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INJECTIVE SPACES VIA THE FILTER MONAD 
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Abstract 

An injective space is a topological space with a 
strong extension property for continuous maps 
with values on it. A certain filter space construc­
tion embeds every To topological space into an 
injective space. The construction gives rise to a 
monad. We show that the monad is of the Kock­
Zoberlein type and apply this to obtain a simple 
proof of the fact that the algebras are the con­
tinuous lattices (Alan Day, 1975, Oswald Wyler, 
1976). In previous work we established an in­
jectivity theorem for monads of this type, which 
characterizes the injective objects over a certain 
class of embeddings as the algebras. For the fil­
ter monad, the class turns out to consist pre­
cisely of the subspace embeddings. We thus ob­
tain as a corollary tl1at the injective spaces over 
subspace embeddings are the continuous lattices 
endowed with the Scott topology (Dana Scott, 
1972). Similar results are obtained for contin­
uous Scott domains, which are characterized as 
the injective spaces over dense subspace embed­
dings. 

Mathematics Subject Classification: AMS:54C20,06B35,18C20. 
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1. Introduction 

An injective space is a topological space D with a strong ex­
tension property for continuous functions with values on D, to 
the extent that every continuous map f : X ~ D extends to a 
continuous map ! :y ~ D, for every space Y containing X as 
a subspace. For example, the extended real line endowed with 
the topology of lower semicontinuity is an injective space [5]. 

A certain filter space construction embeds every To topolog­
ical space into an injective space. In addition to containing the 
given space embedded as a subspace, the filter space appears 
as a quotient of its own filter space. Technically and more pre­
cisely, the filter space construction is a monad-see [7] for the 
definition. We show that the monad is of the Kock-Zoberlein 
type [6] and apply this to obtain a simple proof of Alan Day's 
result that its algebras are the continuous lattices [2]. 

In [3] we proved that, given a category with the structure 
of a Kock-Zoberlein monad, the objects that are injective over 
a certain class of embeddings specified in terms of the monad 
structure coincide with the algebras of the monad. It turns 
out that for the filter monad the embeddings are exactly the 
subspace embeddings. The fact that the injective spaces over 
subspace embeddings are precisely the continuous lattices en­
dowed with the Scott topology, established by Dana Scott [8], 
thus appears as a corollary of the characterization of the alge­
bras. 

The continuous Scott domains are the algebras of the proper 
filter monad [11]. For this monad, the associated embeddings 
are precisely the dense subspace embeddings, and hence the in­
jective spaces over dense embeddings are characterized as the 
continuous Scott domains. This characterization is folklore 
for the experts. It was first formulated and proved by Scott, 
but only published as Exercise 11.3.19 of the Compendium [5], 
whose emphasis is on continuous lattices (personal communi­
cation). 
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More examples of the above situation, including the lower 
and upper space monads, are investigated in the paper [3], 
which also has a long introduction explaining the fundamental 
role of injectivity in Scott's mathematical theory of compu­
tation and its connections with function spaces. Even more 
examples have been recently discovered by Bob Flagg and the 
author [4]. 

For background on continuous lattices the reader is referred 
to [5]. For more about domain theory and topology see [1, 9]. 

2. The Filter Space Construction 

The filter monad is defined on the category of To topological 
spaces and continuous maps. Recall that a space is To if no 
two distinct points share the ~ame system of neighborhoods. 
Given a space X, one denotes its lattice of opens sets by OX 
and constructs the filter space F X as follows. The points 
are the filters of OX. The open sets are generated by the sets 

ou = {¢ E F X IU E ¢}, U E OX, 

which form a base as DU n DU' = D(U n U'). 
Given a continuous map f : X ---* Y, one defines a function 

Ff : FX ---* FY by 

Ff(¢J) = {V E DY I f- 1(V) E ¢}. 

Then F is a functor and one has natural transformations TJx : 
X --+ FX and J..Lx : FFX ~ FX defined by 

TJX(X) = {U E nXlx E U}, 

which make F into a monad.F = (F, 1], J..L). 
Continuity of the functions defined above follows from the 

fact that 
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The first two equations are routinely verified and the last fol­
lows from §2.1 below. Since 1]x is one-to-one (precisely because 
X is To), the second equation shows that 1]x embeds X as a 
subspace of FX. The unit laws jjx 01]:FX = jjx oF1]x = id:FX 
show that jjx is a retraction map (in two ways) and hence FX 
is a quotient of FFX, because retractions are quotient maps. 

2.1. jjx(q» = {U E OXIDU E ct>}. 

Let U E jjx(ct». Then there is U E <P with U E nU, and hence 
with U E ¢ for all ¢ E U. From this we see that U ~ DU. 
Hence DU E ct> because filters are upper closed. Therefore 
jjx(ct» ~ {U E nX\oU E ct>}. In order to establish the in­
clusion in the other direction, let U E OX with OU E ct>. We 
have to show that there is U E ct> with U E nU. We can take 
U = DU, because nOU = jU, the principal filter generated 
by U, and the proof is concluded. 

Note It follows from this that the filter monad is formally 
analogous to the so-called continuation monad. In fact, an 
open set can be regarded as a continuous map into Sierpinski 
space and a filter can be regarded as a finite-meet-preserving 
map into the two-point lattice, so that set-abstraction can be 
translated to lambda-abstraction as in 

- AV· ¢(AX· V(f(x)), 

AU· U(x), 
AU · ct>(A¢· ¢(U)), 

which is syntactically equivalent to the definition of the con­
tinuation monad. 

3. Kock-Zoberlein Monads 

A monad T = (T, 7], jj) defined on a poset-enriched category 
X, with T : X ---? X a locally monotone functor, is said to be 
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of the Kock-Zoberlein type if the condition 

holds for all X. Notice that our definition is dual (at the level 
of hom-posets) to that of [6]. 

Since X is poset-enriched, one can consider adjunctions of 
arrows. Given arrows l : X ~ Y and r : Y ~ X one defines 

l -{ r iff lor ~ idy and idx ~ r 0 l, 

and one says that l is left adjoint to r and that r is right 
adjoint to l. In this case each adjunct land r is uniquely de­
termined by the other. The adjunction is said to be reflective 
if lor = idy , and coreflective if idx = r 0 l. In these cases 
one writes l -{r rand l --1e r respectively. 

By specializing Anders Kock's results [6] from 2-categories 
to poset-enriched categories, we learn that 

3.1. 1fT = (T, 'f], J.L) is a Kock-Zoberlein monad then 

1.	 An arrow Q : T X ~ X is the structure map of aT-algebra 
iff 'f]x -Ie Q. 

2.	 'f/Tx -{ /-Lx· 

3.	 J,lx -{ T'T]x. 

(We showed in [3] that each of these properties is in fact equiv­
alent to the Kock-Z6berlein property.) 

By §3.1(1), every object can be the underlying object of at 
most one algebra, and every structure map of an algebra is 
uniquely determined by the underlying object of the algebra 
(as the right adjoint of the unit of the object). Due to this 
reason we can identify the algebras of a Kock-Z6berlein monad 
with their underlying objects. 
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4.	 Injective Objects Which are the Algebras of Kock­
Zoberlein Monads 

In what follows we work with a Kock-Zoberlein monad T = 
(T, TJ, J..l) defined on a poset-enriched category X. The arrows 
singled out in the following definition are particular cases of the 
semiupper maps of [10], for which the reflectivity condition is 
not required: 

4.1.	 By a T-embedding we mean an arrow j : X ~ Y such 
that the map T j : T X ~ TY has a reflective left adjoint, 
denoted by T* j : TY --7 T X . 

For example, rJx : X ~ TX is a T-embedding with T*rJx = 
J..lx, because the adjunction 3.1(3) is reflective by virtue of the 
unit law Jlx 0 TrJx = idx · 

Note The following conditions are equivalent: 

1.	 T -embeddings are order-monic. 

2.	 Each component of 'fJ is order-monic. 

3.	 T is order-faithful. 

(1) ===} (2): Immediate. (2) ===> (3): If Tf :s; Tg then we 
have that T f 0 TJx :s; T 9 0 rJx by composition with rJx, that 
rJy 0 f :s; 'flY 0 9 by naturality, and that f :s; 9 by the assumption. 
(3) ===> (1): Let j : X ~ Y be a T-embedding and f, 9 : Z --7 

X be arrows with j 0 f :s; jog. Then Tj 0 Tf :s; Tj 0 Tg 
by local monotonicity of T. Hence T f ::; T 9 because T j is 
split-mono. Therefore f ::; 9 by the assumption, and the proof 
is concluded. 
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4.2.	 An object D is said to be injective over an arrow j : X ~ 

Y if every map f : X ~ D has an extension f :Y ---+ D 
along j : X ---+ Y, in the sense that the following diagram 
commutes: 

JX-----+-I Y 

D 
One normally assumes that j : X ---+ Y is a monomorphism, 
so that the word extension is applied in the usual sense, but 
this is unimportant here. Notice that the extension! need not 
be unique. But since X is poset-enriched, a definition with 
canonical choice is possible. We first recall a concept. 

A right K an extension of a map f : X ~ D along an 
arrow j : X ---+ Y is a (necessarily unique) map f / j : Y ---+ D 
such that 

1. f / j 0 j ~ f and 

2. f oj ~ f implies J ~ Ilj· 

In other words, f Ij is the largest solution in ! to the inequality 
! 0 j ~ f. In the case that we have equality in (1), we say that 
f Ij is a right extension of f along j. 

4.3.	 We say that an object D is right injective over an arrow 
j : X ---+ Y if every map f : X ~ D has a right extension 
f / j : Y ---+ D along j : X ---+ Y. 

4.4.	 The following statements are equivalent for any object D: 

1. D is injective over T -embeddings. 

2. D is right injective over T -embeddings. 

3. D is aT-algebra. 

In this case, if f : X ---+ D is any arrow and 
j : X	 ---+ Y is aT-embedding then 

f / j = m DoTI 0 T* j 0 TJy· 
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Here mD : T D ~ D is the unique structure map of the al­
gebra D. The construction of f / j is illustrated in the following 
diagrams: 

This was established in [3]. 

x j .y TX • 
T*j 

TY · 
T/Y Y 

~ ~.. Ilj T~ 
D TD .... flj 

m~ ~. 

D 

Note. It is a basic property of monads that T X endowed with 
the structure map J,lx : TTX ~ TX is a free T-algebra with 
insertion of generators 'f}x : X ~ TX . More precisely, the 
following universal property holds. Given any T-algebra A 
with structure map a : T A ~ A, every arrow f : X ~ A 
extends uniquely to a T-algebra homomorphism 1:T X ~ A, 
which is constructed as 1= a 0 T f: 

x __'f}_x_---.. T X 

A 

See [7, Theorem VI.2.1]. In general, there can be many 
arrows ! extending f along 1]X· By 4.4, there is a greatest 
one, which coincides with the unique T -algebra homomorphism 
extending f. In fact, one has that 

f/1]x = a oTf oT*1]xo1]Tx = aoTfoJ,lx°1]TX = aoTf = 1, 

because a = rnA. By taking A = TY and f = 1]y 0 9 for 
9 : X ~ Y arbitrary, recalling that Tg : TX ~ TY is always 
an algebra homomorphism, one sees that the functor part of a 
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Kock-Zoberlein monad is uniquely determined by the unit of 
the monad, by its object part, and by the extension property 
as Tg = (TJy 0 g)/T]x. In particular, by taking 9 = idx we 
conclude that TJx/TJX = idTx . 

4.5.	 An object is aT-algebra iff it is a retract of a free T-
algebra. 

This fact, which is a useful tool for obtaining concrete charac­
terizations of the algebras, was first proved by Anders Kock [6]. 
It is also a corollary of 4.4, using the facts that TJA is a T­
embedding and that an injective object over T-embeddings is 
a retract of every object into which it is T-embedded [3]. 

5. The Filter Monad is of the Kock-Zoberlein Type 

To topological spaces and continuous maps form a poset-enriched 
category under the pointwise specialization order. By a simple 
unfolding of definitions, one sees that the pointwise specializa­
tion order is characterized by, for all f, 9 : X ~ Y, 

j ~ 9 iff f- 1(V) ~ g-l(V) for every V E ny. 

5.1. F is locally monotone.
 

Let f, 9 : X ~ Y with f ~ g. In order to prove that Fj ~ Fg,
 
let ¢ E FX and V E Ff(¢). This means that f-1(V) E ¢.
 
Since f- 1 (V) ~ g-l(V) and ¢ is upper closed, we have that
 
g-l(V) E ¢. But this means that V E Fg(¢). Therefore
 
Fj(¢) ~ Fg(¢).
 

5.2.	 F is of the Kock-Zoberlein type. 

By specializing the definitions to the appropriate types, we 
obtain 

'TJ:FX(¢) = {U E nFxl¢ E U}, 
FTJx(¢) = {U E OFX\7Jx1 (U) E ¢}.
 

Let U E T]:FX (¢). This means that ¢ E U. By openness of U,
 
there is U E ¢ with DU ~ U. Since U = 1]x1(DU), we see that
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DU E F'f/x(¢). And since filters are upper sets, we conclude 
that U E F'f/x(¢), which establishes 'f/rX(¢) ~ F'f/x(¢). 

5.3. The F -embeddings are precisely the subspace embeddings. 

Given a continuous map f : X --7 Y, its frame map f- 1 : 

DY --7 OX preserves all joins and hence has a right adjoint 
f* : nx --7 nY, which sends an open set U E OX to the 
largest open set V E ny such that f- 1(V) ~ U. We can thus 
define a map F*f : :FY --+ F X by 

F*f(~) = {U E OX I f*(U) E ~}. 

The set F* f(~) is a filter because f* preserves meets. The 
function F*f is continuous because one easily computes 

That this produces a left adjoint to F f is verified as follows: 

Ff(:F*f(~))	 = {V E f2Y I f- 1(V) E F*f(~)} 

= {V E f2Y I !*(!-l(V)) E ~)} 2 ~, 

because if V E ~ then !*(f- 1 (V)) E ~ as V ~ !*(f- 1 (V)). 
Similarly, one concludes that F*f(Ff(¢)) ~ ¢. Reflectiveness 
means that F*f 0 F f (¢) = ¢. So we have to check that the 
equation f- 1 (f*(U)) = U holds iff f is an embedding. But this 
equation is equivalent to saying that /-1 is surjective, which is 
in turn equivalent to saying that f is a subspace embedding, 
because our spaces are assumed to be To. 

Note. The components of the unit are order-monic. 

Assume that 'r/x (x) ~ 'r/x (y) and let U be an open neighbor­
hood of x. Then U E 'r/x(x) and hence U E 'r/x(Y) by the 
assumption, which means that y E U. Therefore x ~ y. 

Corollary. F is order-faithful and subspace embeddings are 
order-monic. 

By virtue of Note 4.1. 
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6. Injective Spaces 

We take the characterization [8, Proposition 2.4] as our defi­
nition: A complete lattice D is continuous if every d E D is 
the "lim inf" of its filter of Scott open neighborhoods, in the 
sense that d = V{/\ U IdE U}, where U ranges over Scott 
open sets. Recall that the continuous lattices appear as the 
(Scott continuous) retracts of the continuous lattices. 

6.1.	 :FX is an algebraic lattice endowed with the Scott topol­
ogy. 

It is immediate that the specialization order of FX is inclu­
sion of filters. Since the lattice of filters is algebraic with the 
principal filters as the compact elements, and since OU is the 
set of filters containing the principal filter jU, we see that DU 
is a basic Scott open set, which establishes the claim. 

6.2.	 The algebras of the filter monad are the continuous lattices 
endowed with the Scott topology. Moreover, the struc­
ture map mD : FD ---+ D of an algebra with underlying 
space D is given by 
mD(</J) = V{A U I U E ¢>}. 

We know by 6.1 that the free algebra :FX is an algebraic 
lattice endowed with the Scott topology, and by 4.5 that ev­
ery algebra is a retract of a free algebra. Therefore the alge­
bras are continuous lattices. Conversely, let D be a continu­
ous lattice endowed with the Scott topology. It is clear that 
mn : FD ---+ D is monotone. We know that FD is an alge­
braic lattice with a basis consisting of principal filters and that 
every filter is the directed join of the principal filters gener­
ated by its members. Thus, in order to establish continuity 
ofmn, it is enough to show that mn(¢» = V{mn(iU)\U E <p}. 
But this is immediate because mD(iU) = /\ U. By §3.1, one 
has that mD is a structure map iff 'f]D 0 mD :::; idFD and 
mD 0 'f]D = idD . The equation holds precisely because D is 
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continuous. In order to establish the inequality, first notice 
that TJn 0 mn(¢) = {U E rtD I V{/\ U' I U' E ¢} E U}. Let 
U E TJn 0 mD(¢). Then /\ V' E U for some U' E ¢ because 
{/\ U' I U' E ¢} is directed and U is Scott open. Hence U E if; 
because U' ~ U. Therefore 'T/n 0 mD(¢) ~ ¢. 

Note Alan Day also proved that if D and E are algebras then 
a continuous function f : D ~ E is an algebra homomorphism 
iff it preserves all meets. 

6.3.	 The injective spaces over subspace embeddings are the con­
tinuous lattices endowed with the Scott topology. 
Moreover, if f : X ~ D is a continuous map into a 
continuous lattice and j : X ~ Y is a subspace embed­
ding, then f has a greatest extension along j, given by 
f / j(y) = V{/\ U lyE j*(!-l(U))}. 

The F-embeddings are the subspace embeddings by 5.3. There­
fore the result follows from 4.4, which says that the injective 
objects over the T-embeddings of a Kock-Zoberlein monad T 
are the T -algebras. The above formula is a special case of the 
general formula f / j = mAo T f 0 T* j 0 'flY of 4.4. 

Note Scott's extension formula produces the map 

y ~ V{!\f(j-l(V)) lyE V}, 

which is equivalent to f / j as defined above. 

7. Densely Injective Spaces 

The definition of the filter monad still makes sense if the im­
proper filter (the principal filter generated by the empty set-a 
top element) is ruled out. The resulting monad is referred to 
as the proper filter monad and is denoted by F+. The 
previous results remain true with the- following amendments. 

By a continuous Scott domain we mean a poset with 
directed joins and non-empty meets (or, equivalently, bounded 
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joins), subject to the approximation axiom of the definition 
of a continuous lattice. In the algebraic case one uses the 
terminology Scott domain. 

7.1.	 F+X is a Scott domain endowed with the Scott topology. 

7.2.	 The F+ -embeddings are precisely the dense subspace em-
beddings. 

Because a continuous map 1 : X ~ Y is dense iff 1*(0) = 0, 
and this is the condition for F*f (¢) as defined in 5.3 being 
different from i0 for all ¢ and hence F*f being well-defined. 

7.3.	 The algebras of the proper filter monad are the continuous 
Scott domains endowed with the Scott topology. The ho­
momorphisms are the meet-preserving continuous maps. 

7.4.	 The injective spaces over dense subspace embeddings are 
the continuous Scott domains endowed with the Scott topol­
ogy. 
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