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o. Introduction. 

Wallace Semigroups: It is known since long ago that ev­
ery two-sided cancellative semigroup endowed with a compact 
semigroup topology is a topological group. In 1955, A. D. Wal­
lace [Wa] asked what happens if we replace "compact" by 
"countably compact", that is whether every countably com­
pact two-sided cancellative semigroup is a topological group 
(see the surveys [Col], [Co2] and [CHR] for a discussion on the 
Wallace Problem). Many researchers have obtained various 
results related to this question by adding either a topological 
or a algebraic condition. For instance, Mukherjea and Tser­
pes [MT] showed that a first countable sequentially compact 
two-sided cancellative semigroup is a topological group and 
Pfister [Pf] showed that a counterexample for Wallace's ques­
tion could not be algebraically a group ([Gr1], [Gr2] and [Re] 
contains generalizations to these results.). 

However, only recently was it shown that there are (consis­
tent) counterexamples to Wallace's question (such semigroups 
will be called Wallace). Robbie and Svetlichny [RSl] showed 
that if a topological group satisfies certain properties then it 
contains a subsemigroup which is Wallace. The conditions re­
quired in [RS1] were known to be satisfied only by Tkacenko's 
group constructed under the Continuum Hypothesis (we dis­
cuss more about this group later). Thus, Robbie and Svetlichny 
[RSl] solved Wallace's question only under this axiom. 

In [Tol] we showed that the existence of a Wallace semi­
group which is initially wI-compact is independent of ZFC. In 
particular we constructed a Wallace semigroup using a strong 
form of the Baire Category theorem: 

(#) The circle is not the union of fewer than c many closed 
meager subsets, which is equivalent to Martin's Axiom re­
stricted to countable partial orders (M Acountable). 

Countable compactness in free Abelian groups: It is 
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also an old result that a free Abelian group cannot be endowed 
with a compact group topology. In [Tk] , Tkacenko showed that 
the free Abelian group of size c can be endowed with a count­
ably compact group topology without non-trivial convergent 
sequences (by [RSl] the existence of such a group implies the 
existence of a Wallace semigroup). 

In [To3] we showed that the existence of an initially WI­

compact group topology on some free Abelian group is inde­
pendent of c = ~2. In particular, we showed that a group as 
Tkacenko's could be constructed under M Aa-centered. 

As a shortening, by a "countably compact free Abelian 
group" we mean a "free Abelian group endowed with a com­
patible group topology which is countably compact". 

Products and powers: The existence of two countably 
compact topological groups whose product is not countably 
compact is a difficult question which has not been solved yet 
in ZFC (see the surveys [Co2],[CHR]). The first example of 
two countably compact groups whose product is not countably 
compact was obtained by van Douwen [vD] under Martin's Ax­
iom. Later, Hart and van Mill [HvM] showed under M Acountable 

the existence of a countably compact group whose square is not 
countably compact. 

This motivates the study of countable compactness in the 
products of Wallace semigroups and the products of free Abelian 
groups endowed with a countably compact group topologies. 
In [Tk], Tkacenko mentioned that using an argument similar 
to that in [vD], one can construct under CH two countably 
compact free Abelian groups whose product is not countably 
compact. In [RS2] Robbie and Svetlichny also used an argu­
ment similar to that in [vD] to obtain two Wallace semigroups 
whose product is not countably compact. 

In this work., we give a complete proof of the existence, un­
der M Acountable, of a Wallace semigroup whose square is not 
countably compact. We will then sketch the construction, un­
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cler M Au-centered, of a group topology on the free Abelian group 
of size c which makes this group cotlntably compact and its 
square not countably compact. 

In this paper, 1f will denote the unitary circle group with 
the usual metric inherited from the plane and 1f' will be en­
dowed with the Tychonoff product topology. Given y E 1f', we 
denote by suppy the set {a < c : y(a) i- O}, the support of y. 
The set of all non negative integers will be denoted by N. 

1 Wallace semigroups 

In [Tol], we showed under M Acountable the existence of an x E 
1f' such that the subsemigroup S of 1f' generated by x and 
G == {g E 1f' : supp 9 is bounded in c} is a Wallace semigroup 
(S == {nx + 9 : n E Nand 9 E G}). 

One can show that sw cannot be countably compact. How­
ever we were not able to decide whether the square of S is 
countably compact. Thus, instead of a single x, we use count­
ably many elements of 1f' to construct the Wallace semigroup 
below. 

Example 1. (M Acountable) There exists a countable subset 
X of 'F' such that the semigroup generated by X and G == {g E 

'F' : supp 9 is bounded in c} is a Wallace semigroup whose 
square is not countably compact. 

The sketch of the construction. To make the semi­
group generated by X and G countably compact, we will use 
an argument similar to one used in [HvM] and [Tol]. Consider 
the following condition 

(*) every sequence in the semigroup generated by X has an 
accumulation point in G. 

We will show that if X and G satisfy (*) then the semigrollp 
generated by X and G is countably compact. 
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To be sure that the semigroup S generated by X and G is 
not a group, we use a modification of an argument from [Tol]. 
We will construct X to satisfy 

(**) for any distinct Xl, ... Xk E X and positive integers 
nl, .. · ,nk, the support of 2:7=1 niXi is unbounded in c. 

To make the square of the semigroup S not countably co­
pact, we will make sure that the sequence of pairs {(X2n, X2n+l) : 
nEw} is closed and discrete in the semigroup S, where 
X = {xn : nEw}. For this, we will construct X to satisfy 

(* * *) for all eo and el on the semigroup generated by X 
and for each (3 < c, there exist a E [(3, c) and MEN such that 

1
{n E w: Vj E 2Ix2n+j(a) - ej(a)1 < M } is finite. +1 

Let us show now that (*) - (* **) imply all other properties 
we are interested in. 

First, we recall the concept of p-limit. Given a free ultra­
filter p over wand a topological space X, we say that X E X 
is a p-limit of a sequence {xn : nEw} if for each open neigh­
bourhood U of x, the set {n E w : X n E U} belongs to p. A 
space X is p-compact (for this ultrafilter p) if every sequence 
in X has a p-limit. We use in the proof of Lemma 2 below the 
following facts: 

- for each sequence {xn : nEw} ~ X and for each accu­
mulation point X of this sequence, there exists an ultrafilter p 
such that X is the p-limit of {x n : nEw}; 

- w-boundedness of G (the closure of every countable subset 
is compact) is equivalent to "G is p-compact, for every free 
ultrafilter paver w"; 

- in a Hausdorff topological semigroup, the p-limits are 
unique and the sum of p-limits of two sequences equals the 
p-limit of the sum of those sequences; 

-the p-limits of a sequence are, in particular, accumulation 
points. 

Lemma 2. If X satisfies (*) then the semigroup generated 
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by X and G is countably compact. 

Proof: Let E be the semigroup generated by X and let S be 
the semigroup generated by X and G. Let {sn :, nEw} ~ S 
be arbitrary. Then there exists a sequence {en: nEw} in E 
and a sequence {gn : nEw} in G such that Sn == en + gn for 
each nEw. If {en: nEw} contains a constant subsequence 
then {en : nEw} has an accumulation point. Otherwise, 
there exists a subsequence {enk : k E w} such that for distinct 
k,l E W; we have enk =f:. enz . Then, by (*), {enk : k E w} has 
an accumulation point in G ~ S. 

In any case, there exists a p-limit of {en: nEw} in S, for 
some ultrafilter p over w. Since G is w-bounded, the sequence 
{9n : nEw} has a p-limit in G. Thus, the sequence {sn : n E 
w} =={ en +9n : nEw} has a p-limit in S + G == S. This proves 
that every sequence in S has an accumulation point. D 

Lemma 3. If X satisfies (**) then the semigroup generated 

by X and G is not a group. 

Proof: Every non-zero element of -the semigroup E gener­
ated by X is of the form 2:7=1 niXi, for some finite subset 
{Xl, .. " Xk} of X and positive integers n1, ... , nk. 

Let X be a non-zero element of E. We will show that X does 
not have the inverse in the semigroup S generated by X and 
G. Indeed, suppose that there exist e E E and 9 E G such that 
X + e +9 == O. Then, x + e cannot have unbounded support in 
C, thus by (**), we have x +e == O. This contradicts (**), since 
x is a non-zero element of E. D 

Lemma 4. If X satisfies (* * *) then the square of the semi­
group generated by X and G is not countably compact. 

Proof: Let E be the semigroup generated by X and S be the 
semigroup generated by X and G. Let (so, Sl) be an arbitrary 
point of S x S. We will show that (so, Sl) is not an accumulation 
point of the sequence {(X2n,X2n+1) : nEw}. There exist 
eo, e1 E E and 90, gl E G such that Sj == ej + 9j for j E 
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2. Let f3 < c be large enough such that supp 90 U supp 91 ~ 

(3.	 By (* * *), there exist a E [,8, c) and MEN such that 
1 

{n E w : Vj E 2Ix2n+j(a) - ej(a)1 < M } is finite. Since
+1 

9o(a) == 91(a) == 0, we have sj(a) == ej(a) for j E 2. Thus 

the set {n E w : Vj E 2 IX 2n+j(a) -	 sj(a)1 < M 1+ I} is 

finite. This means that (so, S1) has an open neighbourhood 
which misses all but finitely many elements of the sequence 
{(X2n, X2n+1) : nEw}. Since (so, S1) E S x S was arbitrary, the 
sequence {(X2n' X2n+1) : nEw} does not have an accumulation 
point in S x S. D 

We will now start the construction of a set X satisfying 
properties (*) - (* * *). We recall that such a set X cannot be 
constructed in ZFC (see [To1]). 

Further details. The construction of X == {xn : nEw} will 
be by induction. At stage a + 1 < c, we define xn(a) for each 
nEw. Thus at stage ,8 < c, we know what the restricton of Xn 
.to ,8 is, and by abuse of notation, we will denote this element 
of T{3 by xnl{3. 

If 9 : 0 ~ N \ {O} is the empty function and (3 ::; c then 
l:nEF9(n)(xnl{3) will be the the zero of ']['{3. Note that if J 
is a function from a finite subset F of w into N \ {O}, then 
l:nEF!(n)(xnl,e) == (l:nEF!(n)xn)I,e. During the inductive 
construction we will use the functions f as above to code the 
semigroup generated by X. 

To make (**) true, we fix an enumeration {JOt : a < c} 
of the family of all non-empty functions from a finite subset 
of w into the positive integers such that each element of this 
countable family appears c times. Then, at stage a +1, we will 
make sure that l:nEdomfa fOt(n)xn(a) =I- o. 

To guarantee that (* **) is satisfied, we fix an enumeration 
{(9~, 9~) : a < c} of the family of all pairs of functions from 
a finite subset (which can be empty) of w into the positive 
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integers such that each element of the family appears c many 
times. Then, at stage Q' + 1, we will ensure that {n E W : 

Vj E 2 IX 2n+j(a) - L:kEdomg~(k) g~(k)xk(a)1 < M ~ 1 lis finite 

for some MEN. 
To make (*) true, let {Fa : Q' < c} be an enumeration of 

all countably infinite subsets of the family of functions from 
a finite subset of W into the positive integers. Then for every 
countably infinite subset A of the semigroup generated by X 
there exists Q' < c such that A == {L:nEdomf f(n)xn : f E Fa}. 

At stage Q' + 1, we will assign a function ha E G to be 
an accumulation point of the sequence {L:nEdom f f( n )xn : f E 
Fa}. If we keep this promise then ha 1,6 will be an accumulation 
point for {L:nEdomf f(n)x nl,6 : f E Fa} for each (J < c. 

In particular, this must hold for (J 2:: Q'. By Lemma 5 below, 
this suffices to guarantee that ha be an accumulation point of 
A. 

Lemma 5. Let{hn : nEw}U{h} beasubsetof1fc. Thenfor 
a limit Q':::; c, hla is an accumulation point of {hnl a : nEw} 
if and only if hl,6 is an accumulation point of {hnl,6 : nEw} 
for each (J < Q'. 

Let us fix the enumerations {(g~, g;) : Q' < c} 'and {Fa : 
Q' < c} as above. Instead of fixing an enumeration {fa: Q' < c} 
we can use the enumeration {g~ : Q' < c 1\ g~ -I 0}. Here we 
resume what we have concluded so far: 

Lemma 6. Suppose that there exists a family X == {xn : n E 
w} ~ 1rC and a family {ha : Q' < c} ~ G such that for each 
Q' < c: 

(i) if domg~ -10 then L:kEdomg~ g~(k)Xk(Q') -I 0; 

(ii) hal a is an accumulation point of the sequence 
{L:kEdomf f(k)Xkla : f E Fa}; 
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(iii) if (3 :::; a and h{3la is an accumulation point of the 
sequence {L:kEdomf f(k)Xkla : f E F{3} then h{3la+l is an ac­
cumulation point of the sequence {L:kEdom f f( k )Xk la+l : f E 
F{3}j 

(iv) the set {n E w : IX 2n+j(a) - L:kEdomg~g~(k)xk(a)1 < 
1 

M ,Vj E 2} is finite for some MEN.
+1 
Then the semigroup generated by X and G is a Wallace 

semigroup whose square is not countably compact. 

Lemma 7. (M Acountable) There exist the sequences {xn : n E 
w} and {ha : a < c} satisfying the conditions of Lemma 6. 

Proof. At stage, == 0, we have nothing to do, since xn\o == 0. 
Suppose we have constructed Xn \{3 and h{3 for ,all nEw and 
(3 < , satisfying the conditions (i) - (iv). 

At a limit stage " define xnl" == U{3<" xnl{3 for each nEw. 
Clearly all four conditions are trivially satisfied. 

At stage, == a + 1, we first define the function ha E G. 
J'he sequence {L:kEdomf f(k)Xk\a : f E Fa} ~ 1ra is already 
defined, thus one can fix an accumulation point y E 1ra for this 
sequence. Define ha == y U Ol[a,c). Then, (ii) is satisfied by a. 

We will construct a function <p : w ~ 1r so that if we 
define X n ( a) == <p(n) for each nEw then conditions (i), (iii) 
and (iv) are satisfied by a. To deal with condition (iii), we fix 
the following notation. 

Definition 8. For each (3 < " a finite subset F of a and m E 

N, let E((3,F,m) == {f E:F{3: \Ie E F lL:kEdomff(k)Xk(e)­
1 

h.e(e) I < m + I}' 
Clearly, every set E((3, F, m) is infinite if and only if h{3la 

is an accumulation point of the sequence {L:kEdomf f(k)Xkla : 
f E :F{3} for each (3 :::; a. 

It is left to the reader to check that conditions (i), (iii) and 
(iv) will be satisfied if <p satisfies the properties listed in Lemma 
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9 below. 

Lemma 9. (M Acountable) There exists a function ¢; : w -----+ 1r 
satisfying the following properties: 

(A) if domg~ =I 0 then	 ~kEdomg~ g~(k)¢;(k) =I o. 
(B) for every (3 < " a finite subset F of a and mEN, the 

set {f E E(!3, F, m) : I~kEdomf f(k)¢>(k) - h,6(a)1 < m 
1+1} 

is infinite. 
(C)	 There exists MEN such that the set {n E W : Vj E 

. 1 
2 1¢>(2n + j) - ~kEdomg~ g~(k)¢>(k)1 < M + 1} is finite. 0 

The construction of cP requires the use of a partial order 
and dense sets, so the proof of Lemma 9 will be done in the 
next two subsections. 

The partial order. Let B be a countable basis for 1r 
consisting of non-empty connected open sets and such that 
1r E B. Fix MEw such that 2M ~ dom g~ U dom g;. For each 
i < 2M, fix Vi E Band Wo, WI E B whose length is at most 7r 

such that: 

(a) if domg~ =I 0 then 0 ~ ~kEdomg~ g~(k)Vk and 

~kEdomg~ g~(k)Vk ~ Wo; 

(b) if domg; =I 0 then ~kEdomg~ g;(k)Vk ~ WI; .' 

(c) if j E 2 and domg~'== 0 then 0 E Wj. 

Definition 10. Let (IP, ~) be a partial order whose underlying 
set IP consists of functions p for which 3n 2 M such that 
domp = 2n,rngp C Band (Vk E 2M) (p(k) ~ Vk). 

Denote by Mp the unique integer such that dom p == 2Mp • 

Given p, q E IF, we define p :::; q if and only if dom p 2 dom q, for 
each k E domp \ domq either p(k) == q(k) or p(k) ~ q(k) and 
for each m E [Mq , Mp ) we have p(2m)xp(2m+l)nWoxW1 == 0. 
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Clearly (IF,:::;) is a countable partial order. By abuse of 
notation, this partial order will be denoted by IF. We will find 
a generic set 9 for a family of suitable dense subsets of IF which 
we will define later; and for each k E w, we will choose ¢J(k) as 

an element of npEQ,kEdomp p( k) = npEQ,kEdomp p( k). The last 
equality holds because of the ordering of IF and the fact that 9 
is a filter. 

Suppose that ¢ : w ~ 1r, that is, for each k E w, there 
exist, pEg such that k E dom p. We will check now that 
conditions (A) and (C) are satisfied. 

We have to worry about condition (A) only if dom g~ =1= 0. 
In this case we have chosen Vi's so that 0 ~ 2:kEdomg0 

o 
g~ (k) Vk. 

Furthermore, ¢J( k) E Vk for each k E dom g~ thus 

2:kEdomg~ g~(k)c/>(k) E 2:kEdomg~ g~(k)Vk ~ 1I' \ {O}. 
For condition (C), first note that 2:kEdomg~ g~(k)c/>(k) E Wj 

for j E 2. Thus, we can fix mEN such that 
. 1 

B(2:kEdomgf, g;(k)c/>(k), m + 1) ~ Wj for j E 2, where B(x, r) 
is the open ball of center x E 1r and radius r in the usual metric 
of the plane. Let q be an arbitrary element of g. We claim 
that 

{n E w : Vj E 21c/>(2n+j)- L g~(k)c/>(k)1 < _1_} ~ Mq • 
. m+1 

kEdomg~ 

Indeed, let n ~ M q , Then there exists p ~ q in 9 such that 
2n E domp. Since n E [Mq , Mp ), we have p(2n) X p(2n + 1) n 
Wo X WI = 0. However, (¢J(2n), ¢J(2n +1)) E p(2n) X p(2n +1). 
Therefore ¢J(2n + i) ~ Wi for some i E 2 and hence (C) is 
satisfied. 

Thus, all we have to do now is to show that ¢ has domain 
wand that condition (B) holds. 

Dense sets. To show that, ¢ has domain w it suffices to prove 
the following. 
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Lemma 11. The set V n = {p E IP : Mp 2:: n} is dense in IP 
for each for nEw. 

Proof: Fix nEw and let q E IF be arbitrary. We can assume 
that n > M q • We will extend q to some p such that Mq = n. 
For each m E [Mq , n) and j E 2, fix U2m+j E B such that 
U2m+j n Wj = 0. Then p = qU {(k,Uk) : 2Mq ~ k < 2n} is an 
element of V n . D 

Definition 12. For each (3 < " for each finite subset F of 
0:' and for each mEN fix a partition {E((3, F, m, 1) : 1E w} of 
the set E ((3, F, m) from Definition 8 such that each element of 
the partition is infinite. 

We will now define dense sets which will take care of con­
dition (B) from Lemma 9. Note that (B) is satisfied if the sets 

1 
{j E E((3, F, m, 1) : "£kEdomf j(k)</J(k) E B(h,a(a), m +1)} 
are not empty. 

Lemma 13. The set 8((3, F, m, 1) = {p E IP: "31 E E((3, F, m, 1) 

s.t. domj ~ domp and "£kEdomf j(k)p(k) ~ B(h,a(a), m
1+1)} 

is dense in IP, for each (3 < " for each finite subset F of 0:', 

for each mEN and for each 1E w. 

Proof: Fix (3, F, m, and 1 as above and let q be an arbitrary 
element of P. Let us consider two cases: 

Case 1. doml\domqisnotemptyforsomel E E((3,F,m, 1). 
In this case, let n be the largest element of dom f and let 
n = 2t +i, where t E wand i E 2. Let j = 2 - i and fix Uj E B 
such that Uj n Wj = 0. We can extend q to some ql whose 
domain is 2t. Then define q= ql U {(2t + j, Uj), (2t + i, T)}. 
Case 2. dom 1 ~ dom q for all f E E((3, F, m, 1). Then 
there exists a finite subset F of wand an infinite subset E 
of E((3, F, m, 1) such that dom f = F for alII E E. By finite 
number of refinements one can find an infinite subset E1 of E 
such that either {f( s) : fEEl} is constant or pairwise dis­
tinct for each s E F. In particular, there exists n E F such 
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that {f(n) : fEEl} are pairwise distinct. Let us extend 
q to any q such that dom q 2 F. Since q(n) is a non-empty 
open subset of T, th~re exists a positive integer !( such that 
!(q(n) == T. Fix fEEl such that f(n) 2: !(. 

Thus, in either case, there exists q extending q such that 
domf ~ domq and f(n)q(n) == T for some n E domf. Fix 
as E q(s) for each s E domf \ {n}. Since f(n)q(n) == T there 

exists an E q(n) such that ~sEdomff(s)as E B(h{3(a), m~ 1)' 

Clearly, there exists 0 1 E B for each 1 E dom f such that 
--' 1 

a/	 E 0/ ~ 0/ ~ q(l) and ~/Edomf f(l)O/ ~ B(h{3(a), m +1)' 
Let p == {(1, q(1)) : 1 E dom q \ dom f} U {(1, 0 1) : 1 E dom f}. 
Clearly p ~ q~ q and p E 5((3, F, m, 1). D 

Note that we have defined less than c many dense sets, 
thus applying M Acountable, there exists a generic filter for these 
dense sets. Therefore the proof of Lemma 9 is complete and 
Example 1 is complete. 

A connected countably compact group whose square 
is not countably compact. The countably compact group 
whose square is not countably compact obtained by Hart and 
van Mill [HvM] is a subgroup of 2'. In particular, the group is 
zero-dimensional. There are connected groups like this as well. 

Example 14. (M Acountable) There exists a connected count­
ably compact group whose square is not countably compact. 

By means of a small modification of Example 1, one can 
construct under M Acountable, a countable subset X of T' such 
that the group generated by X and G is countably compact 
but its square is not. Note that group G == {x E 1f': suppx is 
bounded in c} is connected and dense in 1f'. Thus any subspace 
of 1f' containing G is also connected. 

2.	 Free Abelian groups 
We will give now a sketch of a construction of the following. 
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Example 15. (M Au-centered) There exists a countably com­
pact group topology on the free Abelian group H of size c which 
makes H countably compact but H 2 not countably compact. 

We will construct a family Y == {Ya : a < c} ~ 1f' such 
that the group H generated by Y is countably compact, Y is 
a free basis for Hand {(Y2n, Y2n+l) : nEw} witnesses that 
H X H is not countably compact. At stage a + 1 < c we will 
define Yf3 (a) for every f3 :::; a. 

In Example 1, we needed a condition to make S not a group. 
A similar argument will be used to guarantee that Y is free. To 
obtain the countably compactness of H, we will enumerate all 
possible countably infinite subsets of H in length c and the a-th 
sequence will have X a as an accumulation point. The sequence 
{(Y2n, Y2n+l) : nEw} will be made closed and discrete in 
H x H as in the construction of Example 1. 

The enumerations needed in this construction are similar 
to the ones used to construct Example 1, but the elements of 
H which we can work with at stage a must be generated by 
{Yf3 : f3 < a}, since at this stage we will have only defined Yf3la 
for each f3 < a. 

Let {g~, g~) : a < c} be an enumeration of all pair of 
functions from a finite subset of c into non-zero integers so 
that dom g~ U dom g~ ~ a for each a < c. 

Let {:Fa : a < c} be an enumeration of all countable sub­
sets of the family of functions from a finite subset of c into 
non-zero integers so that U!EF dom f ~ a for each a < c. 

a 

It is left to the reader to check that a group H generated 
by Y in Lemma 16 is a group as in Example 15. 

Lemma 16. (MA(a-centered)) There exists Y == {Ya : a < 
c} satisfying 

(i) if domg~ =I- 0 then l:eEdomg~ g~(OYe(a) =I- 0; 
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(ii) Yala is an accumulation point of {l:eEdomj!(e)Yel a 
f E Fa}; 

(iii) if f3 ::; a and y,ela is an accumulation point of 
{l:eEdomf !(e)Yela : ! E F,e} then y,ela+1 is an accumulation 
point of {l:eEdomf f(e)Yela+1 : f E F,e}Jo 

(iv) The set {n E w : IY2n+j(a) -l:eEdomg~g~(~)Ye(a)1 < 
1

M ,Vj E 2} is finite, for some MEN.
+1 

Proof: At stage 0 there is nothing to do, since xolo is the 
empty function. At limit stage I define y,el" == U,e<a<" y,ela. 
In both cases conditions (i) - (iv) are satisfied. 

At successor stage I == a + 1, fix an accumulation point 
Yala for the sequence {l:eEdomf f(~)Yela : f E Fa}. As in 
Lemma 9, we construct a function cP : I ----t 1r and define 
y,e(a) == cP(f3) for each f3 < I. We will only give the partial 
order and the dense sets and leave the details to the reader. 

The partial order. Let B be a countable basis for 1r consist­
ing of non-empty connected open sets and such that 1r E B. 

Fix MEw such that 2M ~ (domg~ U domg~) n w. For 
each ~ E (dom f \ w) U 2M, fix an open set ~ E B and fix 
Wo, WI E B which covers at most half of the circle such that: 

(a) if domg~ =I 0 then 0 t!- 2:eEdomg~ g~(e)~ and 

2:eEdomg~ g~(~)~ ~ Wo; 

(c) if j E 2 and domg~ == 0 then 0 E Wj. 

Definition 17. Let IP be a partial order whose underlying 
set is the family of all finite functions p such that dom p ~ " 
3n E M such that dom p n w == 2n, rng p ~ Band p(~) ~ ~ 
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for all ~ E (dom f \ w) U 2M. Denote by Mp the unique integer 
such that dom p n w = 2Mp. Given p, q E IF, we define: 

p ::; q if and only if dom p 2 dom q, either p((3) = q((3) or 
p((3) ~ q((3) for each (3 E dom p \ dom q and p(2m) x p(2m + 
1) n Wo x WI = 0 for each m E [Mq , M p ). 

Let us show that IF is a-centered. Indeed, consider B as a 
discrete space and take a countable dense subset S of B'Y. Let 
F be the family of all finite functions from some 2n E w into 

B. Then IF = UfEF,sES{P E IP: f = PI(dompnw) and P ~ s} is a 
countable union of centered subsets. 

The dense subsets. The following dense sets are used to 
make dom <p = ,: 

Definition 18. For each (3 < , let D(3 = {p E IF: (3 E dom p}. 

Fix (3 < " a finite subset F of a and mEN. By hy­
pothesis, the set {f E F(3 : tie E F EJ1.Edomf f(Il)YJ1.(e) E 

B(Y(J(a), 1 )} is infinite. Let {E((3,F,m,l): 1E w} be a 
m+l 

partition of this set into infinite pieces of infinite size. 

Definition 19. For each (3 < " for each finite subset F of a, 
for each mEN and 1 E w let S((3,F,m,l) = {p E IF: 3f E 

E((3, F, m, 1) such that dom f ~ dom P and EeEdomf f(e)p(e) ~ 

B(y{3(a), m~l )}. 
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Remark (added in July 1998) A new argument from the 
author and S. Watson makes it possible to construct a count­
ably compact group without non-trivial convergent sequences 
under M Acountable. This argument can be used to modify the 
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construction of Example 15 to obtain a group as in Example 
15 under M Acountable' 
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