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.. 
ON QUASI-LINDELOF FIRST
 

COUNTABLE SPACES
 

Franklin D. Tall* 

Abstract 

We show it is consistent with ZFC that there are 
quasi- Lindelof first countable Hausdorff spaces and Lin-
delof T1 spaces with points G8 of all cardinalities except 
possibly for singulars of uncountable cofinality. 

A space X is quasi-Lindelof if for each open cover U, there 
is a countable V ~ U such that U{U : U E V } covers X. For 
regular spaces, quasi-Lindelofness coincides with Lindelofness, 
but this need not be the case for Hausdorff spaces. In view 
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of Arhangel'skil's theorem [A] that 2No bounds the cardinality 
of first countable Lindelof Hausdorff spaces, it is natural to 
ask [BC] whether the same bound works for first countable 
quasi-Lindelof Hausdorff spaces. By a recent result of Bella 
and Yaschenko [BY] and, independently, Schroder and Watson 
(unpublished), it does not; below the first measurable cardinal 
they construct first countable quasi-Lindelof Hausdorff spaces 
of sizes each strong limit cardinal of countable coflnality. It 
is still open whether in ZFC one can construct such spaces of 
regular cardinality; we shall prove it consistent with ZFC that 
such spaces exist at all regular cardinals. 

Although the details of our proofs are non-trivial, they are 
not new; we are rather taking minor variations of other authors' 
proofs and tying them together in a new way. Thus we will 
merely indicate the variations and point the reader in the right 
directions, rather than essentially repeat published proofs. 

First of all, let's prove 

Theorem 1 It is consistent with ZFC that there is a first 
countable quasi-Lindelof Hausdorff space of size ~2 = (2No ) + . 

Proof: We use an idea we used in [T] for Lindelof spaces with 
points Gs. We start with a model of GCH, adjoin Nt Cohen 
reals and then collapse each Nn to N2 with conditions of size 
less than N2 • This will make the space which exists on :Jw in 
the ground model have cardinality N2 • It clearly remains first 
countable and Hausdorff. But a straightforward modification 
of the proof in [D] that adding Nt Cohen reals makes ground 
model Lindelof spaces indestructible under countably closed 
forcing shows that that adjunction also makes ground model 
quasi-Lindelof spaces indestructible under countably closed forc
Ing. 

This idea can be extended to prove 

Theorem 2 it is consistent with ZFC that there is a first 
countable quasi-Lindelof Hausdorff space of cardinality K, for 
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every cardinal K which is not singular of uncountable cofinal
ity. 

Proof: We start with a model of GCH with no inaccessible car
dinals, so that by [BY] there are first countable quasi-Lindelof 
Hausdorff spaces on every cardinal of countable cofinality. 

For each regular cardinal K, define SS(K) the singular suc
cessor of K to be the least singular cardinal above K. Define 
M( K) to be the least A such that SS( K) == SS( A). 

Let P be the result of first adding Nl Cohen reals and then 
taking the product over all regular cardinals K of the prod
uct of the collapses of K to M(SS(K)) with conditions of size 
< M(SS(K)). (We could actually work below the first mea
surable, in which case we would also take the product of the 
collapses of Nf\;+n 's for Nf\; inaccessible.) By standard techniques 
[E], this class forcing produces a model of ZFC + GCH in which 
for every regular uncountable cardinal K, there is an ordinal (J' 

of that cardinality which was an uncountable cardinal of count
able cofinality in the ground model. P may be regarded as a 
product of adding the Cohen reals, collapsing (J' to K, and a 
countably closed partial order. The product of the latter two 
is countably closed so we can argue as in Theorem 1. Actually, 
to argue that way would require a finer analysis of Dow's proof 
- which was for set partial orders - than we are prepared to 
engage in, so let us instead note that the third factor in the 
product is K+ -closed. But indeed K-closed partial orders pre
serve the Lindelofness of spaces of size :s K [BT, Lemma 34] 
and the same proof works for quasi-Lindelofness. 

At singular cardinals of countable cofinality, by GCH we 
apply [BY]. 
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Incidentally, exactly the same argument, using Juhasz' Lin
delaf T1 space with points Gs which exists at every strong limit 
of countable cofinality below the first measurable, yields 

Theorem 3 It is consistent with GCH that there exist Lin
delof T1 spaces with points Gs on every cardinal which is not 
singular of uncountable cofinality. 

 
In [BT] we proved 

Proposition If it is consistent that there is a huge cardinal, it 
is consistent with GCH that every quasi-Lindelof first countable 
space of size ~2 includes a quasi-Lindelof subspace of size ~l. 

I do not see how to combine the constructions of these two 
papers so I ask: 

Is it consistent with GCH that there is a quasi-Lindelof first 
countable Hausdorff space of size ~2 and each such space in
cludes a quasi-Lindelof subspace of size ~1 q 

However I can get this at the cost of violating CH: 

Theorem 4 If it is consistent that there is a weakly com
pact cardinal, it is consistent that 2No == ~2, that every quasi
Lindelof first countable space of size ~2 has a quasi-Lindelof 
subspace of size ~l, and that there are quasi-Lindelof first count
able Hausdorff spaces of every cardinality except possibly sin
gulars of uncountable cofinality. 

Proof: We first add ~l Cohen reals. This is a "mild" forcing, 
so preserves weakly compact cardinals [K, 10.16]. We then 
Mitchell-collapse [M] the first weakly compact K to ~2 (which 
makes 2No == ~2). We then perform the class forcing we did 
earlier, below the first measurable if any, but at the first stage 
only collapsing the ~n 's, n > 3, to ~3 with conditions of size 
less than ~3. This will give us quasi-Lindelaf spaces of size ~ 

~3 except for singular cardinals of uncountable cofinality, since 
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the first weakly compact cardinal is below the first measurable 
[K, 5.15]. There are of course quasi-Lindelof first countable 

2NoHausdorff spaces of cardinality ~ in ZFC. 
Since the class forcing adds no new spaces of size ~ N2 , 

it does not affect the reflection argument. By standard ar
guments [DTW], [DJW], to obtain the reflection it suffices to 
prove that quasi-Lindelofness is a rr~ property in first countable 
spaces, and that it is preserved by Mitchell forcing. The latter 
is the same proof as for the Lindelof case in [D]: first prove that 
adding 2:: N} Cohen reals makes ground model quasi-Lindelof 
spaces indestructible by countably closed forcing. Then use 
that Mitchell forcing produces a model which is a submodel of 
the result of first adding Cohen reals and then doing countably 
closed forcing. Let U be an open cover of X produced by the 
Mitchell forcing. Without loss of generality, it is comprised of 
ground model open sets. The larger forcing preserves quasi
Lindelofness, so there is a countable V ~ U with closures cov
ering in the bigger model. Then by CCC and countably closed, 
there is a countable W ~ V in the ground model such that Co
hen real forcing and hence Mitchell forcing forces W ~ U. But 
then U{W : W E W} covers in the bigger model and hence in 
the Mitchell model. 

To see that quasi-Lindelofness is rr~ in first countable spaces, 
let the space sit on a cardinal A and let a basis be B : A X A 
X w ~ 2, B(a,;3,n) == 1 if and only if a E the nth basic open 
set about f3. A collection of basic open sets of size :::; ,\ can 
then be coded by U : A ~ A X w. A countable subcollection 
of U can be coded as V : w ~ A. We then have 

(VU: A ~ A X w)[(Vx E A)(~y E A)(~n E w)(U(,) == (y, n) &
 
B(x,y,n) = 1) ~ (3V: w ~ A)(V'X E A)(3k E w)(3y E A)
 

(U(V(k)) = (y,n) &(V'm E w)(3z E A)
 
(B(x,z,m)) = 1 & B(y,z,n) = 1)].
 

This is rr~. 
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I do not see how to get the reflection to hold above ~2. 

References 

[A]	 A.V. Arhangel'skir, The power of bicompacta with first ax
iom of countability, Sov. Math. Dokl., 10 (1969),951-955.  

[BC]	 A Bella and F. Cammaroto, On the cardinality of Urysohn 
spaces, Canad. Math. Bull., 31 (1988), 153-158. 

[BT]	 J.E. Baumgartner and F.D. Tall, Reflecting Lindelofness, 
preprint. 

[BY]	 A. Bella and I.V. Yaschenko, Embeddings into first count
able spaces with H-closed like properties, Top. Appl., to 
appear. 

[D]	 A. Dow, Two applications of forcing and reflection to topol
ogy, 155-172 in General Topology and its Relations to Mod
ern Analysis and Algebra VI, Proc. Sixth Prague Top. 
Symp. 1986, ed. Z. Frolik, Heldermann, Berlin, 1986. 

[DJW] A. Dow, I. Juhasz and W. Weiss, Integer - valued functions 
and increasing unions of first countable spaces, Israel J. 
Math., 67 (1989), 181-192. 

[DTW]A. Dow, F.D. Tall, W.A.R. Weiss, New proofs of the consis
tency of the normal Moore space conjecture, II, Top. Appl., 
37 (1990), 115-129. 

[E]	 W.B. Easton, Powers of regular cardinals, Ann. Math. 
Logic, 1 (1970), 139-178. 

[J]	 I. Juhasz, Cardinal functions in topology - ten years later, 
Math. Centre, Amsterdam, 1980. 

[M]	 W. Mitchell, Aronszajn trees and the independence of the 
transfer property, Ann. Math. Logic, 5 (1972), 21-46. 

[T]	 F.D. Tall, On the cardinality of Lindelof spaces with points 
G6, Top Appl., 63 (1995),21-38. 



303 On quasi-Lindelof first countable spaces 

University of Toronto 
Toronto 
Ontario M5S 3G3, Canada. 




