe U. If in 
the previous definition, we ask V to be open then we say that 
X is locally connected at x. 

A continuum X is said to be aposyndetic at x with respect to 

y, provided that there exists a subcontinuum W of X such that 
x E wa eWe X \ {y }, it is said to be aposyndetic at x, if it is 
aposyndetic at x with respect to any point of X \ {x }, and it is 
said to be aposyndetic, if it is aposyndetic at each of its points. 
The continuum X is mutually aposyndetic, provided that if x 

and yare two distinct points of X then there exist two disjoint 
subcontiua W x and Wy of X such that x E W; and YEW;. 
A continuum X is said to be strictly nonmutually aposyndetic 
if each pair of subcontinua of X which have nonempty interior 
intersect. 

Given a continuum X, we define the set function Tx as 
follows: if A c X then 

X \ Tx(A) = {x E X I there exists a subcontinuum W of X 

such that x E W a eWe X \ A} 
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Bellamy wrote a good survey about the function T (see [B2]). 
Let us observe that for any subset A of X, Tx(A) is closed 
subset of X and A c Tx(A). 

We say that the continuum X is aposyndetic at the closed 
subset A, if Tx(A) == A. In particular, X is said to be m­
point aposyndetic (or countable closed aposyndetic), if X is 
aposyndetic at each subset of it with exaclty m points (which 
is closed and countable, respectively). 

A chain is a finite collection {U1 , ••• , Um} of open sets such 
that Uj n Uk =I- 0 if and only if Ij - kl :::; 1. The elements of a 
chain are called links. For c > 0 an c-chain is a chain in which 
each link has diameter less than c. A continuum is chainable 
if for each c > 0, it can be covered by an c-chain. It is known 
that every subcontinuum of a chainable continuum is chainable 
(see [C-V], Theorem (9.C.4)). 

Given a continuum X, we define its hyperspaces as the fol­
lowing sets: 

{A c X I A is closed and nonempty},
 

{A E 2x I A is a connected},
 

{A E 2x I A has at most n points} (n E IN),
 

{A E 2x I A is finite}.
 

Let us observe that for each n E IN, Fn(X) c Fn+1 (X) and 
00 

that F{X) = UFn{X). It is known that 2x is a metric space 
n=1 

with the Hausdorff metric, H, defined as follows: 

H(A, B) == inf{c > 0 I A c V; (B) and B c V; (A)}, 

(see [N1], (0.1)), and in fact, 2x and C(X) are arcwise con­
nected continua (see [N1], (1.13)). It is also known that each 
Fn(X) is a continuum (see [B-U]), and then F(X) is a con­
nected space. On the other hand, 2x can be topologized with 
the Vietoris Topology, defined as follows: given a finite collec­
tion, U1 , U2 , ••• , Um , of open sets of X, we define 
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< U1 , . .. , Um > == {A E 2x I A c U;;=l Uk 
andAn Uk I: 0 for each k E {I, ... , m }}. 

It is known that the family of all subsets of 2x of the form 
< U1 , ... , Um >, as defined above, form a basis for a topology 
for 2x (see [N1], (0.11)) called Vietoris Topology, and that the 
Vietoris Topology and the Topology induced by the Hausdorff 
metirc coincide (see [N1], (0.13)). To simplify notation, < 
U1 , , Um >n will denote the intersection of the open set < 
U1 , , Um >, of the Vietoris Topology, with fn(X). 

It is important to note that given a continuum X, then 
:F1(X) is an isometric copy of X (using the Hausdorff metric) 
contained in each of the hyperspaces defined above. 

A map f: X ~ Y between continua is said to be open if it 
sends open subsets of X into open subsets of Y. The map f is 
said to be confluent, provided that for each subcontinuum Q 
of Y, each component of f-1(Q) is mapped onto Q by f. 

The Theorems 

We begin with some elementary results. 

Lemma 1. Let X be a continuum and let n be a positive 
integer. If Dndenotes the metric on xn given by 

where d is the metric on X, then the function in: x n ~ Fn(X) 
given by 

fn((X1""'Xn)) == {X1'."'Xn} 

is onto and satisfies the following inequality: 

H(in((X1'.'.' xn)), in((x~,.,., x~))) 

::; Dn((X1'.'" xn), (x~, ... , x~)), 
for each (Xl,.", xn) and (x~, ... , x~) in xn. 
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Proof: Clearly the map fn is onto. Let (Xl, .. " x n ) and 
(x~, , x~) be two points fo xn. Suppose that Dn((Xl, , Xn), 
(x~, , X~)) = r and let c > 0 be given. Hence Dn((X1, , xn), 
(x~, ,x~)) < r+c. Thisimpliesthatforeachj E {1, ,n}, 
d(xj,xj) < r+c. Thus, for each Xj E fn((X1""'Xn)), we 
have that xj E fn((x~"",x~)) and d(xj,xj) < r+c. This 
shows that fn((X1""'Xn)) C V;\e(fn((x~"",x~))), Simi­
larly, fn((x~"",x~)) c V;\e(fn((XI, ... ,Xn))), Thus 
H(fn((XI, ... , xn)), fn((x~, ... , x~))) ~ r + c. Since the c was 
arbitrary, we obtain that H(fn((XI, ... , xn)), fn((x~"", x~))) ~ 

r.D 

Lemma 2. If X is a continuum and n E IN then X is locally 
connected if and only if :Fn(X) is locally connected. 

Proof: Clearly if X is locally connected then :Fn(X) is locally 
connected. Thus, suppose that :Fn(X) is locally connected and 
n > 1. Let Xo E X and let U be an open subset of X containing 
xo. Since :Fn(X) is locally connected, there exists a connected 
open subset W of :Fn(X) such that {xo} E W C W c< U >n. 
Let c > 0 be given such that v;n(X)( {xo}) n F1 (X) C W n 
F1(X). 

Since W is a subcontinuum of 2x and W n C(X) =1= 0, 
then UW is a subcontinuum of X (see [Nl], (1.49)). On the 
other hand, since W c< U >n, we have that UW C U. Let 
X E V;(xo), then {x} E v{n(X)({xo}) n :FI(X) c W n FI(X). 
Hence, x E uW. Therefore, V; (xo) C UW, and UW is a 
connected neighborhood of Xo contained in U. Thus, X is 
connected im kleinen at each of its points and then X is locally 
connected (see [H- Y], Theorem 3-11). 0 

In her B. S. Thesis (see [0-]), R. Garcia, essentially, showed 
that if X is a continuum then F(X) is colocally connected, a 
modification of her proof, shows that for each n > 1, Fn(X) 
is colocally connected, we include that modification for com­
pleteness. 
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Lemma 3. Let X be a continuum with metric d, let n > 1 be 
given. Let {Xl, ... ,Xk} E fn(X), and let c > 0 be given such 
that d(xj, Xl) > c {or each Xj, Xl E {Xl' ... ' Xk} and Xj =1= Xl· 

Then Fn(X)\ < V; (Xl)' ... ,V; (Xk) >n is connected. 

Proof. Let A == < V; (Xl)' ... ,V; (Xk) >n and let p be a 
point of X such that d(p, Xj) > £ for each j E {I, ... ,k}. Let 
{bl , ... , bm } E Fn(X) \ A. We are going to show that there is 
a connected set in :Fn (X) \ A containing {bl , ... , bm } and {p}, 
this will prove the Lemma. 

Recall that, by definition, !{ E A if and only if !{ c 
k

UV; (xi) and K nV; (xi) =I- 0 for each j E {I, ... , k}. Since 
j=l 

k 

{bl, ... , bm } tf. A, we have that either {b1 , ... , bm } rt UV; (xi) 
j=l 

k 

or {bl,"" bm } C UV; (xi) and {bl, ... , bm } nV; (xi) = 0for 
j=l 

some j E {I, ... , k} . 
k 

Suppose that {bl,. · ., bm } rt UV; (xi)' Suppose first that 
j=l 

k 

m = 1. Then b1 tf. UV; (xi)' Let f{b t } and !{p} be functions 
j=l 

from X to Fn(X) given by f{b1}(X) == {x}U{bl } and f{p}(x) == 

{x}U{p}. By construction, for each X E X,f{b1}(x)andf{p}(x) 
both have at most two elements. Hence both functions are well 
defined. It is easy to see that they are continuous. Let K l == 
f{bl}(X) and K 2 == f{p}(X}, then K I and K 2 are subcontinua of 
Fn(X). Since {p, bl } E K l n K 2 (f{b1}(p) == {p, bl } == f{p}(b l )), 

we have that K == K I U K2 is a subcontinuum of Fn(X). Let 
us observe that for each !{ E J(, either bl E !{ or p E !(, hence 
K n A == 0. Therefore K c Fn(X) \ A. 
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k 

Now suppose that m > 1 and {bI, ... , bm } ct UV; (Xj). 
j=I 

Then there exists j E {I, ... , m} such that bj E {bI , ... , bm } 

and bj f/; V; (Xl) for any f E {I, ... , k}. Without loss of gener­
k 

ality, we may assume that j = m, i. e., bm (j. UV; (Xl)' Let 
l=I 

f{b1}: X ~ Fn(X) be given by f{b1}(X) = {x} U ({bI , ... , bm} \ 
{bI } ). Then f{b 1 } is well defined and continuous. Let J(I = 
f{b1}(X), then J(I is a subcontinuum of Fn(X). Observe that 
{bI ,. · ., bm} = f{b1}(b I ) and that f{b1}(p) = {p, b2 ,. • ., bm}. 
Since bm E {bI, ... , bm} \ {bI}, then for each !{ E f{b1}(X), 
we obtain that bm E !{, thus J(I n A = 0. Hence we have J(I 

is a subcontinuum of Fn(X) \ A containing {bI , ... , bm} and 
{p, b2 , ••• ,bm }. 

Let f{b 2 }:X ~ Fn(X) be given by f{b 2 }(X) = {x} U 
({p, b2 , • •. , bm} \ {b2 }). Then f{b 2 } is well defined and continu­
ous. Let J(2 = f{b 

2 
}(X), then J(2 is a subcontinuum of Fn(X) 

such that {p, b2 , · • • ,bm} E J(2 (f{b2}(b2 ) = {p, b2 , · • • ,bm}). 
Observe that f{b2}(P) = {p, b3 , .•. , bm }, J(2 n A = 0 and 
{p, b2 , ... ,bm } E J(I n J(2. Thus, J(I u J(2 is a subcontinuum of 
Fn(X) \ A containing {bI, b2 , • •• , bm} and {p, b3 , ••• , bm}. 

Repeating this process, we can find subcontinua J(3' ... ,J(m-l 

of fn(X) \ A such that {p, bi, ... ,bm} E J(i-I n J(i for each 
m-I 

R. E {2, ... ,m -I} and {p} E Km - 1 . Hence JC = U Kj is 
j=I 

a subcontinuum of fn(X) \ A containing {bI, b2 , •• • ,bm} and 
{p}. This finishes this case. 

k 

Suppose that {bI, b2, ... , bm } C UV; (Xj) and 
j=I 

{bI , b2 , ••• , bm } n V; (x j) = 0 for some j E {I, ... , k}. We may 
assume that {bI , b2, ... , bm } n V; (Xk) = 0. Suppose also that 
bI E V;(XI)' 
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Let A be the component of V; (Xl) containing bl . By the 
Boundary Bumping Theorem (see [N2], Theorem 5.7), we have 
that A n 8(V;(Xl)) i= 0. Let c E An 8(V;(Xl)). Let f: A ~ 

Fn(X) be given by f(x) = {x}U({bl ,b2 , ... ,bm}\{bl }). Then 
f is well defined and continuous. Thus f(A) is a subcontinuum 
of Fn(X), {bl' b2 , ••• , bm} E f(A) (f(bl ) = {bl' b2 , ••• , bm}). 
Since c E A n 8(V; (Xl)), we have that {c, b2 , ••• ,bm}is not 

k 

contained in UV;(x j ). Hence, by the first case, there exists a 
j=l 

subcontinuum, £1, of Fn(X) \ A containing {c, b2 , ••• ,bm} and 
{p}. By the election of c, we have that for each j E {2, ... ,k}, 
A nV; (Xj) = 0, thus f(A) nA = 0. Let £ = £1 U f(A). Then 
£ is a subcontinuum of Fn(X) \ A containing {bl, b2 , •• • , bm} 
and {p}. This finishes the proof of the second case and the 
proof of the Lemma. 0 

As a Corollary of this Lemma we have the following results. 

Theorem 4. If X is a continuum and n > 1 then Fn(X) is 
colocally connected. In particular, :Fn(X) is aposyndetic. 

Corollary 5. If X is a continuum and n > 1 then for each 
{Xl, X2, · · · ,Xk} E Fn(X), Fn(X)\ {Xl, X2, ... ,Xk} is connected. 

Proof: Let N E IN be such that 

~ < min{d(xj,x£) I Xj,X£ E {Xt, X2, ... ,Xk} and Xj =J x£}. 

00 

Observe that {Xl, X2,· · ., Xk} = n< Vt (Xl)' ... ' Vt (Xk) >n· 
l l 

f=N 

By Lemma 3, we have that for each f ~ N, :Fn(X)\ 
< vf (Xl)'. · ., Vf (Xk) >n is connected. Then 

l l 
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00 

00 

U (Fn(X)\ < vf (xd,· · · ,vf (Xk) >n) , 
i=N 

and this set is connected, being a union of connected sets with 
nonemp.ty intersection. D 

R. W. FitzGerald proved the following result (see [F], Corol­
lary 2.1). 

Theorem 6. If Xl and X 2 are compact Hausdorff continua 
and !{ is any closed, countable subset of Xl x X 2 , then we have 
that TXIXX2(!{) = !{. Hence Xl X X 2 is n-point aposyndetic 
for all n E IN. 

D. P. Bellamy showed the following (see [B], Lemma 14). 

Theorem 7. If f: X ~ Y is an onto map between continua 
and BeY then Ty(B) C fIx f- l (B). 

As a consequence of Theorems 6 and 7 we have the following 
result. 

Theorem 8. If X is a continuum, n > 1 and K is any 
closed, countable subset of .rn(X), then T:Fn(x)(J() = J(, that 
is, Fn(X) is countable closed aposyndetic. In particular, Fn(X) 
is m-point aposyndetic for each m E IN. 

Proof. Let fn: xn ~ Fn(X) given by fn((Xl' . .. ,xn)) =

{Xl, ... ' x n }. By Lemma 1; fn is continuous and onto. Observe 
that for each A E Fn(X), we have that f;l (A) has at most n! 
elements. 

Since K is a closed, countable subset of Fn(X), we have 
that f~l (K) is a closed, countable subset of xn. By Theo­
rem 6, Txn (f~l(J()) = f~l(J(). By Theorem 7, TFn(x)(K) C 

fnTxn (f~l(K)) = fnf:l(K) = K. Since K C TFn{x)(IC), we 
have that TFn(x)(J() = IC. D 
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Lemma 9. If X is a continuum, then the map 12: X X X ---+ 

F 2(X) given by 12((XI,X2)) = {XI,X2} is open. 

Proof. Let (Xl, X2) be a point of X 2 and let e > 0 be given, 
we will show that 12(V;2((XI,X2))) is open in F 2(X). Let 
{YI,Y2} E 12(V;2((XI,X2))). If YI =I Y2, then let 8 < 
min{ d(YI, Y2), e - d( Xl, YI), e - d( X2, Y2), D2((YI, Y2), ~X2)}. We 
claim that U = < vf (YI), vf (Y2) >2 is contained in 
12(V;2((XI,X2))). Let {ZI,Z2} E U, without loss of general­
ity we may assume that Zl E vf (YI) and Z2 E vf (Y2). Then 

d( Zl, Xl)	 < d( Zl, YI) +d(YI, Xl) < 8 +d(YI, Xl) 
< c - d(XI, YI) + d(YI, Xl) = c. 

Similarly, we have that d(Z2, X2) < c. Hence, we have that 
(ZI,Z2) E V;2((XI,X2)) and 12((ZI,Z2)) = {ZI,Z2}. Therefore 
U c 12(V;2((XI,X2))). 

If YI = Y2 = Y then let 8 < min{c - d(XI,Y)'c - d(X2'Y)}' 
and W =< Vf(y) >2. We will show that W c 12(V;2((XI,X2))). 
Let {Zl, Z2} E W. If Zl =I Z2, then 

d(ZI, Xl)	 < d(ZI, y) + d(y, Xl) < 8 + d(y, Xl) 

< e-d(xI,y)+d(y,XI)=C. 

Similarly, d(Z2, X2) < c. Hence (Zl, Z2) E V;2 ((Xl, X2)) and 
12((ZI,Z2)) = {ZI,Z2}. Finally, if Zl = Z2 = Z then 

d(z, Xl)	 < d(z, y) + d(y, Xl) < 8 +d(y, Xl) 
< e - d(XI' y) + d(y, Xl) = c. 

Similarly,	 d(Z,X2) < c. Thus (z,z) E V;2((XI,X2)) and 
12((Z,Z))	 = {z}. Therefore W c 12(V;2((XI,X2))). D 

Lemma 10. If X is a continuum and e: X 2 ---+ X 2 is the map 
given by e((XI, X2)) = (X2, Xl) then eis a homeomorphism and 
12 0 e= 12 and 12 0 e- l = 12, where 12 was defined in the 
previous Lemma. 
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From now on, we will use the following notation. If W is 
a subset of X 2 then W* == ~(W). 12: X 2 ---+ .r2(X) will be the 
map given by 12((X1,X2)) == {X1,X2}. 

Lemma 11. Let X be a chainable continuum and let Xo and 
Yo be two distinct points of X. If C is a subcontinuum of X 2 

containing (xo, Yo) and (Yo, xo) then C n ~X2 # 0. 
Proof: By Lemma 10, C* is a contiuum. Let D == C u C*. 
Since (xo, Yo) E C n C*, we have that D is a continuum and 
D* == D. This equality implies that 7r1(D) == 7r2(D), where 

1rj denotes the projection map from X 2 to the jth factor, j E 

{1,2}. Note that 7r1(D) is a chainable continuum (see [C­
V], Theorem (9.C.4)). Since any two maps from a continuum 
onto a chainable continuum have a coincidence point (see [N2], 
Corollary 12.26), we have that there exists a point (Zl, Z2) E D 
such that Zl == 7rl\D((Zl,Z2)) == 7r2ID((Zl,Z2)) == Z2. Then the 
point (Z1, Z1) E C n ~X2. 0 

Lemma 12. Let X be a continuum and let W be a subcon­
tinuum of .r2(X), JfW is a component of j;l(W) then W* is 
a component of 1;1(W) too and 1;1(W) == W u W*. 

Proof: Let W be a subcontinuum of .r2(X) and let W be a 
component of 1;1(W). Since W* == ~(W), we have that W* 
is a subcontinuum of X2. By Lemma 9, 12 is open, hence it 
is confluent (see [W], Theorem 7.5, p. 148). Hence 12(W) == 
Wand !2(W*) == !2 0 ~(W) == !2(W) == W. If C were the 
component of !:;1 (W) containing W* then ~(C) would be a 
subcontinuum of X 2containing W and 120~(C) == 12(C) == W. 
Hence ~(C) == Wand C == W*. 

The equality 121(W) == W U W* follows from the fact that 
for each element A E .r2(X), 1;1 (A) has at most two elements. 
o 
Corollary 13. Let X be a chainable continuum and let W be 
a subcontinuum of .r2(X). Then 121(W) is connected if and 
only if 121 (W) n ~X2 =I 0. 
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Proof: If 1:;I(W) is connected then, by Lemma 11, we have 
that !:;I(W) n ~X2 =I- 0. Suppose 1:;I(W) n ~X2 =10 and let 
W be a component of !:;I(W). By Lemma 9,12 is open, hence 
confluent. Since 1:;I(W)n~x2 =I- 0, we have that Wn.rl(X) =I 
0. Thus W n ~X2 =I 0. Then W == W* and 1:;1 (W) = W. D 

Lemma 14. Let X be a continuum and let W be a subcontin­
uum of F 2(X) with nonempty interior. If W is a component 
of 1:;1 (W) then W has nonempty interior. 

Proof: Let W be a subcontinuum of F 2(X) with nonempty in­
terior. If 1:;1 (W) is connected then the result is clear. Suppose 
then that 1:;1 (W) is not connected and let W be a component 
of !:;I(W). Since 12 is at most 2 to 1, the only other compo­
nent of 1:;1 (W) is W*. Since Wand W* are interchanged by 
the homeomorphism of X 2 that switches the factors, Wand 
W* both have interior if the union does, completing the proof. 
o 

Theorem 15. If X is a chainable continuum such that F 2(X) 
is mutually aposyndetic then X is homeomorphic to [0,1]. 

Proof: Let (Xl,X2) and (YI,Y2) be two distinct points of X 2, 
and suppose that f2((xl' X2)) =I 12((Yl, Y2)). Since .r2(X) is 
mutually aposyndetic, then there exist two disjoint subcon­
tinua WI and W2 of F2(X) such that 12((Xl' X2)) E Wf and 
!2((Yl' Y2)) E W~. Let WI and W2 be the components of 
f;I(WI) and f;I(W2 ) containing (Xl, X2) and (YI' Y2), respec­
tively. Then WI and W2 are two disjoint subcontinua of X 2 • 

By the proof of Lemma 14, we have that (Xl, X2) E Wt and 
(YI, Y2) E W~. 

In order to finish the proof let us observe that in the proof of 
[R], Theorem 1, Rogers just needed to find disjoint subcontinua 
of the product of two chainable contina containing points of the 
form (x, q) and (y, q) (or (q, x) and (q, y)) in their interiors to 
conclude that those chainable continua were homeomorphic to 
[0, 1]. Since we have shown that we can find disjoint subcon­
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tinua having those types of points of X 2 in their interior, then 
the Theorem follows from the proof of Rogers's Theorem. 0 

Theorem 16. If X is a chainable continuum then X is in­
decomposable if and only if f2(X) is strictly nonmutually 
aposyndetic. 

Proof: Suppose that X is decomposable, then there exists a 
proper subcontinuum W of X with nonempty interior. Let U 
be any open subset of X such that Un W == 0. Let !{ == W x W 
and H == [U x X] U [X x V]. Then!{ and H are disjoint 
subcontinua of X 2 each having nonempty interior. Observe 
that !{ == !(* and H == H*, hence 12(!{) n !2(H) == 0. Since 
12 is open (by Lemma 9), we have that !2(!{) and !2(H) are 
disjoint subcontinua of f2(X) having nonempty interior. It 
follows that F 2(X) is not strictly nonmutually aposyndetic. 

If :F2 (X) is not strictly nonmutually aposyndetic then there 
exist two disjoint subcontinua K and H of F2 (X) having non­
empty interior. Let !{ and H be components of 1;1 (K) and 
12"1 (H), respectively. By Lemma 14, !{ and H have nonempty 
interior. Therefore, !( and H are two disjoint subcontinua of 
X 2

• Hence, by [H], Theorem 10, X is decomposble. 0 

Let us observe that in order to show that if F2(X) is strictly 
nonmutually aposyndetic then X is indecomposable, we did 
not use the fact that X was chainable. Hagopian did not use 
chainabilty of X either to show that if X 2 is strictly nonmutu­
ally aposyndetic then X is indecomposable. Thus we have the 
following: 

Theorem 17. Let X be a continuum. If either X 2 or F 2(X) 
is strictly nonmutually aposyndetic then X is indecomposable. 
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