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Abstract 
We prove that if X is a space in which every sub

space of cardinality at most N1 is metrizable, and X 
has density NJ , then X has weight N1 . We also extend 
a reflection theorem of Alan Dow by proving that if 
X is a space in whIch every subspace of cardinality at 
most N1 is metrizable, and X has a dense set, condi
tionally compact in X, then X is metrizable. Known 
examples show that the compactness-like condition on 
X cannot be weakened to pseudocompactness or feeble 
compactness. 

1991 Mathematics S'ltbject Classification: Primary 54E35, 54A25, 
54D30; Secondary 03E35. 

!(ey'lvords and phrases: reflection theorems, elementary submodels, 
SSM-space, ss-metrizable, metrizable, density, weight, eountably 
compact, pseudocompact, feebly compact, conditionally eompact set. 

351
 



352 Jerry E. Vaughan 

1 Introduction 

In [3] Alan Dow defined "for the purposes of [3] only" a space 
to be SSM if it is regular, non-metrizable and every Y E [X]~Wl 

is metrizable (in the subspace topology), where [X]~Wl denotes 
{Y eX: IYI ~ WI}. We modify this definition. We say that a 
space X is ss-metrizable provided every Y E [X]~Wl is metriz
able (in the subspace topology). Thus the difference between 
these two definitions is that our definition includes no separtion 
axioms and allows metrizable spaces to be ss-metrizable. SSM 
and ss-metrizable are short for "small subspaces metrizable." 

In this paper we review some known results about ss-metriz
able spaces, and prove the following two new results. 

Theorem 1.1 If X is ss-metrizable with density WI then X 
has weight WI . 

Theorem 1.2 If X is ss-metrizable and has a dense set, con
ditionally compact in X, then X is metrizable. 

Theorem 1.1 is based on the proof of, and Theorem 1.2 is a 
corollary to, the following remarkable result of Dow [4, Prop. 
3.1] in which no separation axioms are explicitly assumed (note 
that T1 is implicit). 

Theorem 1.3 (Dow) If X is ss-metrizable and countably com
pact, then X is metrizable. 

It is natural to ask if "countably compact" in Dow's the
orem can be replaced with "feebly compact," or the weaker 
property "pseudocompact" (see [9, 1.11(d)]). That the answer 
is "no" follows immediately from a theorem of D. B. Shakhma
tov [10]. 

Theorem 1.4 (Shakhmatov) If Y is a T3 .5 -space in which 
every set of cardinality ~ K is closed, then Y can be embedded 
into a pseudocompact T3 .5 -space X in which every subset of 
cardinality ~ K is closed. 
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To apply Shakhmatov's theorem, take Y to be a discrete 
space of uncountable cardinality, take /'\, ~ WI, and let X be 
the space guaranteed by Shakhmatov's theorem. Clearly X is 
ss-metrizable, pseudocompact (and feebly compact by T3.5 [9, 
1.11 (d)]) . The space X is not metrizable because a pseudo
compact metric space is compact, hence has a countable base, 
and Y is a subspace not having a countable base. 

In § 4 we prove Theorem 1.2. We show that in Dow's 
Theorem 1.3, we can replace "countably compact" with "has a 
dense set conditionally compact in X ," a well-known property 
weaker than countable compactness and stronger than 'feebly 
compactness (and pseudocompactness). 

Recall that a subset Y of a space X is conditionally compact 
in X [1] (or relatively countably compact [6]) provided that 
every infinite subset of Y has a limit point in X. 

We also need the following special case of a reflection the
orem of A. Hajnal and I. Junaz [7]: 

Theorem 1.5 (Hajnal and Juhasz) If X is a space in which 
~very subset Y E [X]:5 w1 has a countable base (in the subspace 
topology), then X has a countable base. 

In § 3 we prove Theorem 1.1. In general we follow the ter
minology in [5], and we do not assume any separation axioms 
unless explicitly stated. We employ the approach to elemen
tary submodels used by S. Watson and others (see [11]). 

ss-metrizable spaces 

In this section, we review some known results related to our 
theorems, and give proofs for completeness. Dow's first results 
about ss-metrizable spaces were proved using some separation 
axioms (such as Hausdorff [2] or regular [3]), but in [4], Dow 
showed that for ss-metrizable spaces of density WI these results 
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need no explicitly stated separation axioms at all (TI is implicit 
as we noted). We begin with the following simple example. 

Example 2.1 There exists an ss-metrizable, non-T2 -space. 

Define L(w2+1) to be the set of ordinals:::; W2 with the smallest 
topology larger than the order topology in which all a < W2 
are isolated. Let p be a point not in L(W2 + 1). Put X = 

L(w2+1 )U{p}, and define for each a < W2 a basic neighborhood 
of p to be N(p, a) = {p} U (a,w2). In X, p and W2 do not have 
disjoint neighborhoods. Every Y E [X]~Wl is discrete because 
if we have p, W2 E Y then p and W2 are isolated in Y; so X is 
ss-metrizable and not T2 • 

The following lemma was extracted from the middle of 
Dow's proof [4, Theorem 3.1]. Richard E. Hodel, and later 
the referee, noticed that it has a standard proof without ele
mentary submodels. We give a proof implicit in the proof of 
Dow's theorem. 

Lemma 2.2 (Dow) If X is ss-metrizable with density at most 

WI, then X is T3 , first countable, and IXI :::; 2w 
• 

Proof: Let D be a dense subset of X with IDI :::; WI. 

Claim 1 X is regular. If X is not regular, there exist x E X 
and an open set U such that x E U and for all open V, if 
x E V then clxV ct U. Let M be an elementary submodel 
with X, D, x, U E M, D C M and IMI = IDI. (Since there ex
ist non-regular spaces having countable dense metrizable sub
spaces, we will have to use the hypothesis of the theorem on 
some subsets besides D; in fact we use it on both D U {x}, 
and X n M). Put Y = D U {x}. By elementarity, Y E M. 
Also, IYI :::; WI; so by ss-metrizable Y is metrizable, hence first 
countable. By elementarity, there exists a countable family 
BeT such that {B n Y : B E B} is a local base for x in Y, 
B E M, and B C M. 
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Since IMI :::; Wt, X n M is metrizable, hence regular. Since 
x E UnXnM, there exist an open set T in X such that x E T 
and 

ClxnM(T n X n M) c U n X n M. 

Pick B E B such that B nYc T n Y. By denseness of Y we 
have clx B C clxT. To complete the proof (by contradiction) 
it suffices to show that clx B C U. If this is not true then there 
exists p E clx B \ U; so by elementarity there exists such a p 
in M. Thus p E clxB n (X n M). 

Fact p E ClxnM(T n X n M): If pEW E T, then p E 
W n clx(B) C W n clx(T); so W n T =1= 0. Since X n M is 
dense in X, we have that W n T n X n M =1= 0. This proves 
the Fact. 

This Fact, however, yeilds that p E U, which is a contradiction. 
Thus we have that x E B C clxB C U, but this contradicts 
our beginning assumption, and completes the proof of Claim 1. 

Claim 2 X is first countable. Let x EX. Y = D U {x} is 
metrizable, hence first countable; so there exists a countable 
family of open sets B such that {B n Y : B E B} is a local 
base for x in Y. We show that B is a local base for x in X. 
Let U be open in X and x E U. By T3 there exists an open 
set V such that x EVe clxV c U. There exists B E B such 
(B n Y) c (V n V). By denseness of Y we have clx B C clx V; 
so we have x E B c clx B c U. This completes the proof of 
the Lemma. A general version of the proof of Claim 2 can be 
found in [8, 3.9(c)]. 

Claim 3 That IXI :::; 2W follows from Claims 1 and 2 and the 
set-theoretic equality wf = 2W 

• 

Corollary 2.3 (Dow [3]) Every separable ss-metrizable space 
X is metrizable. 
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Proof: Let D be a countable dense subset of X. For any 
Y E [X]$Wl, Y U D is separable and (by ss-metrizable) metriz
able; hence second countable. Therefore Y is second countable. 
By the Hajnal-Juhasz reflection theorem (Theorem 1.5), X is 
second countable. By Lemma 2.2, X is T3 , hence X is metriz
able, and this completes the proof. 

Remark 2.4 (Dow [3]) Every ss-metrizable, non-metrizable 
space X contains a discrete subspace of cardinality WI. Hence 
every ss-metrizable space, with countable spread is metrizable. 

Proof: Since a non-metrizable ss-metrizable space X is not 
separable, it contains a left separated Y C X of cardinality 
WI, which is therefore a non-separable, metrizable subspace, 
hence has uncountable cellularity. Thus Y is not a subspace of 
a space with countable spread. 

Theorem 2.5 The statement "every ss-metrizable space of 
density WI is metrizable" is independent and consistent with 
ZFC 

Proof: Let X be an ss-metrizable space of density WI. By 
the Lemma, IXI ~ 2w

; so obviously X is metrizable under the 
assumption 2W = WI. In the other direction, under MA + -,CH, 
Dow [3] constructed a family of Lindelof ss-metrizable non
metrizable spaces (the part of MA that Dow used is "p > WI"). 
Some of these spaces have density WI. 

3	 Density and weight in ss-metrizable 
spaces 

A simple example, similar to Example 2.1, shows that in ss
metrizable spaces density need not equal weight. 

Example 3.1 An ss-metrizable T3 .S -space X of densityw2 and 
weight greater than W2. 
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Proof: Take X == W2 + 1 with all points isolated except W2. 

Let u be a uniform ultrafilter on W2, then u does not have a 
base of size W2. For neighborhoods of ,W2, take all sets of the 
form {W2} U U where U E u. 

In order to prove Theorem 1.1, we use the technique in the 
last paragraph of Dow's proof of Theorem 1.3, and which uses 
the following lemma. 

Lemma 3.2 (Dow) [4, Prop. 2.3] If (X, T) is a space with a 
point-countable base, and M is any elementary submodel with 
X, T E M, then T n M contains a local base in (X, T) for 
every point of cl(x,T)(X n M). 

For a space (X, T) and elementary submodel M with X, T E 

M, by elementarity the sets in Tn M, intersected with X n M, 
form a base for a topology on X n M which is in general 
coarser than the subspace topology on X n M. We call this 
topology the submodel topology on X n M, and denote it by 
(X n M, T n M). We say that a family of countable elemen
tary submodels {Ma : a < WI} is an E-chain [4] provided for 
all a < WI, Ma E Ma+l , and M).. == Ua<)..Ma for A a limit 
ordinal. 

Lemma 3.3 If {Ma : a < WI} is an E-chain of countable 
elementary submodels with X, T E Mo, and M == U{Ma : a < 
WI}' and (X, T) is a space such that the submodel topology 
(X n M, T n M) has a point countable base, then for cofinally 
many a < WI, Tn M a contains a local base in (X, T) for every 
point in cl(x,T)(X n M a ). 

Proof: By contradiction, we may assume for every a < WI 

that T n Ma does not contain a local base in (X, T) for all 
points in cl(x,T)(X n M a ). For each a < WI we construct a 
point X a and open set Ua such that 
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(iii) for every T E TnMa with X a E T, there exists y E M a +1 

such that yET \ Ua. 

We construct X a and Ua. By our assumption, there exists 
x E cl(x,T)(XnMa ) such that TnMa does not contain a local 
base in (X, T) for x. Since Ma E Ma +l , by elementarity there 
exists such a point in M a +l ; pick one such point and call it X a . 

Thus there exists an open set U containing X a such that for all 
T E T n M a , T \ U i- 0. Again by elementarity there exists 
such a U E MO'+I; so pick one such and call itUO'. Now for 
any T E Tn MO' with X a E T, there exists y == y(T) E X such 
that yET \ Ua; so by elementarity there is such a y in Ma+l . 

This completes the proof of (i), (ii) and (iii). 
Now let N be a countable elementary submodel such that 

X, T, M, {MO' : a < WI} E N, and let A == N n WI. Then by 
elementarity, and the fact that {MO' : a < WI} E N, we have 

(iv) (T n M) n N == T n M>" 
(v) (X n M) n N == X n MA• 

By Dow's Lemma 3.2 applied to the submodel topology (X n 
M, T n M), we know that (T n M) n N contains a local base in 
(X n M, T n M) for every point in cl(xnM,TnM)(X n M n N). 
By (i) and (v), X A E cl(xnM,TnM)(X n M n N). To get a 
contradiction, it suffices to show that (T n M n N) does not 
contain a local base for X A in (X n M, T n M). To see this, 
consider UA. By (ii) X A E UA E T n M. By (iii) and (iv) for 
any T E (T n M n N) == T n MA there exists y E MA+I C M 
such that y E T\UA; so y E (TnXnM)\(UAnXnM). This 
completes the proof. 

Proof of Theorem 1.1. Let D == {dO' : a < WI} be dense 
in X, and let {Ma : a < WI} be an E-chain of countable 
elementary submodels, such that {d,e : f3 < a} C MO' for 
all. a < WI. Since IMI == WI, X n M is metrizable in the 
subspace topology, hence has a point-countable base. By first 
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countability, the submodel topology TnM equals the subspace 
topology on X n M; hence the submodel topology (X n M, Tn 
M) has a point-countable base. By the previous lemma, there 
is a cofinal set A c' Wt such that T n Ma contains a local 
base in (X, T) for all points in cl(x,T)(X n Ma ). Thus U{T n 
Ma : a E A} contains a local base in (X, T) for all points in 
U{cl(x,T)(X n Ma) : a E A}, but this latter set contains D; so 
by first countability 

and we are done. 

Remark 3.4 Dow proved that in a model obtained by adding 
W2 Cohen reals to a model of CH, every ss-metrizable space of 
weight Wt is metrizable {4}. By Theorem 1.1 "weight Wt" can 
be replaced by "density Wt " in that result. 

4 Extension of Dow's Theorem 

We give a relatively simple proof of Theorem 1.2 that does not 
involve elementary submodels directly. We do this by calling 
on both Dow's reflection theorem (1.3) and the Hajnal-Juhasz 
reflection theorem (1.5). 

Proof of Theorem 1.2. Let X be ss-metrizable and D C X 
a dense set that is conditionally compact in X. 

Claim: For every Y E [D]~Wl, Y is second countable. To see 
this, put Y == {Ya : a < Wt}, and Ya == {y,e : (3 < a} for 
every a < Wt. Now Ya is conditionally compact in clx(Ya), 
and therefore clx(Ya) is feebly compact, and separable. Since 
ss-metrizable is an hereditary property, clx(Ya) is metrizable 
by Corollary 2.3, and hence compact. Then 
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is countably compact and ss-metrizable, hence metrizable by 
Dow's Theorem 1.3. Thus H is compact and metrizable, and 
therefore second countable. Since Y c H, Y is second count
able. This completes the proof of the Claim. 

Since every Y E [D]$Wl is second countable, by the Hajnal
Juhasz Theorem 1.5, D is second countable. Thus D is sep
arable; so X is separable, and thus by Corollary 2.3, X is 
metrizable (and compact). 

Questions 4.1 (1) Does ('p == Wt" imply that every ss-metrizable 
space with density Wt is metrizable? 

(2) (Dow [3]) Is every Lindelof ss-metrizable space first 

countable? 
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