
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



Topology Proceedings 
Volume 22, Summer 1997, 111-123 

ON SOME SEMIGROUP COMPACTIFICATIONS 

M. Filali* 

Abstract 

The LUG-compactification UG of a locally com­
pact group is a semigroup with an operation which 
extends that of G and which is continuous (only) 
in one variable. When G is discrete, UG and 
the Stone-Cech compactification {3G are identi­
cal. Some algebraic properties, such as the num­
ber of left ideals and cancellation, are known to 
hold in the semigroup {3N where N is the additive 
semigroup of the integers. We show that these 
properties are also true in UG for a large class of 
locally compact groups. The method used is to 
transfer the information from {3N to (3G where 
G is an infinite discrete group (or a cancellative 
commutative semigroup), and then to UG where 
G is not necessarily discrete. 

1. Introduction and Preliminaries 

The Stone-Cech compactification of a discrete semigroup is 
a semigroup compactification, which has attracted a special 
attention in the last twenty years. More recently, it is the 
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LUG-compactification of a locally compact group which has 
become the aim of many mathematicians. One way to produce 
these compactifications is as follows. Let G be a locally com­
pact, Hausdorff group written additively, and let LUG(G) be 
the space of bounded, complex-valued functions which are uni­
formly continuous with the respect to the right uniformity on 
G. This means that for every E > 0, there is a neighbourhood 
U of the identity in G such that If(8) - f(t)1 < E whenever 
t - 8 E U (here -8 is the inverse of 8 in the group G). One 
can also characterize LUC (G) in the following way. Let C (G) 
be the space of bounded, continuous, complex-valued functions 
on G, and for each function f on G let fs be the left translate 
of f by s, i.e., fs(t) = f(s + t). Then LUC(G) is the space 
of functions f in G(G) which are left norm continuous, i.e., 
8 ~ fs : G ~ C(G) is continuous when C(G) has the supre­
mum norm. The LUG-compactification of G, which we will 
denote by UG, may be regarded as the spectrum of LUG(G) , 
i.e., 

UG = {x E LUG(G)* : x # aand x(fg) = x(f)x(g) 
for all f, 9 E LUG(G)}, 

along with the mapping ¢ from G to UG defined by 

¢(8)(f) = f(s) for all 8 E G and f E LUG(G). 

The binary operation defined in UG by 

x + y(f) = x(fy) for all x, y E UG and f E LUG(G), 

where 

fy(8) = y(fs) for all f E LUG(G), y E UG and 8 E G, 

turns UG into a semigroup. When equipped with the relative 
weak*-topology inherited from the Banach conjugate LUC(G)*, 
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UG becomes a compact, Hausdorff, right topological semigroup 
(i.e., the mapping x ~ x + y : UG ~ UG is continuous for 
each y E UG), ¢ a continuous homomorphism, ¢(G) dense in 
UG, and x ~ ¢(s) + x : UG r--+ UG is continuous for each 
y E UG and s E G. Accordingly, UG is a semigroup compacti­
jication in the sense of [1, Definition 3.1.1]. The mapping ¢ is 
a homeomorphism from G into UG, and so we may identify G 
with ¢(G). For more information, the reader is directed to [1]. 
The closure in UG of a subset A of UG will be denoted by A. 
If A is a subset of G, then A* will denote A \ A. In particular, 
G* = UG \ G. Finally, we may also recall that when G is not 
compact, then G* is a closed two sided ideal of UG (see (3, 
Lemma 2.1]). 

Note that when G is discrete, LUG(G) is the space of all 
bounded complex-valued functions on G, and so UG is the 
Stone-Cech compactification (3G of G. In this situation a num­
ber of results are known in (3G. In this paper, we show that 
for a large class of non-compact locally compact groups (which 
includes all abelian ones), some of these results are also true in 
UG. This is achieved by a method of transferring information 
from (3G where G is an infinite discrete group to UG where G 
is not necessarily discrete. This method was used earlier in [2] 
(see also [11]) to study some algebraic properties of UG when G 
is a locally compact abelian group, and recently by Kogak and 
Strauss ([9] and [10]) to study U~. It is worthwhile to note that 
Ko~ak and Strauss were able to study not only algebraic prop­
erties but also topological ones such as the non-homogeneity of 
UlR and the Rudin-Keisler order in UlR. In particular, we show 
in Theorem 1 that the set of points that are right cancellative 
in UG has a dense interior in G*. This result has been proved 
for example in [7, Corollary 4.4] (see also [8]) for (38 when 8 is 
a countable, cancellative, discrete semigroup, and in [3] and [5] 
whithout the assumption that 8 is countable. In Theorem 2, 
we see how free subsemigroups may be generated in G*. This 
was done in [13] for (3(N, +), and in [4] for (33 where 3 is ei­
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ther a discrete group or a commutative, cancellative, discrete 
semigroup. Theorem 3 shows, under some conditions on G, the 
very non-commutativity of the semigroup UG. In fact, for any 
x E G*, the set {y E G* : (G* + y) n (G* + x) =I 0} is shown 
to be nowhere dense is G*. This was proved in [13] for (3(N, 0), 
where 0 is is a binary operation on N such that m 0 n ---+ 00 

as n ---+ 00. We end with Theorem 4, where we consider the 
additive semigroup of the positive reals [0, (0) with its usual 
topology, and show that the minimal ideal of U[O, 00) has right 
cancellative points in its closure. This result was proved in [7, 
Theorem 4.6] for J3(N, +). 

2. On the Semigroup UG 

Let H be a locally compact group \yith identity e and with a 
compact, open, normal subgroup K, and let G = JRn X H. Let 
HI K be the quotient group, the elements of HIK are the right 
cosets K + s. Note that HIK is discrete since K is open. Let 
q : H ~ HIK be the quotient mapping. Let 'lj; : zn X H ---+ 

zn X HIK be the mapping defined by 'lj;(m, h) = (m, q(h)). In 
fact, {O} x K is a compact, open, normal subgroup of zn x H 
and (zn x H)/( {O} x K) = zn X (HIK), so 'l/J is just the quo­
tient mapping. Then, by [1, Theorem 4.4.4], 'lj; extends to a 
continuous homomorphism (denoted also by the same letter) 
'l/J : u(zn x H) ---+ (3(zn X HIK). The following diagram 
indicates how the lift up shall ~e done. 

UG = U(JRn x H) 

IP 
u(zn x H) x ([0, l)n x {e}) ~ u(zn x H) 

1~ 
(3(zn x HIK) 
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where p(x, u) = x+u for x E u(zn x H) and u E [0, l)n x {e}, 
and 'Iff is simply the projection mapping. Lemma 2 enables us 
to pass from {3(zn X HjK) to U(zn X H), and Lemma 1 from 
u(zn x H) to UG. We let 

T = 'l/J o 'Iff 0 p-l : UG = U(IRn x H) -4 (3(zn X (HjK)). 

It will be deduced from Lemmas 1 and 2 that T is open, and 
is continuous on UG \ u(zn x H). 

Lemma 1. Let G = IR.n x H, where H is a locally compact 
group with identity e. Then Zn x H = u(zn x H), and every 
x E UG can be written uniquely as x = x + (8, e), where x E 
Zn x Hand s E [O,I)n. 

Proof. For the first part of this lemma, and for the represen­
tation of each x in UG as x = x + (8, e), where x E Zn x H 
and 8 E [0, l)n, see [2]. 

We show that this representation of x is unique. The case 
of n = 0 is trivial, so we start with n = 1. Suppose that 
x = y+ (t, e) = x+ (8, e), where x, y E Z x Hand 8, t E [0,1). 
With no loss of generality, we may assume that 8 ~ t. Then 
y = x+ (8 - t, e) with 8 - t E [0,1). If Y = x+ (m, e) for some 
m E Z, then x + (m + t - 8, e) = x, an identity which holds if 
and only if m + 8 - t = O. For, otherwise, let X be a continuous 
character on IR such that x(m + t - 8) ::I 1 (for instance, one 
may take X(u) = exp(im~_t)) and extend, by [1, Theorem 
3.1.7], X continuously to UIR. Let p : U(lR x H) -4 UlR be the 
extension of the projection mapping. Then 

x(p(x) + m + t - 8) = X(p(x))x(m + t - s) ::I X(p(x)), 

and so p(x) + m + t - 8 ::I p(x), which implies that x + (m + 
t - s, e) ::I x. Therefore m + t - s = 0, which is clearly possible 
if and only if m = 0 and s = t. It is then easy to deduce that 
x=y. 
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Suppose now that y =f x+(m, e) for all m E Z. In particular, 
y =f x and y =1= x+ (1, e). We pick a function f E LUG(Z x H) 
such that 

f(x) = f(x + (1, e)) = a and fCy) = 1. 

We extend f to a function 9 which is defined on IR x H in the 
following way. We write each u E ~ x H as u = u+ (r, e) where 
u E Z x Hand r E [0,1), and let 

g(u) = g(u + (r, e)) = (f(u + (1, e)) - f(u))r + f(u). 

Then it is not difficult to verify that the function 9 is in 
LUG(IR x H), and so we may extend it, by [1, Theorem 3.1.7]' 
continuously to U(lR x H). We obtain 

g(x + (8 - t, e)) = (f(x + (1, e)) - f(x)) (8 - t) + f(x) = 0, 

whereas g(y) = f(y) = 1. 

Thus x+ (8 -t, e) =1= y, and so x+ (8, e) =1= y+ (t, e), as required. 
We deal now with the general case, and let x E u(~n x H). 

Let HI = Rn-l x H, and el = (0,0, ... , e) be the identity in HI. 
Then, as in the case n = 1, x decomposes uniquely into Xl E 

U(Z x HI) and (81, e1) with 81 E [0,1). In turn, Xl decomposes 
uniquely into X2 E U(Z x Z x Rn-2 x H) and (0,82, e2) where 
82 E [0, 1) and e2 is the identity in IRn-2 x H. Inductively, this 
leads to the desired result. 0 

Remarks. (1) In the proof above we have chosen a continuous 
character X of ~ such that x(m + 8 - t) i= 1 to prove that 
p(x) + (m + 8 - t) =1= p(x). In fact, this can be used to show 
that any locally compact abelian group has the property that 
x + 8 =1= x for all x E UG and 8 E G \ {e} (see [2, Proposition 
5.3]). With a more complicated proof, this result is known to 
hold for any locally compact group, see for example [1, Lemma 
4.8.9]. 
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(2) As already noted in [9] for UIR, the decomposition pro­
duced in Lemma 1 defines a homeomorphism from U(zn X H) x 
((0, l)n x {e}) to UG \ u(zn x H). For p is continuous, and 
bijective by Lemma 1. Furthermore, if a and b are chosen in 
(0,1) with a < b then the set u(zn x H) x ([a,b]n x {e}) is 
compact and so the restriction of p to this set is a homeomor­
phism. Thus the restriction of p to u(zn x H) x ((0, l)n x {e}) 
is open, Le., U + (a, b)n x {e} is open in UG whenever U is an 
open subset of U(zn X H). 

Lemma 2. Let H be a locally compact group with a normal, 
compact, open subgroup K. Let q : UH ~ j3(H/ K) be the 
extension of the quotient mapping. Then 

(1)	 q(x) = q(y) for x and y in UH if and only if x = k + Y 
for some k E K; 

(2)	 q is an open, continuous homomorphism of UH onto 
(j(H/ K). 

Proof For Statement (1), see [2]. For the proof of the sec­
ond statement, note first that q : UH ---t (3(H/ K) is a closed 
mapping. In fact, a closed subset C of UH is also compact. 
Since q is continuous, q(C) is compact, and so it is closed in 
j3(H/ K). Let now 0 be an open subset of UH. Then Statement 
(1)	 implies that 

q(UH \ (K + 0)) = f3(H/K) \ q(O). 

Since K + 0 is also open in UH, this yields the end of the 
proaL 0 

Recall that an element x is right cancellative in UG if the 
identity y + x = z + x holds if and only if y = z. 
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Theorem 1. Let G == ~n X H, where H is a locally compact 
group which contains a compact, open, normal subgroup K. 
Suppose that G is not compact. Then the set of points in G* 
which are right cancellative in UG has a dense interior in G*. 

Proof Recall that r == VJoprop-l. Let 0 be an open subset of 
G*. Then Lemma 1 and the continuity of p imply that p-l(O) 
is a non-empty open subset of (zn x H)* x ([0, l)n x {e}), so we 
may take an open subset U of (zn xH)* and an open subset I of 
[0, l)n such that U x (I x {e}) ~ p-l(O). If we denote (I x {e}) 
by Ie' this means that U+Ie ~ O. Now, Lemma 2 implies that 
'l/J(U) is a non-empty open subset in (zn x HIK)*. By [5, pages 
135-136], we can pick a countably infinite subset V of zn x HIK 
which has the property that (8 +V) nV is finite whenever 8 is 
different than the identity and such that V* ~ 1j;(U) ~ r(0) 
(these were called then sparse subsets). By [5], every point 
of V* is right cancellative in (3(zn x HIK). Let x E Zn x H 
such that 'l/J(x) E V*, and let y and z be different elements in 
UG. Write y as (s, e) + y and z as (t, e) + z. Suppose first that 
z == (0, k) +Y for some k E K. Then z == (t, e) + z == (t, k) + y, 
and so (t, k) and (s, e) must be two different elements of G. 
Therefore 

y + x == (8, e) + (y + x) =J (t, k) + (y + x) == z + x 

by [1, Lemma 4.8.9]. If z =I- (0, k) + fj for all k E K, then by 
Lemma 2, 'l/J(fj) =I- 'l/J(z) , and so 

'l/J(y + x) == 'l/J(y) + 'l/J(x) =I- 'ljJ(z) + 'ljJ(x) == 'l/J(z + x). 

Hence fj + x =I- z + x, and Lemma 1 implies that 

y + x == (s, e) + (y + x) =I- (t, e) + (z + x) == z + x. 

This shows that each point of 'l/J-l(V*) is right cancellative in 
UG. It is then easy to deduce that each point of 1j;-1 (V*) + Ie is 
right cancellative in UG. Since 'ljJ-l(V*) + Ie is an open subset 
of UG and''l/J-l(V*) + Ie ~ U + Ie ~ 0, the proof is complete. 
D 



119 ON SOME SEMIGROUP COMPACTIFICATIONS 

Theorem 2. Let G be as in Theorem 1. Let V be a sparse 
subset ofzn x H / K. Let F be the subset ofG* formed by taking, 
for each a E V*, one element from 1/J-I(a). Then the elements 
of F generate a free subsemigroup of G*. 

Proof Let Xl and X2 be two distinct elements of F. Then 
,(Xl) = 'l/J(XI) =I 1/J(X2) = ,(X2). We claim that 

Since 'l/;(XI) and 'l/;(X2) are two distinct elements in V*, we have 
by [4], 

((3(zn x H / K) + 1/J(XI)) n ((3(zn X H / K) + 1/J(X2)) = 0. 

Let Y and z be arbitrary elements in UG, and write by Lemma 
1, 

Y = Y+ (s, e) and z = z + (t, e), 

where s, t E [0, l)n and y, z E u(zn x H). Since'l/J is a homo­
morphism, we have 

and so Y + Xl =I z+ X2. Lemma 1 implies then that 

as required. 
Let now Xl, X2, ... , Xn and Yl, Y2, ... , Ym be in F, and sup­

pose that' 

Xl + X2 + ... + X n = YI + Y2 + ... + Ym· 

Then it follows from what we have just proved that X n = Ym. 
Theorem 1 implies then that Xl + X2 + ... + Xn-l = YI + Y2 + 
... + Ym-l, which in turn implies that Xn-l = Ym-l. The proof 
is completed by induction on n. D 
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Remark. The first part of the proof given above shows also 
that there are at least 2C distinct left ideals in UG, where c is 
the cardinality of the continuum. However, Lau, Milnes and 
Pym have obtained this result recently in [12] with a better 
cardinality and for any locally compact group. 
Theorem 3. Let G be as in Theorem 1, and suppose in ad­
dition that H / K is countable. Then, for each x E G*, the 
set 

Cx = {y E G* : (G* +y) n (G* +x) =f;0} 

is nowhere dense in G*. 

Proof Recall that T = 'l/J 0 pr 0 p-1. Let x E G*, and write 
x = x + (81, e). We claim that 

T(Cx ) = Cr(x) = C1/;(x). 

Let 

We prove first that prop-1(Cx) = Cprop-l(x) = CX. Let y E Cx, 
then a + y = b + x for some a and b in (~n x H)*. Write 
y = y + (82, e), a = a + (83, e) and b = b+ (84, e). Then 

(a + y) + (82 + s4,e) = (b+ x) + (81 + 83,e). 

Since 82+84 = l+8 and 81 +83 = m+t for some l, m E {a, l}n 
and 8, t E [0, l)n, this leads to the identity 

(a + l + y) + (8, e) = (b + m + x) + (t, e), 

which, by Lemma 1, holds if and only if 8 = t and (a + l) +Y = 
(6 + m) + x. Therefore y = pr 0 p-1(y) E CX. Conversely, let 
y E CX. Then a+y = b+x for some a and bin (zn x H)*, and 
so 

a+(Y+(81,e)) =b+(x+(81,e)) =b+x. 
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This means that y + (81, e) E Cx, and so y E pr 0 p-l(Cx). 
Secondly, we show that 'ljJ(Cx) = C1/;(x) for any x E u(zn x 

H). Let y E Cx, and let a, b E (zn x H)* such that a+y = b+x. 
Then, since 'ljJ is a homomorphism, 

'l/J(a) +'ljJ(y) = 'ljJ(b) +'l/J(x). 

Now Lemma 2 implies that ?j;(a) and ?j;(b) are in (zn x HjK)*, 
and so ?j;(y) E C1/;(x)' For the converse, let z E C1/;(x) and let 
y E (zn x H)* such that z = 'ljJ(y). Then for some a and b 
in (zn x H)*, we have 'ljJ(a) + 'ljJ(y) = 'ljJ(b) + 'ljJ(x), and so 
'ljJ(a + y) = 'ljJ(b + x). Lemma 2 implies then that b + x = 
(0, k) +a + y for some k E K, which means clearly that y E Cx 

and so z E 'ljJ(Cx), as required. Combining the two identities 
proved above, we obtain r(Cx) = CT(x)' 

Suppose now that Cx has a non-empty interior, and let 0 be 
an open subset of UG contained in CX' Then, as in the proof 
of Theorem 1, we pick an open subset U of (zn x H)* and an 
open subinterval I of (0, l)n such that U + Ie is open subset of 
G* contained in UG \ u(zn x H) and U + Ie ~ 0 ~ CX' Now, 
since p: u(zn x H) x ((0, l)n x {e}) --+ UG \ u(zn x H) is a 
homeomorphism, T is continuous on UG \ u(zn x H), and so 
we have 

But from [13, Theorem 6] we deduce that GT(x) is nowhere 
dense in (zn x H j K) *. Since r(U + Ie) is an open subset of 
(zn x H j K)*, this yields a contradiction. 0 

Corollary 1. Let G be a locally compact abelian group. Then 
all statements of Theorems 1, 2 and 3 hold. 

Proof This is due to the structure theorem which says that 
G = ~n X H, where H contains a compact open subgroup, see 
for example [6, Theorem 24.30]. 0 
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Theorem 4. If M is the minimal ideal of U[O, 00), then M 
does not contain any right cancellative point ofU[O, 00), but M 
does. 

Proof. It is not difficult to verify that the points which are 
not right cancellative in Urn, 00) (in fact, in any semigroup) 
form a right ideal, and so it contains M. In other words, none 
of the points in M is right cancellative in U[O, 00). By Lemma 
1, we write M = N + I where N ~ J3N and I ~ [0,1). Since 
M is an ideal in U[O, 00), it follows that I = [0,1) and N is an 
ideal in J3N. Moreover, N is the minimal ideal. To see that N 
is as claimed, suppose that N' is an ideal of ,BN contained in 
N. Then N' + [0, 1) is an ideal of Urn, 00) that is contained in 
M. Thus N' + [0,1) = N + [0,1) = M, and so by Lemma 1, 
N' = N. Thus N is the minimal ideal of ,BN. By [7, Theorem 
4.6], there exists x E N such that right cancellation holds at x 
in ,BN. Now, much as in the proof of Theorem 1, the point x 
(regarded as a point in Urn, 00)) is seen to be right cancellative 
in Urn, 00). The proof is complete. 0 
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