Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

TIGHTNESS OF FREE ABELIAN TOPOLOGICAL GROUPS AND OF FINITE PRODUCTS OF SEQUENTIAL FANS

Kohzo Yamada

Abstract

Let A(X) be the free abelian topological group on a Tychonoff space X, and $S(\kappa)$ the sequential fan with κ -many spines, which is the quotient space obtained from $C(\kappa)$ which is the disjoint union of κ -many convergent sequences by identifying all the limit points to a single point. Then we proved that the tightness of $A_{2n}(C(\kappa))$ is equal to that of $S(\kappa)^n$ for each $n \in \mathbb{N}$. As a corollary, we get if κ is an infinite cardinal with $\kappa = \omega$ or $cf(\kappa) > \omega$, $n \in \mathbb{N}$ and X is a metrizable space

¹⁹⁹¹ Mathematics Subject Classification: 22A05, 54A25.

Keywords and phrases: Free abelian topological group, sequential fan, tightness, maximal uniformity, pseudometric, weight of a space.

such that the weight of the set X' of all non-isolated points in X is κ , then $t(S(\kappa)^n) = t(A_{2n}(C(\kappa))) \leq$ $t(A_{2n}(X)) \leq t(A(X)) \leq w(X') = \kappa$. This result partially answers the question raised by Arhangel'skiĭ, Okunev and Pestov in [2]. Furthermore, we get that for a metrizable space X such that the weight of X' is ω_1 or ω , $t(A_4(X)) = t(A(X)) = w(X')$, and always $t(A_3(X)) \leq \omega$ for any metrizable space X.

0 Introduction

This paper discusses the relations between the tightness of free abelian topological groups A(X) on metrizable spaces X, the tightness of the subspaces $A_n(X)$ of A(X) formed by reduced words whose lengths are less than or equal to n, n = 1, 2, ...,and the tightness of finite products of sequential fans $S(\kappa)$.

The tightness of a space X is denoted by t(X) and the weight of X is denoted by w(X). The set of all natural numbers is denoted by N. For an infinite cardinal κ , let $C(\kappa)$ be the topological sum of κ -many convergent sequences with their limits points. Then we prove that $t(A_{2n}(C(\kappa))) = t(S(\kappa)^n)$ for each $n \in \mathbb{N}$. In [2], Arhangel'skiĭ, Okunev and Pestov proved that for a metrizable space X, $t(A(X)) \leq w(X')$, where X' is the set of all non-isolated points in X, and asked whether the converse inequality is true. In this paper, applying the above result, we give the following partial answer to the question.

Let κ be an infinite cardinal such that its cofinality $cf(\kappa)$ is larger than ω and X a metrizable space such that $w(X') = \kappa$. If $t(S(\kappa)^n) = \kappa$ for some $n \in \mathbb{N}$, then $t(A_{2n}(X)) = t(A(X)) = w(X') = \kappa$.

On the other hand, in the same paper Arhangel'skii, Okunev and Pestov proved that if $t(A(X)) = \omega$, the converse inequality is true, i.e. t(A(X)) = w(X'). Since Gruenhage and Tanaka [6] proved that $t(S(\omega_1)^2) = \omega_1$, applying our result, we can improve their result as follows; if $t(A_4(X)) = \omega_1$ or $\omega, t(A_4(X)) = t(A(X)) = w(X')$. Furthermore we show that $t(A_3(X)) \leq \omega$ for any metrizable space X.

1 Notations and fundamental results

All topological spaces in this paper are assumed to be nondiscrete and Tychonoff. Our terminologies and notations follow [4].

Let A(X) be the free abelian topological groups on a space X in the sense of Markov [8]. For each $n \in \mathbb{N}$, let $A_n(X)$ formed by reduced words whose lengths are less than or equal to n (by definition $A_0(X) = \{0\}$, where 0 is the unit element of A(X)). Define the mapping i_n from $(X \oplus -X \oplus \{0\})^n$ onto $A_n(X)$ by $i_n((x_1, x_2, \ldots, x_n)) = x_1 + x_2 + \cdots + x_n$ for each $x_i \in X \oplus -X \oplus \{0\}$. The following fundamental properties related to A(X) are used often in this paper (see [1],[7] and [10]).

Lemma 1.1 Let X be a space. Then the following properties hold:

- (1) Let \mathcal{T}_1 be a group topology for A(X) which induces the original topology for X; then $\mathcal{T}_1 \leq \mathcal{T}$.
- (2) X and $A_n(X)$, $n \in \mathbb{N}$, are closed subspaces of A(X).
- (3) $A_0 = \{g = x_1 y_1 + x_2 y_2 + \dots + x_n y_n : x_i, y_i \in X, n \in \mathbb{N}\}$ is a clopen subgroup of A(X), and hence it is a clopen neighborhood of 0. Furthermore, A(X)can be represented as a disjoint union of the clopen sets $\bigcup \{A_{2n}(X) \setminus A_{2n-1}(X) : n \in \mathbb{N}\} \cup \{0\}$ and $\bigcup \{A_{2n-1}(X) \setminus A_{2n-2}(X) : n \in \mathbb{N}\}.$
- (4) The mapping i_n is continuous for each $n \in \mathbb{N}$.

365

Kohzo Yamada

- (5) For each $n \in \mathbb{N}$, the restriction mapping of i_n to $i_n^{-1}(A_n(X) \setminus A_{n-1}(X))$ is an n!-to-1, open and closed mapping.
- (6) Let Y be a closed P-embedded subspace of a space X; then A(Y) is embedded into A(X) as a closed topological subgroup. In fact, the homomorphic extension of the inclusion mapping from Y to X over A(Y) is a closed embedding. Thus, $A_n(Y)$ is also embedded into $A_n(X)$ as a closed subspace for each $n \in \mathbb{N}$.

For a space X, Let $\mathcal{D}(X)$ be the set of all continuous pseudometric on X. For each $d \in \mathcal{D}(X)$, we denote the Graev's extension of d over A(X) by \overline{d} (cf.[5]). Then, Tkačenko [10] showed that $\{V_d = \{g \in A(X) : \overline{d}(0,g) < 1\} : d \in \mathcal{D}(X)\}$ is a neighborhood base of 0 in A(X). On the other hand, using the universal uniformity \mathcal{U}_X of X, another representation of a neighborhood base of 0 in A(X) was given in [9] and [11]. Furthermore, in [11], the author constructed a neighborhood base of 0 in $A_{2n}(X), n \in \mathbb{N}$. Here, we introduce an improved style of the neighborhood base of 0 in $A_{2n}(X)$.

Lemma 1.2 Fix an $n \in \mathbb{N}$. For each $U \in \mathcal{U}_X$, put $V_n(U) = \{x_1 - y_1 + x_2 - y_2 + \cdots + x_k - y_k : (x_i, y_i) \in U, k \leq n\}$. Then, $\{V_n(U) : U \in \mathcal{U}_X\}$ is a neighborhood base of 0 in $A_{2n}(X)$.

Furthermore, as a corollary of the above Lemma, we have the following, which is often used in our main results.

For a space X and each $n \in \mathbb{N}$, we define a mapping j_n from X^{2n} to $A_{2n}(X)$ as follows;

$$j_n(((x_1,x_2,\ldots,x_n),(y_1,y_2,\ldots,y_n))) =$$

 $x_1-y_1+x_2-y_2+\cdots+x_n-y_n$

for each (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) in X^n .

Corollary 1.3 ([11]) Let X be a space, $n \in \mathbb{N}$ and E a subset of $A_{2n}(X)$. Then, $0 \in \overline{E}$ if and only if $j_n^{-1}(E) \cap U^n \neq \emptyset$ for each $U \in \mathcal{U}_X$, where $U^n = \{((x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n)) \in X^{2n} : (x_i, y_i) \in U, i = 1, 2, \dots, n\}$.

Corollary 1.4 ([11]) Let X be a space such that every open neighborhood of the diagonal Δ_X of X^2 is contained in \mathcal{U}_X (in particular, X is paracompact), and E a subset of $A_2(X)$. Then, $0 \in \overline{E}$ if and only if $\overline{j_1^{-1}(E)} \cap \Delta_X \neq \emptyset$.

Let X be a space. The tightness t(X) of X is the smallest cardinal number κ such that for every point $x \in X$ and $A \subset X$, if $x \in \overline{A}$, then $x \in \overline{B}$ for some $B \subset A$ with $|B| \leq \kappa$. For a infinite cardinal κ , let $C(\kappa)$ be the topological sum of κ many convergent sequences with their limit points. The sequential fan $S(\kappa)$ with κ -many spines is the quotient space obtained from $C(\kappa)$ by identifying all the limit points to a single point. Though $S(\kappa)$ is a concrete and simple space, it is difficult to investigate the cardinality of $t(S(\kappa)^n)$, $n \in \mathbb{N}$. In fact Dow and Todorčević asked whether ZFC implies that $t(S(\omega_2)^2) = \omega_2$. On the other hand, there were some results for the tightness. For example, Gruenhage and Tanaka [6] proved that $t(S(\omega_1)^2) = \omega_1$. And recently, Eda, Gruenhage, Koszmider, Tamano and Todorčević [3] obtained some (set theoretic) equivalent statements to $t(S(\kappa)^2) = \kappa$.

2 Tightness of $A_2(X)$

For a space X, since $A_1(X) = X \oplus -X \oplus \{0\}$, it easy to see that $t(A_1(X)) = t(X)$. For the tightness of $A_2(X)$, we can show the following.

Theorem 2.1 Let X be a space such that every open neighborhood of the diagonal Δ_X of X^2 is contained in the universal uniformity \mathcal{U}_X of X. Then $t(A_2(X)) = t(X^2)$.

Proof: First, we suppose that $t(X^2) \leq \kappa$. Let $E \subset A_2(X)$ and $g \in \overline{E}$. If $g \in (X \oplus -X) \cup (A_2(X) \setminus A_1(X))$, by Lemma 1.1, we have that $g \in \overline{E} \cap (X \oplus -X) \cup \overline{E} \cap (A_2(X) \setminus A_1(X))$. Since $t(X \oplus -X) \leq \kappa$ and by the property (5) in Lemma 1.1, we can take a subset C of E such that $g \in \overline{C}$ and $|C| \leq \kappa$. Thus, let g = 0. Since A_0 is a clopen neighborhood of 0 in $A(X), g \in \overline{F}$, where $F = E \cap A_0$ and $F \subset A_2(X) \setminus A_1(X)$. Therefore, by Corollary 1.4, $\overline{f_1^{-1}(F)} \cap \Delta_X \neq \emptyset$. Take a point $(x,x) \in \overline{f_1^{-1}(F)} \cap \Delta_X$. Since $t(X^2) \leq \kappa$, there is a subset C of $j_1^{-1}(F)$ such that $(x,x) \in \overline{C}$ and $|C| \leq \kappa$. By Corollary 1.4, we have that $0 \in \overline{j_1(C)}$, and also $j_1(C)$ is a subset of $j_1j_1^{-1}(F) = F$ and $|f_1(C)| \leq \kappa$. Consequently, we get $t(A_2(X)) \leq \kappa$.

Next, suppose that $t(A_2(X)) \leq \kappa$. Let $E \subset X^2$ and $\mathbf{x} \in \overline{E}$. The proof is in two cases.

Case 1: $\boldsymbol{x} \notin \Delta_{\boldsymbol{x}}$.

In this case, it is easy to see that $i_2(\mathbf{x}) \in A_2(X) \setminus A_1(X)$. Then we can take an open set U in X^2 and an open set V in $A_2(X)$ such that

$$\boldsymbol{x} \in U ext{ and } i_2(\boldsymbol{x}) \in i_2(U) \subset V \subset \overline{V} \subset A_2(X) \setminus A_1(X).$$

Let $F = U \cap E$; then $\boldsymbol{x} \in \overline{F}$ and $i_2(\overline{F}) \subset i_2(\overline{U}) \subset A_2(X) \setminus A_1(X)$. By the property (5) in Lemma 1.1, we have that $t(\overline{U}) \leq \kappa$, and hence we can take a subset C of F such that $\boldsymbol{x} \in \overline{C}$ and $|C| \leq \kappa$.

Case 2: $\boldsymbol{x} \in \Delta_X$.

If $\boldsymbol{x} \in \overline{E \cap \Delta_X}$, the proof is finished. For, the diagonal Δ_X is homeomorphic to X and X is a subset of $A_2(X)$. It follows that $t(\Delta_X) \leq \kappa$. Then, we may assume that $\boldsymbol{x} \in \overline{F}$, where $F = E \setminus \Delta_X$. We define a subset A of Δ_X , as follows;

 $A = \{ \boldsymbol{y} \in \Delta_X : \text{ there is } C \boldsymbol{y} \subset F \text{ such that } \boldsymbol{y} \in \overline{C \boldsymbol{y}} \text{ and } |C \boldsymbol{y}| \leq \kappa \}.$

Since $\boldsymbol{x} \in \Delta_X$, $\overline{F} \cap \Delta_X \neq \emptyset$, and hence $0 \in \overline{j_1(F)}$. By the assumption, there is a subset D of $j_1(F)$ such that $0 \in \overline{D}$ and

 $|D| \leq \kappa$. Note that the mapping $j_1|_{X^2 \setminus \Delta_X}$ is one-to-one. Then we have $j_1^{-1}(D) \subset F$ and $\Delta_X \cap \overline{j_1^{-1}(D)} \neq \emptyset$. This implies that the set A is not empty. Next we show that $\boldsymbol{x} \in \overline{A}$. On the contrary, there is an open set U of X^2 such that $\boldsymbol{x} \in U$ and $\overline{U} \cap A = \emptyset$. Since $\boldsymbol{x} \in \overline{F \cap U}$, $0 \in \overline{j_1(F \cap U)}$. In the same way, we can show that there is a subset C of $F \cap U$ such that $\overline{C} \cap \Delta_X \neq \emptyset$ and $|C| \leq \kappa$. Take a point $\boldsymbol{y} \in \overline{C} \cap \Delta_X$; then $\boldsymbol{y} \in A$. But this contradicts to $\boldsymbol{y} \in \overline{U}$. Therefore, we have that $\boldsymbol{x} \in \overline{A}$. Since $t(\Delta_X) \leq \kappa$, we can take a subset B of A such that $\boldsymbol{x} \in \overline{B}$ and $|B| \leq \kappa$. Thus, $\boldsymbol{x} \in \bigcup \{C\boldsymbol{y} : \boldsymbol{y} \in B\}$, and also $\bigcup \{C\boldsymbol{y} : \boldsymbol{y} \in B\}$ is a subset of F such that $|\bigcup \{C\boldsymbol{y} : \boldsymbol{y} \in B\}| \leq \kappa$.

Consequently, we have that $t(X^2) \leq \kappa$. \Box

Corollary 2.2 Let X be a paracompact space. Then $t(A_2(X)) = t(X^2)$.

The following example shows that the hypothesis of a space X in Theorem 2.1 cannot be omitted. It was proved by Ohta and is presented here with his kind permission.

Example 2.3 There exists a space X such that $\omega = t(X^2) < t(A_2(X)) = \omega_1$.

Proof: Let $X = \{(\alpha, \beta) \in \omega_1 \times \omega_1 : \alpha < \beta\}$, where ω_1 is the space of countable ordinal numbers with the order topology. Then $t(X^2) = \omega$, because X satisfies the first axiom of countability. To show that $t(A_2(X)) = \omega_1$, let $f : \omega_1 \to \omega_1$ be a map such that $f(\alpha) > \alpha$ for each $\alpha \in \omega_1$ and $f(\alpha) < f(\alpha')$ if $\alpha < \alpha'$, and put $C = \{\alpha \in \omega_1 : f(\beta) \le \alpha$ for each $\beta < \alpha\}$. Since C is closed unbounded in ω_1 , C can be decomposed into two disjoint stationary sets $C_1 = \{\alpha_{\gamma} : \gamma \in \omega_1\}$ and $C_2 = \{\beta_{\gamma} : \gamma \in \omega_1\}$, where $\alpha_{\gamma} < \alpha_{\gamma'}$ and $\beta_{\gamma} < \beta_{\gamma'}$ if $\gamma < \gamma'$. Put $x_{\gamma} = (\alpha_{\gamma}, f(\alpha_{\gamma}))$ and $y_{\gamma} = (\beta_{\gamma}, f(\beta_{\gamma}))$ for each $\gamma \in \omega_1$, and define $H = \{x_{\gamma} - y_{\gamma} : \gamma \in \omega_1\} \subset A_2(X)$. Suppose that $0 \notin \overline{H}$ in $A_2(X)$. Then there is a continuous pseudometric d on X

such that $d(x_{\gamma}, y_{\gamma}) > 1$ for each $\gamma \in \omega_1$. For each $\gamma \in \omega_1$, there are $\lambda_{\gamma} < \alpha_{\gamma}$ and $\mu_{\gamma} < \beta_{\gamma}$ such that $d((\alpha, f(\alpha_{\gamma})), x_{\gamma}) < 1/3$ for each $\lambda_{\gamma} < \alpha \leq f(\alpha_{\gamma})$ and $d((\beta, f(\beta_{\gamma})), y_{\gamma}) < 1/3$ for each $\mu_{\gamma} < \beta \leq f(\beta_{\gamma})$. Since C_1 and C_2 are stationary, we can find an increasing sequence $\{\gamma(n) : n \in \omega\} \subset \omega_1$ and $\nu < \alpha_{\gamma(0)}$ such that $\alpha_{\gamma(n)} < \beta_{\gamma(n)} < \alpha_{\gamma(n+1)}, \lambda_{\gamma(n)} < \nu$ and $\mu_{\gamma(n)} < \nu$ for each $n \in \omega$. Since $\{f(\alpha_{\gamma(n)})\}_{n \in \omega}$ and $\{f(\beta_{\gamma(n)})\}_{n \in \omega}$ have the same limit, there is $m \in \omega$ such that d(p,q) < 1/3, where p = $(\nu, f(\alpha_{\gamma(m)}))$ and $q = (\nu, f(\beta_{\gamma(m)}))$. Then, $d(x_{\gamma(m)}, y_{\gamma(m)}) \leq 1$ $d(x_{\gamma(m)}, p) + d(p, q) + d(q, y_{\gamma(m)}) < 1/3 + 1/3 + 1/3 = 1$, which is a contradiction. Hence, $0 \in \overline{H}$ in $A_2(X)$. On the other hand, the set $D = \{(\alpha, f(\alpha)) : \alpha \in C\} (= \{x_{\gamma}, y_{\gamma} : \gamma \in \omega_1\})$ is discrete and closed in X. For, if $(\alpha, \beta) \in X$ and $\alpha \in C$, then $[0, \alpha] \times (\alpha, \beta]$ contains at most one element of D. For each $\gamma \in \omega_1$, since $\{(\alpha, \beta) \in X : \alpha < \beta \leq \gamma\}$ is metrizable, we can find a continuous pseudometric d_{γ} on X such that $d_{\gamma}(x_{\delta}, y_{\delta}) > 1$ for each $\delta \leq \gamma$. This means that $0 \notin \overline{H'}$ in $A_2(X)$ for each countable set $H' \subset H$. Hence, $t(A_2(X)) = \omega_1$.

3 Tightness of $A_{2n}(C(\kappa))$ and of $S(\kappa)^n$

Let X be a space and fix an $n \in \mathbb{N}$. When we take a subset H of $A_n(X)$ and a word $g \in A_n(X)$ such that $g \in \overline{H}$ to investigate the tightness of $A_n(X)$, by Lemma 1.1, it suffices to consider the following three cases:

- (1) $g \in A_k(X) \setminus A_{k-1}(X)$ and $g \in \overline{H \cap (A_k(X) \setminus A_{k-1}(X))}$ for some $k \leq n$.
- (2) g = 0 and $g \in \overline{H \cap (A_{2k}(X) \setminus A_{2k-1}(X))}$ for some k with $2k \le n$.
- (3) $g \in A_k(X) \setminus A_{k-1}(X)$ and $g \in \overline{H \cap (A_{2m+k}(X) \setminus A_{2m+k-1}(X))}$ for some k and m with $2m + k \le n$.

In the case (1), We can apply the property (5) in Lemma 1.1. For example, if X is metrizable, by the property, we can take a countable subset C of $H \cap (A_k(X) \setminus A_{k-1}(X))$ such that $g \in \overline{C}$. And in the case (2), we can apply Corollary 1.3, however it is not easy to know the smallest cardinality of subsets of H whose closure contains g. For the case (3), we prepare the following Lemma.

Lemma 3.1 Let X be a first-countable space such that every open neighborhood of the diagonal Δ_X of X^2 is contained in the universal uniformity \mathcal{U}_X of X and let $m, n \in \mathbb{N}$. Take a set $H \subset A_{2m+n}(X) \setminus A_{2m+n-1}(X)$ and a word $g \in A_n(X) \setminus A_{n-1}(X)$ such that $g \in \overline{H}$. Then, there is subset H_0 of H such that $g \in \overline{H_0}$ and $|H_0| \leq t(A_{2m}(X))$.

Proof: Put $t(A_{2m}(X)) = \tau$. Since $g \in A_n(X) \setminus A_{n-1}(X)$, let $g = a_1 + \cdots + a_k - a_{k+1} - \cdots - a_n$ be a reduced form such that $0 \leq k \leq n$ and each $a_i \in X$. Put $H_1 = H - g$; then $0 \in \overline{H_1}$. By the property (3) of Lemma 1.1, we may assume that $H_1 \subset A_0$. It follows that if we take $h = \sum_{i=1}^{2m+n} z_i^{\epsilon_i} \in H$ and $h_1 \in H_1$ with $h_1 = h - g$, then $\sum_{i=1}^{2m+n} \varepsilon_i - k + (n-k) = 0$. Since the operation on A(X) is commutative, we can represent h_1 as follows;

$$h_{1} = (x_{1} + \dots + x_{m}) - (y_{1} + \dots + y_{m}) + (x_{m+1} + \dots + x_{m+k}) - (y_{m+k+1} + \dots + y_{m+n}) - (a_{1} + \dots + a_{k}) + (a_{k+1} + \dots + a_{n}) = x_{1} - y_{1} + \dots + x_{m} - y_{m} + x_{m+1} - a_{1} + \dots + x_{m+k} - a_{k} + a_{k+1} - y_{m+k+1} + \dots + a_{n} - y_{m+n},$$

where each $x_i, y_i \in X$. Note that the above form is not necessarily a reduced one, that is, some x_i may be a member of $\{a_1, \ldots, a_k\}$ and some y_i may be a member of $\{a_{k+1}, \ldots, a_n\}$. From this argument, we can put the set H_1 as follows;

$$H_1 = \{ \boldsymbol{h}_{\lambda} = x_1^{\lambda} - y_1^{\lambda} + \dots + x_m^{\lambda} - y_m^{\lambda} + x_{m+1}^{\lambda} - a_1 + \dots + x_{m+k}^{\lambda} - a_k + a_{k+1} - y_{m+k+1}^{\lambda} + \dots + a_n - y_{m+n}^{\lambda} \\ : \text{ each } x_i^{\lambda}, y_i^{\lambda} \in X, \ \lambda \in \Lambda \}.$$

By Corollary 1.3, we have that

$$j_{m+n}^{-1}(H_1) \cap U^{m+n} \neq \emptyset$$
 for each $U \in \mathcal{U}_X$. (1)

Let P be the permutation group of the set $\{1, 2, \ldots, m+n\}$. For each $\pi \in P$, put $E_{\pi} = \{\mathbf{x} = ((x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(m+n)}), (y_{\pi(1)}, y_{\pi(2)}, \ldots, y_{\pi(n+m)})) \in X^{2(m+n)} : j_{m+n}(\mathbf{x}) \in H_1\}$. Then, $j_{m+n}^{-1}(H_1) = \bigcup_{\pi \in P} E_{\pi}$. Since P is a finite set and \mathcal{U}_X is closed with respect to finite intersections, by (1), we may assume that

$$E \cap U^{m+n} \neq \emptyset$$
 for each $U \in \mathcal{U}_X$, (2)

where
$$E = \{ \boldsymbol{e}_{\lambda} = ((x_1^{\lambda}, \dots, x_m^{\lambda}, x_{m+1}^{\lambda}, \dots, x_{m+k}^{\lambda}, a_{k+1}, \dots, a_n), (y_1^{\lambda}, \dots, y_m^{\lambda}, a_1, \dots, a_k, y_{m+k+1}^{\lambda}, \dots, y_{m+n}^{\lambda})) \in X^{2(m+n)} : \lambda \in \Lambda \}.$$

Put

$$B = \{ \boldsymbol{b}_{\lambda} = ((x_{1}^{\lambda}, \dots, x_{m}^{\lambda}), (y_{1}^{\lambda}, \dots, y_{m}^{\lambda})) \in X^{2m} : \lambda \in \Lambda \},$$

$$C = \{ \boldsymbol{c}_{\lambda} = ((x_{m+1}^{\lambda}, \dots, x_{m+k}^{\lambda}, a_{k+1}, \dots, a_{n}),$$

$$(a_{1}, \dots, a_{k}, y_{m+k+1}^{\lambda}, \dots, y_{m+n}^{\lambda})) \in X^{2n} : \lambda \in \Lambda \}.$$

Then, by (2), we have that

$$B \cap U^m \neq \emptyset$$
 for each $U \in \mathcal{U}_X$ and (3)

$$C \cap U^n \neq \emptyset$$
 for each $U \in \mathcal{U}_X$. (4)

Put $D = \{ \boldsymbol{d}_{\lambda} = (x_{m+1}^{\lambda}, \dots, x_{m+k}^{\lambda}, y_{m+k+1}^{\lambda}, y_{m+n}^{\lambda}) \in X^{n} : \lambda \in \Lambda \}.$

Claim. $(a_1,\ldots,a_n)\in\overline{D}.$

Let V_i be an open neighborhood of a_i in X, i = 1, ..., n, such that $V_i \cap V_j = \emptyset$ if $a_i \neq a_j$. For every $x \in X \setminus \bigcup_{i=1}^n V_i$ let V_x be an

open neighborhood of x in X such that $V_x \cap \{a_1, \ldots, a_n\} = \emptyset$. Then the set $U = \bigcup_{i=1}^n V_i \times V_i \cup \bigcup \{V_x \times V_x : x \in X \setminus \bigcup_{i=1}^n V_i\}$ is an open neighborhood of the diagonal Δ_X of X^2 . By our hypothesis, $U \in \mathcal{U}_X$, and hence, from the property (4), there is a $\lambda \in \Lambda$ such that $\mathbf{c}_{\lambda} \in U^n$. Then $(x_{m+i}^{\lambda}, a_i) \in U$ for each $i = 1, \ldots, k$ and $(a_i, y_{m+i}^{\lambda}) \in U$ for each $i = k+1, \ldots, n$. From our method of the choices of V_i and V_x , it follows that $x_{m+i}^{\lambda} \in V_i$ for each $i = 1, \ldots, k$ and $y_{m+i}^{\lambda} \in V_i$ for each $i = k+1, \ldots, n$. Consequently, $\mathbf{d}_{\lambda} = (x_{m+1}^{\lambda}, \ldots, x_{m+k}^{\lambda}, y_{m+k+1}^{\lambda}, \ldots, y_{m+n}^{\lambda}) \in \prod_{i=1}^n V_i$.

Now, since X satisfies the axiom of first countability and so X^n does, take a countable neighborhood base $\{V_s : s \in \mathbb{N}\}$ of (a_1, \ldots, a_n) in X^n such that $V_1 = X^n$ and $V_{s+1} \subsetneq V_s$ for each $s \in \mathbb{N}$. For each $s \in \mathbb{N}$, let $\Lambda_s = \{\lambda \in \Lambda : d_\lambda \in V_s \setminus V_{s+1}\}$, $E_s = \{e_\lambda : \lambda \in \Lambda_s\}, B_s = \{b_\lambda : \lambda \in \Lambda_s\}, C_s = \{c_\lambda : \lambda \in \Lambda_s\}$ and $D_s = \{d_\lambda : \lambda \in \Lambda_s\}$. Here, our proof is in two cases.

Case 1: There is a subsequence $\{t_s : s \in \mathbb{N}\}$ of \mathbb{N} such that $B_{t_s} \cap U^m \neq \emptyset$ for each $s \in \mathbb{N}$ and $U \in \mathcal{U}_X$.

By Corollary 1.3, for each $s \in \mathbb{N}$, we have that $0 \in \overline{j_m(B_{t_s})}$ in $A_{2m}(X)$. Thus we can take a subset Λ'_s of Λ_{t_s} such that $0 \in \overline{\{j_m(\boldsymbol{b}_{\lambda}) : \lambda \in \Lambda'_s\}}$ and $|\Lambda'_s| \leq \tau$. Put

$$E_{\lambda} = \{ ((x_1, \dots, x_m, x_{m+1}^{\lambda}, \dots, x_{m+k}^{\lambda}, a_{k+1}, \dots, a_n), \\ (y_1, \dots, y_m, a_1, \dots, a_k, y_{m+k+1}^{\lambda}, \dots, y_{m+n}^{\lambda})) \in X^{2(m+n)} : \\ ((x_1, \dots, x_m), (y_1, \dots, y_m)) \in j_m^{-1} j_m(\boldsymbol{b}_{\lambda}) \}$$

for each $\lambda \in \bigcup_{s=1}^{\infty} \Lambda'_s$, and $E_1 = \bigcup \{E_{\lambda} : \lambda \in \bigcup_{s=1}^{\infty} \Lambda'_s\}$. Then we can see that $|E_1| \leq \omega \cdot \tau = \tau$ and $E_1 \cap U^{m+n} \neq \emptyset$ for each $U \in \mathcal{U}_X$. Let $H_2 = j_{m+n}(E_1)$; then we have that $0 \in \overline{H_2}$ and $|H_2| \leq \tau$. Furthermore it is easy to see that $H_2 \subset H_1$. Consequently the set $H_0 = H_2 - g$ is desired one.

Case 2: There is $s_0 \in \mathbb{N}$ such that for each $s \geq s_0 B_s \cap U^m = \emptyset$ for some $U \in \mathcal{U}_X$.

Let $B_1 = \bigcup_{s \ge s_0} B_s$, and assume that there is a $U_1 \in \mathcal{U}_X$ such that $B_1 \cap U_1^{\overline{m}} = \emptyset$. Then, we have that

$$\bigcup_{s \ge s_0} E_s \cap U_1^{m+n} = \emptyset.$$
(5)

On the other hand, since $(\bigcup_{s < s_0} D_s) \cap V_{s_0} = \emptyset$, we can select $U_2 \in \mathcal{U}_X$ such that $\bigcup_{s < s_0} C_s \cap U_2^n = \emptyset$. This follows that

$$\bigcup_{s < s_0} E_s \cap U_2^{m+n} = \emptyset.$$
(6)

Thus, by (5) and (6), $E \cap (U_1 \cap U_2)^{m+n} = \emptyset$, but this contradicts (2). Therefore, we can see that $B_1 \cap U^m \neq \emptyset$ for each $U \in \mathcal{U}_X$. By Corollary 1.3, this means that $0 \in \overline{j_m(B_1)}$, and hence we can take $\Lambda_1 \subset \bigcup_{s \geq s_0} \Lambda_s$ such that $0 \in \overline{\{j_m(b_\lambda) : \lambda \in \Lambda_1\}}$ and $|\Lambda_1| \leq \tau$. Now, by the hypothesis of Case 2, $0 \notin \overline{\{j_m(b_\lambda) : \lambda \in \Lambda_s\}}$ for each $s \geq s_0$. Then we can see that $\Lambda_1 \cap \bigcup_{t \geq s} \Lambda_t \neq \emptyset$ for each $s \geq s_0$, and this means that $(a_1, \ldots, a_n) \in \overline{\{d_\lambda : \lambda \in \Lambda_1\}}$. Put

$$E_{\lambda} = \{ ((x_1, \dots, x_m, x_{m+1}^{\lambda}, \dots, x_{m+k}^{\lambda}, a_{k+1}, \dots, a_n), \\ (y_1, \dots, y_m, a_1, \dots, a_k, y_{m+k+1}^{\lambda}, \dots, y_{m+n}^{\lambda})) \in X^{2(m+n)} : \\ ((x_1, \dots, x_m), (y_1, \dots, y_m)) \in j_m^{-1} j_m (\mathbf{b}_{\lambda}) \}$$

for each $\lambda \in \Lambda_1$, and $E_1 = \bigcup \{E_\lambda : \lambda \in \Lambda_1\}$. Then $E_1 \cap U^{m+n} \neq \emptyset$ for each $U \in \mathcal{U}_X$. Finally, put $H_2 = j_{m+n}(E_1)$ and $H_0 = H_2 + g$. Therefore, we can see that $g \in \overline{H_0}$, $|H_0| \leq \tau$ and also $H_0 \subset H$. \Box

Using the above fundamental results, we show the following main result in this paper. Let κ be an infinite cardinal and $C(\kappa) = \bigoplus_{\alpha < \kappa} C_{\alpha}$, where each C_{α} is the set of convergent sequence $\{a_{n,\alpha} : n \in \mathbb{N}\}$ with its limit $\{a_{\alpha}\}$. Then, the sequential fan $S(\kappa)$ is the quotient image of $C(\kappa)$ identifying the set $\{a_{\alpha} : \alpha < \kappa\}$ to a point **0**. Let Φ be the set of all mappings from κ to \mathbb{N} , and for each $\varphi \in \Phi$ and $\alpha < \kappa$, put

$$egin{array}{rcl} O(arphi,lpha) &=& \{a_{n,lpha}:n>arphi(lpha)\}\cup\{a_{lpha}\}\ W(arphi) &=& \{a_{n,lpha}:n>arphi(lpha), lpha<\kappa\}\cup\{m{0}\}. \end{array}$$

Then, $\bigcup_{\alpha < \kappa} O(\varphi, \alpha)$ is a canonical open neighborhood of the set $\{a_{\alpha} : \alpha < \kappa\}$ in $C(\kappa)$, and $W(\varphi)$ is a canonical open neighborhood of **0** in $S(\kappa)$.

Theorem 3.2 Let κ be an infinite cardinal and $n \in \mathbb{N}$. Then $t(A_{2n}(C(\kappa))) = t(S(\kappa)^n)$.

Proof: We prove the Theorem by induction with respect to n. It is clear that $t(S(\kappa)) = \omega$ and, by Theorem 2.1, we have that $t(A_2(C(\kappa))) = t(C(\kappa)^2) = \omega$. Then, let $n \ge 2$ and suppose that for each k < n, $t(A_{2k}(C(\kappa))) = t(S(\kappa)^k)$.

Claim 1. $t(A_{2n}(C(\kappa))) \leq t(S(\kappa)^n).$

Let $t(S(\kappa)^n) = \tau, (\omega \leq \tau \leq \kappa)$, and take a subset H of $A_{2n}(C(\kappa))$ and a word $g \in A_{2n}(C(\kappa))$ such that $g \in \overline{H}$. By our inductive assumption, we may assume that $H \subset A_{2n}(C(\kappa)) \setminus A_{2n-2}(C(\kappa))$. Furthermore, if $g \in A_{2n}(C(\kappa)) \setminus A_{2n-2}(C(\kappa))$, by the properties (3) and (5) in Lemma 1.1, we can take a countable subset H_0 of H such that $g \in \overline{H_0}$. Thus, it suffices to show in the following two cases.

Case 1: $g \in A_k(C(\kappa)) \setminus A_{k-1}(C(\kappa))$ for some k such that $1 \le k \le 2n-1$.

If k is odd, $g \in \overline{A_{2n-1}(C(\kappa)) \setminus A_{2n-2}(C(\kappa))}$. Thus, by Lemma 3.1, we can take a subset H_0 of H such that $g \in \overline{H_0}$ and $|H_0| \leq t(A_{2n-1-k}(C(\kappa)))$. Similarly, if k is even, we can take a subset H_0 of H such that $g \in \overline{H_0}$ and $|H_0| \leq t(A_{2n-k}(C(\kappa)))$. In any case, by our inductive assumption, we have that $|H_0| \leq t(A_{2n-2}(C(\kappa))) = t(S(\kappa)^{n-1}) \leq t(S(\kappa)^n) = \tau$. Case 2: g = 0. In this case, we may assume that

$$H \subset A_{2n}(C(\kappa)) \setminus A_{2n-1}(C(\kappa)).$$
(1)

Let d be a natural metric on $C(\kappa)$ such that d(x, y) = 1 if $x \in C_{\alpha}$, $y \in C_{\beta}$ and $\alpha \neq \beta$, $d(a_{\alpha}, a_{n,\alpha}) = 1/n$, and $d(a_{m,\alpha}, a_{n,\alpha}) = |1/m - 1/n|$. Since $0 \in \overline{H}$, we have that $0 \in \overline{H_1}$, where $H_1 = H \cap V_d$ and $V_d = \{g \in A(C(\kappa)) : \overline{d}(0,g) < 1\}$. On the other hand, we can put $H_1 = \{h = x_1^{\lambda} - y_1^{\lambda} + \cdots + x_n^{\lambda} - y_n^{\lambda} : x_i^{\lambda}, y_i^{\lambda} \in C(\kappa), \lambda \in \Lambda\}$ such that

for each
$$\lambda \in \Lambda$$
,
there are $\alpha_1^{\lambda}, \ldots, \alpha_n^{\lambda} < \kappa$ such that $x_i^{\lambda}, y_i^{\lambda} \in C_{\alpha^{\lambda}}$. (2)

For each $\lambda \in \Lambda$ and i = 1, ..., n, choose a point $z_i^{\lambda} \in \{x_i^{\lambda}, y_i^{\lambda}\}$ such that the distance between z_i^{λ} and $a_{\alpha_i^{\lambda}}$ is larger than the one between another point and $a_{\alpha_i^{\lambda}}$. Now, we show that $\Theta =$ $(\mathbf{0}, ..., \mathbf{0}) \in \overline{E_1}$, where $E_1 = \{\mathbf{e}_{\lambda} = (z_1^{\lambda}, ..., z_n^{\lambda}) \in S(\kappa)^n : \lambda \in$ $\Lambda\}$. Take an arbitrary $\varphi \in \Phi$, and put $U_{\varphi} = \bigcup \{O(\varphi, \alpha) \times O(\varphi, \alpha) : \alpha < \kappa\} \cup \Delta_{C(\kappa)}$. Then $U_{\varphi} \in \mathcal{U}_{C(\kappa)}$, and by Corollary 1.3, we can see that $\{((x_1^{\lambda}, ..., x_n^{\lambda}), (y_1^{\lambda}, ..., y_n^{\lambda})) : \lambda \in$ $\Lambda\} \cap U_{\varphi}^n \neq \emptyset$. Thus, there is a $\lambda \in \Lambda$ such that $((x_1^{\lambda}, ..., x_n^{\lambda}), (y_1^{\lambda}, ..., y_n^{\lambda})) \in U_{\varphi}^n$, and so that each $(x_i^{\lambda}, y_i^{\lambda}) \in U_{\varphi}$. By (1) and (2), we have that $x_i^{\lambda}, y_i^{\lambda} \in O(\varphi, \alpha_i^{\lambda})$ for each i = 1, ..., n, and this means that each $z_i^{\lambda} \in O(\varphi, \alpha_i^{\lambda})$. Therefore, $\mathbf{e}_{\lambda} \in W(\varphi)$ and hence we can see that $E_1 \cap W(\varphi) \neq \emptyset$. Since λ is arbitrary, this follows that $\Theta \in \overline{E_1}$.

Now, since $t(S(\kappa)^n) = \tau$, let Λ_0 be a subset of Λ such that $\Theta \in \{e_{\lambda} : \lambda \in \Lambda_0\}$ and $|\Lambda_0| \leq \tau$. On the other hand, from the definition of z_i^{λ} , we can see that for each $\varphi \in \Phi$, $\{((x_1^{\lambda}, \ldots, x_n^{\lambda}), (y_1^{\lambda}, \ldots, y_n^{\lambda})) : \lambda \in \Lambda_0\} \cap U_{\varphi}^n \neq \emptyset$. Hence, by Corollary 1.3, this means that $0 \in \overline{H_0}$, where $H_0 = \{h_{\lambda} : \lambda \in \Lambda_0\}$.

Consequently, in any case, we can take a subset H_0 of H such that $g \in \overline{H_0}$ and $|H_0| \leq \tau$, and hence we get Claim 1.

Claim 2. $t(S(\kappa)^n) \leq t(A_{2n}(C(\kappa))).$

Let $t(A_{2n}(C(\kappa))) = \tau, (\omega \leq \tau \leq \kappa)$, and take a subset E of $S(\kappa)^n$ and a point $\mathbf{x} \in S(\kappa)^n$ such that $\mathbf{x} \in \overline{E}$. By our inductive assumption, we may assume that $\mathbf{x} = \mathbf{\Theta} (= (\mathbf{0}, \dots, \mathbf{0}))$. Put $E = \{\mathbf{e}_{\lambda} = (x_1^{\lambda}, \dots, x_n^{\lambda}) : \lambda \in \Lambda\}$. Then for each $\lambda \in \Lambda$ and $i = 1, \dots, n$, there is $\alpha_i^{\lambda} < \kappa$ such that $x_i^{\lambda} \in C_{\alpha_i^{\lambda}}$ (if $x_i^{\lambda} = \mathbf{0}$ we regard x_i^{λ} as $a_{\alpha_i^{\lambda}}$). Now, put $H = \{\mathbf{h}_{\lambda} = x_1^{\lambda} - a_{\alpha_1^{\lambda}} + \dots + x_n^{\lambda} - a_{\alpha_n^{\lambda}} : \lambda \in \Lambda\}$. Then, with the similar argument of the proof of Claim 1, it is easy to see that $0 \in \overline{H}$. Since $t(A_{2n}(C(\kappa))) = \tau$, take a subset Λ_0 of Λ such that $0 \in \overline{H}$. Since $t(A_{2n}(C(\kappa))) = \tau$. Then, by the definition of H and Corollary 1.3, we can see that $\mathbf{\Theta} \in \overline{E_0}$, where $E_0 = \{\mathbf{e}_{\lambda} : \lambda \in \Lambda_0\}$. Therefore we have that $t(S(\kappa)^n) \leq \tau$.

From Claim 1 and 2, we can prove that $t(A_{2n}(C(\kappa))) = t(S(\kappa)^n)$. \Box

Arhangel'skiĭ, Okunev and Pestov [2] proved that for a metrizable space X, $t(A(X)) \leq w(X')$, where X' is the set of all non-isolated points in X. Thus we obtain the following.

Corollary 3.3 Let κ be an infinite cardinal and $n \in \mathbb{N}$. Then $t(S(\kappa)^n) = t(A_{2n}(C(\kappa))) \leq t(A(C(\kappa))) \leq w(C(\kappa)') = \kappa$.

Let X be a metrizable space with $w(X') = \kappa$, where $cf(\kappa) > \omega$. Then $C(\kappa)$ can be embedded in X as a closed subset. By this fact, the property (6) of Lemma 1.1 and Corollary 3.3, we obtain the following.

Corollary 3.4 Let X be a metrizable space with $w(X') = \kappa$, where $cf(\kappa) > \omega$, and $n \in \mathbb{N}$. Then $t(S(\kappa)^n) = t(A_{2n}(C(\kappa))) \le t(A_{2n}(X)) \le t(A(X)) \le w(X') = \kappa$.

Consequently, we obtain the following partial answer to the question (in [2]) whether t(A(X)) is equal to w(X') for metrizable spaces,

Theorem 3.5 Let X be a metrizable space with $w(X') = \kappa$, where $cf(\kappa) > \omega$. Assume that $t(S(\kappa)^n) = \kappa$ for some $n \in \mathbb{N}$. Then $t(A_{2n}(X)) = t(A(X)) = w(X') = \kappa$.

Corollary 3.6 Let X be a metrizable space with $w(X') = \omega_1$. Then $t(A_4(X)) = t(A(X)) = w(X') = \omega_1$.

Proof: Since Gruenhage and Tanaka [6] proved that $t(S(\omega_1)^2) = \omega_1$, Theorem 3.5 follows the result. \Box

4 Countable tightness of A(X)for metrizable spaces X

In [2], the main results with respect to the free abelian topological groups on metrizable spaces are the following.

Theorem 4.1 ([2]) Let X be a metrizable space and X' the set of all non-isolated points in X. Then;

- (1) the tightness of A(X) is countable iff X' is separable,
- (2) A(X) is a k-space iff X is locally compact and X' is separable.

With respect to the result (2) in Theorem 4.1, the author [11] showed the following.

Theorem 4.2 ([11]) Let X be a metrizable space.

- (1) The following are equivalent:
 - (a) $A_n(X)$ is a k-space for each $n \in \mathbb{N}$,
 - (b) $A_4(X)$ is a k-space,
 - (c) the canonical mapping $i_n : (X \oplus -X \oplus \{0\})^n \longrightarrow A_n(X)$ is quotient for each $n \in \mathbb{N}$,

- (d) i_4 is quotient,
- (e) either X is locally compact and X' is separable, or X' is compact.
- (2) The following are equivalent:
 - (a) $A_3(X)$ is a k-space.
 - (b) i_3 is quotient,
 - (c) X is locally compact or X' is compact.
- (3) $A_2(X)$ is a k-space and i_2 is quotient.

On the other hand, apply the results in the previous section. Then, with respect to the result (1) in Theorem 4.1, we can show the following.

Theorem 4.3 Let X be a metrizable space.

- (1) The following are equivalent:
 - (a) the tightness of A(X) is countable.
 - (b) the tightness of $A_4(X)$ is countable,
 - (c) X' is separable.
- (2) the tightness of $A_3(X)$ is countable.

Proof: To prove the statement 1, we suffice to show the implication (b) \Rightarrow (c). Suppose that X' is not separable, i.e. $w(X') \geq \omega_1$. Then, $C(\omega_1)$ is embedded in X as a closed subspace. Hence, by Corollary 3.6, we can see that $\omega_1 =$ $t(A_4(C(\omega_1))) \le t(A_4(X)).$

Next, to show that $t(A_3(X)) \leq \omega$, take a subset H of $A_3(X)$ and a word $q \in A_3(X)$ such that $q \in \overline{H}$. By the property (5) in Lemma 1,1 and Theorem 2.1, we may assume that $g \in X \cup -X$ and $H \in A_3(X) \setminus A_2(X)$. Now apply Lemma 3.1 as m = n = 1. Then we can take a subset H_0 of H such that $g \in H_0$ and $|H_0| \leq t(A_2(X)) = \omega$. This follows that $t(A_3(X)) \leq \omega$. \Box

References

- A. V. Arhangel'skiĭ, Mapping related to topological groups, Soviet Math. Dokl. 9 (1968), 1011-1015.
- [2] A. V. Arhangel'skiĭ, O. G. Okunev and V. G. Pestov, Free topological groups over metrizable spaces, Topology Appl. 33 (1989), 63-76.
- K. Eda, G. Gruenhage, P. Koszmider, K. Tamano and S. Todorčević, Sequential fans in topology, Topology Appl., 67 (1995), 189-220.
- [4] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [5] M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12(3) (1948), 279-324 (in Russian); English transl.: Amer. Math. Soc. transl. 35 (1951); Reprint: Amer. Math. Soc. Transl. 8 (1962), 305-364.
- [6] G. Gruenhage and Y. Tanaka, Products of k-spaces and spaces of countable tightness, Trans. Amer. Math. Soc. 273 (1982), 299-308.
- [7] C. Joiner, Free topological groups and dimension, Trans. Amer. Math. Soc. 220 (1976), 401-418.
- [8] A. A. Markov, On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64 (in Russian); English transl.: Amer. Math. Soc. Transl. 30 (1950) 11-88; Reprint: Amer. Math. Soc. Transl. 8 (1962), 195-272.
- [9] V. G. Pestov, On neighbourhoods of unity in free topological groups, Vestnik Moscov. Univ. Ser. 1 Mat. Mech. 3 (1985), 8-10 (in Russian).
- [10] M. G. Tkačenko, Completeness of free abelian topological groups, Soviet Math. Dokl. 27 (1983), 341-345.
- [11] K. Yamada, Characterizations of a metrizable space X such that every $A_n(X)$ is a k-space, Topology Appl. **49** (1993), 75-94.

Faculty of Education Shizuoka University Ohya, Shizuoka 422, Japan e-mail: k-yamada@ed.shizuoka.ac.jp

.

•