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A STONE TYPE DUALITY AND ITS 
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Abstract 

We show that the following are dual: the cat­
egory whose objects are Boolean algebras car­
rying the initial sequential convergence with re­
spect to the sequentially continuous homomor­
phisms into the two-element Boolean algebra and 
whose morphisms are sequentially continuous ho­
momorphisms and the category whose objects 
are reduced s-perfect fields of sets (ultrafilters 
having the countable intersection property are 
fixed) and whose morphisms are measurable maps. 
The motivation comes from the foundations of 
probability: s-perfect fields of sets have good cat­
egorical properties and yield a suitable model for 
the field of events. The duality covers the non­
topological Stone duality between Boolean alge­
bras and reduced perfect fields of sets as a special 
case. Indeed, the category of Boolean algebras 
is isomorphic to the category of Boolean alge­
bras carrying the initial sequential convergence 
with respect to all homomorphisms into the two­
element Boolean algebra. 
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1. 

Usually, events in probability form a Boolean algebra. Each 
Boolean algebra is isomorphic to a reduced field of sets and 
each field of sets can be considered as a Boolean algebra. Fur­
ther, each measurable map induces a Boolean homomorphism 
(going the opposite direction) and each Boolean homomor­
phism of the Borel subsets of the real line R into a field of sets 
is induced by a measurable function; in probability such func­
tion is called a random variable. These facts lead to a duality 
for fields of events. Homomorphisms preserve the structure of 
events, but are less useful when calculations are needed. The 
random variables preserve the structure of events only indi­
rectly (via preimage), but provide a freeway to calculus. 

The usual nontopological Stone duality is not exactly what 
is needed in probability. On the one hand, the perfectness 
of the domain guarantees that each Boolean homomorphism 
is induced by a measurable map but, on the other hand, the 
perfectness amounts to the compactness and hence each ad­
ditive probability measure is countably additive. Since in the 
probability theory some natural fields of sets are not perfect 
and some additive measures are not countably additive, it is 
natural to seek a duality where the perfectness is replaced by 
some weaker property. In the present paper we show that s­
perfectness of fields of sets is exactly what is needed. 

In Section 2 we present arguments supporting our claim that 
s-perfect fields of sets yield a natural model for the fields of 
events. Section 3 deals with the nontopological Stone duality. 
Now, we give the basic definitions and recall some sequential 
convergence notions. 

Not to destroy completeness and cocompleteness of the cat­
egories to be dealt with, we do not exclude from our considera­
tions the Boolean algebra for which 0 = 1 and likewise the field 
of subsets for which the carrier set is empty. Denote by MM 
the category whose objects are reduced fields of sets (each two 
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points can be separated by a measurable set; in what follows, 
all fields of sets will be reduced) and whose morphisms are mea­
surable maps (MM stands for measurable sets and measurable 
maps, while the category of fields of subsets and sequentially 
continuous Boolean homomorphisms - as arrows going the op­
posite direction - will be denoted by FS). The nontopological 
version of the Stone duality asserts that the subcategory PMM 
of perfect fields and the category BA of all Boolean algebras 
and Boolean homomorphisms are dual [SIK],[JO]. 

Let X be a set. By a sequential convergence on X we un­
derstand a subset IL of X N x X; here ((xn ), x) E IL means that 
the sequence (xn ) converges under 1L to the point x E X. We 
always assume that: each constant sequence (x) converges to 
x, each subsequence of a convergent sequence converges, and 
the limits are unique. Sequential continuity of a map is defined 
in the obvious way. 

If X carries an algebraic structure, then a convergence is 
compatible provided that the algebraic operations are sequen­
tially continuous. More information about the sequential con­
vergence in Boolean algebras can be found e.g. in [JAK]. Cat­
egorical approach to measure and integration theory via se­
quential convergence structures and Boolean algebras has been 
developed in [BOE], see also [BOER]. We will deal with a spe­
cial sequential convergence on Boolean algebras and our results 
do not overlap with those by Jakubik and Boerger. Observe 
that categorical approach to sequential convergence structures 
appeared for the first time in [DOL]. 

Denote by 2 the two-element Boolean algebra carrying the 
convergence under which (xn ) converges to x iff X n = x for 
all but finitely many n EN. Let A be a Boolean algebra. 
Denote by Hom(A, 2) the set of all Boolean homomorphisms 
of A into 2. By a Stone family of A we understand a subset H 
of Hom(A, 2) such that if a, b E A and a # b, then there exists 
h E H such that h(a) # h(b). 

Let A be a field of subsets of X. Each A E A is represented 
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by its characteristic function XA : X ~ {O, I}, XA(X) = 1 
if x E A and XA (x) = 0 otherwise. The pointwise sequential 
convergence of characteristic functions is compatible with the 
Boolean and field structure of A. Each point x E X represents 
a Boolean homomorphism x : A ~ 2, x(A) = 1 if x E A and 
x(A) = 0 otherwise. Clearly, the homomorphism x is sequen­
tially continuous and X is a Stone family of A. 

Definition 1.1. Let A be a Boolean algebra carrying a sequen­
tial convergence IL such that (xn ) converges under lL to x iff for 
each sequentially continuous homomorphism h of A into 2 the 
sequence (h(xn )) converges in 2 to h(x). Then A carrying lL 
is said to be 2-generated. 

Denote by B(2) the category whose objects are 2-generated 
Boolean algebras and whose morphisms are sequentially con­
tinuous Boolean homomorphisms. Some of the properties of 
B(2) are described in [FR] and in [FRIC]. 

Definition 1.2. Let A be a field of subsets of X. If each 
ultrafilter :F of elements of A having the countable intersec­
tion property (ClP) is fixed (i. e. there exists x E X such that 
:F = {A E A; x E A}), then A is said to be s-perfect. 

Denote by SPMM the full subcategory of MM consisting 
of all s-perfect fields (s-perfect fields have been considered in 
[FRI] and presented at the BBFEST in 1996 in Cape Town). 
Some of the properties of SPMM are described in [FR]. 

2. 

Let A be a Boolean algebra nad let H be a Stone family of 
A. For a E A, denote by aH = {h E H; h(a) = I} and put 
AH = {aH; a E A}. Then AH is a reduced field of subsets of H 
and A and AH are isomorphic. If H = Hom(A,2), then AH 
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is perfect. We shall use the following convention. Let m be 
an additive measure on A. Then mH will denote the additive 
measure on AH defined by mH(aH) = m(a). Analogously, 
let h be a homomorphism of A into 2. Then hH denotes the 
momomorphism of AH into 2 defined by hH(aH) = h(a). It is 
known that there is a one-to-one correspondence between the 
ultrafilters on A, {O,l}-valued additive measures on A, and 
homomorphisms of A into 2. The correspondence extends in 
the natural way to A H • 

Observe that if H = Hom(A, 2), then each additive measure 
mH on AH is (due to the perfectness of AH) countablyadditive 
and each homomorphism hH of AH into 2 (being the point 
evaluation at some 9 E H) is sequentially continuous (in the 
pointwise sequential convergence on AH). 

If G is another Stone family of A, then for some additive 
measure m the measure mH on AH can be countably additive 
and the measure mG on AG can fail to be countably additive. 
From the point of view of probability theory, it is natural to 
consider Hand G to be equivalent if, for each additive proba­
bility measure p on A, PH is countably additive iff Pc is count­
ably additive. As we shall see, s-perfectness is the essence of 
this equivalence. 

Lemma 2.1. Let F be an ultrafilter on A H . Then the follow­
ing are equivalent: 

(i) F has the elP; 

(ii) The	 {O,l}-valued measure m(:F) corresponding to :F is 
countably additive; 

(iii) The homomorphism	 h(F) corresponding to F is sequen­
tially continuous. 

Proof Recall that aH E F iff m(F)(aH) = h(F)(aH) = 1. 
(i) implies (ii). Let (aH(n)) be a decreasing sequence in A H 

such that n~=l aH(n) = 0. We have to prove that 
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limm(F)(aH(n)) = O. Since:F has the CIP, aH(n) ffi F and 
hence m(F)(aH(n)) = 0 for all but finitely many n E N. Thus 
m(F) is countably additive. 

(ii) implies (i). If F does not have the CIP, then there exists 
a decreasing sequence (bH(n)) in F such that n~=l bH(n) = 0. 
Put aH(n) = nk=l bH(k), n E N. Then (aH(n)) is decreas­
ing and n~=l aH(n) = 0. Since aH(n) E :F for all n E N, 
limm(F)(aH(n)) = 1. Thus m(F) fails to be countably addi­
tive. 

(ii) and (iii) are equivalent. It is known that each countably 
additive bounded measure on a field of sets is sequentially con­
tinuous [NOV]. On the other hand, each sequentially contin­
uous additive measure is countably additive. The equivalence 
of (ii) and (iii) follows from the equivalence of (i) and (ii) and 
the fact that m(:F)(aH) = h(:F)(aH) for all aH E AH. 0 

Let H be a Stone family of A. Denote by H* the set of 
all homomorphisms h of A into 2 such that hH is sequentially 
continuous on AH. Clearly H c H*. The proof of the next 
lemma is straightforward and it is omitted. 

Lemma 2.2. 

(i) (H*)* = H*. 

(ii) H = H* iff each ultrafilter on A H having the ClP is fixed, 
i. e.,	 iff AH is s-perfect. 

(iii)	 If G is a Stone family of A such that H c G c H*, then 
G* = H*. 

Denote by P(H) the set of all additive probability measures 
P on A such that PH is countably additive on AH · 

Proposition 2.3. Let H, G be Stone families of A. Then 
P(H) = P(G) iff H* = G*. 
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Proof 1. Assume that P(H) = P(G). Since each sequentially 
continuous homomorphism of A H and of AG into 2, respec­
tively, is a {O,I}-valued countably additive measure on AH 

and on A o, respectively, necessarily H* = G*. 
2. Assume H* = G*. Observe that the natural isomor­

phisms between AH and A H * and between A.a and A.a* , respec­
tively, are sequentially continuous. From H* = G* it follows 
that the isomorphism sending aH to aG, a E A, is sequentially 
continuous, too. Hence if P is an additive probability measure 
on A, then the measure PH is sequentially continuous on AH iff 
the measure PG is sequentially continuous on AG. But since for 
bounded additive measures the sequential continuity is equiva­
lent to the countable additivity [NOV], we have P(H) = P(G). 
o 

Let A be a field of subsets of X # o. Then each x E X 
represents a sequentially continuous homomorphism of A into 
2 and X becomes a Stone family of A. Clearly, we can iden­
tify A and Ax. Further, A and Ax are isomorphic and both 
the natural isomorphism h sending A to Ax *, A E A, and its 
inverse are sequentially continuous. 

Lemma 2.4. If the natural isomorphism h of A onto Ax * 

is induced by a measurable map f of X* into X, then A is 
s-perfect. 

Proof Let F be an ultrafilter on A having the CIP. Then 
h(F) = {(A);A E F} is an ultrafilter on Ax * having the 
CIP. Since Ax * is s-perfect, there exists x E X* such that 
h(F) = {B E Ax *; x E B}. Then F = {A E A; f(x) E A}. 
This is possible only if x E X and f(x) = x. 0 

The proof of the next lemma is straightforward and it is 
omitted. 
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Lemma 2.5. Let h be a sequentially continuous homomor­
phism of a field A of subsets of X i= 0 into a field B of subsets 
of Y i= 0. Let F be an ultrafilter on lB having the eIP. Then 
h+-(:F) = {A E A; h(A) E F} is an ultrafilter on A having the 
eIP. 

Proposition 2.6. Let A be a field of subsets of X i= 0 and let 
B be a field of subsets of Y i= 0 

(i)	 Let f be a measurable map ofY into X. Then the induced 
homomorphism f+- ofA into B is sequentially continuous. 

(ii)	 Let h be a sequentially continuous Boolean homomorphism 
of A into B. If A is s-perfect, then h is induced by a 
uniquely determined measurable map f of Y into x. 

Proof (i)Let a sequence (Bn ) converge in B to B. Fix a E X. 
If f(a) E B, then f(a) E Bn for all but finitely many n E N. 
If f(a) tt B, then f(a) tt B n for all but finitely many n E N. 
Hence the sequence (f+-(Bn )) converges in A to f+-(B). 

(ii)can be proved virtually in the same way as the first part 
of Proposition 11.1 in [SIK]. From the assumption that h is 
sequentially continuous it follows that if :Fy is an ultrafilter 
determined by a point y E Y, then its preimage h+- (Fy ) is an 
ultrafilter on A having the CIP. Hence, if A is s-perfect, then 
h+-(:Fy) is determined by a point x E X. Since A is reduced, 
the point x is uniquely determined and hence we can define 
f(y) = x. Straightforward calculations show that f induces h. 
o 
Proposition 2.7. Let A be a field of subsets ofX i= 0. If A is 
s-perfect, then the generated sigma-field u(A) is s-perfect, too. 

Proof Let F be an ultrafilter on u(A) having the elP. Then 
its trace {F E F; F E A} is generated by some point x E X. 
Since there exists a unique {O,l}-valued countably additive 
measure m on a(A) such that F = {A E a(A); m(A) = I}, 
necessarily m is the Dirac measure at x. Thus:F is fixed. 0 
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It can be shown [FR] that the minimal field lBo of subsets of 
R containing all open intervals of the form (-00, a), a E R, is s­
perfect. Hence, by Proposition 2.7, the field lB of all Borel mea­
surable subsets of R is s-perfect, too. Further, s-perfectness is 
preserved by arbitrary products of fields and sigma-fields [FR]. 

Based on the properties of s-perfect fields of sets we make 
the following suggestion. In Kolmogorov's theory of probability 
[LOE] we can assume that all fields of events are s-perfect. 
Proposition 2.3 guarantees that no probability information is 
lost. The assumption is not restrictive if we start with events 
forming a Boolean algebra, represent it as an s-perfect field, 
and pass to the generated sigma-field. In this case the Boolean 
homomorphisms are induced by measurable maps. In fact, s­
perfectness makes the Boolean model [HAL] and [LO], [LOS] 
and the Kolmogorov's model equivalent. Further suggestions 
about the fields of events and random variables can be found 
in [FR]. 

3. 

The notion of s-perfectness leads to three natural categories. 
We describe their subcategories and their relationships. In 
particular, we prove that B(2) and SPMM are dual. 

Denote by FS the category whose objects are fields of sets 
considered as Boolean algebras and whose morphisms are se­
quentially continuous Boolean homomorphisms. If A is a field 
of subsets of X, then the corresponding object of FS will be 
denoted by (X,A). Denote by SPFS the full subcategory of 
FS consisting of s-perfect fields. 

Proposition 3.1. SPFS is a birefiective subcategory of FS. 

Proof. For each object (X, A) of FS define s((X, A)) = 

(X*, Ax.). Define a homomorphisms h of A into Ax. by 
h(A) = Ax., A E A.. Then h is a one-to-one and onto, and 
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both hand h+- are sequentially continuous. Thus s yields a 
bireflector. 0 

Proposition 3.2. The categorySPFS and the dual category 
SPMMOP of SPMM are isomorphic. 

Proof. All three categories have the same objects. The asser­
tion is a straightforward corollary to Proposition 2.6. 0 

Proposition 3.3. The categories B(2) and SPFS are equiva­
lent. 

Proof. Let (A, lL) be a 2-generated Boolean algebra. Let 
H c Hom(A,2) be the set of all sequentially continuous ho­
momorphisms of (A,L) into 2. Then H = H*. According to 
Lemma 2.2, the field AH is s-perfect. Denote by ILH the point­
wise sequential convergence on AH . The map sending a to 
aH, a E A, is a sequentially continuous isomorphism of (A, IL) 
onto (AH , ILH) and its inverse is also sequentially continuous. 
Putting F((A,JL)) = (H,AH ) we get a functor F from B(2) 
into SPFS. 

Let (X, A) be an s-perfect field of sets. Then A carrying 
the pointwise sequential convergence IP belongs to B(2) and 
X = X* c Hom(A,2) is the set of all sequentially continuous 
homomorphisms of A into 2. Put G((X, A)) = (A, lP). This 
yields a functor G from SPFS into B(2). It follows that F is 
left adjoint to G and the adjunction is an equivalence (both 
the unit and the counit of the adjunction are isomorphisms; 
see [JO]. 0 

Corollary 3.4. The categories 8(2) and SPMM are dual. 

Remark 3.5 (i) The bireflector s in Proposition 3.1 yields a 
contravariant functor M from FS into the subcategory SPMM 
of MM, assigning to each (X, A) the s-perfect object 
s((X, A)) = (X*, Ax*) and to each sequentially continuous 
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Boolean homomorphism h of (X, A) into (Y, Iffi) the uniquelly 
determined measurable map f* of (Y*, By.) into (X*, Ax * ). 

Since for each measurable map f of (Y, Iffi) into (X, A) its preim­
age f+- is a sequentially continuous Boolean homomorphism of 
(X, A) into (Y, B), this gives a contravariant functor P from 
MM into FS. This yields a pair of contravariant functors be­
tween FS and MM which induces the duality between SPFS 
and SPMM. 

(ii) Denote by AFS the full subcategory of FS consisting 
of all fields of subsets (X, A) such that A is a sigma-field. 
It was shown in [FR] that the functor a sending each field 
(X, A) to the generated sigma-field (X, a(A)) is an epireflec­
tor. In [FRIC] a subcategory AB(2) of absolutely sequentially 
closed objects (with respect to sequentially continuous homo­
morphisms into 2) has been defined and proved to be epire­
flective in B(2). Observe that the equivalence between B(2) 
and SPFS yields an equivalence between AB(2) and the full 
subcategory ASPFS of SPFS consisting of sigma-fields. 

Let A be a Boolean algebra. Consider the initial sequential 
convergence LA on A with respect to Hom(A, 2) : (a(n)) con­
verges to a under LA iff (h(a(n))) converges to h(a) in 2 for 
all h E Hom(A,2). Clearly, LA is 2-generated and it is finer 
than any other 2-generated convergence L on A (i.e., LA ~ lL). 

Definition 3.6. Let A be a Boolean algebra. Then the initial 
sequential convergence lLA with respect to Hom(A, 2) is said to 
be fine and (A, lLA) is said to be a fine 2-generated Boolean 
algebra. 

Denote by :FB(2) the full subcategory of B(2) consisting of 
fine objects. 

Lemma 3.7. Let h be a homomorphism of a Boolean algebra 
A into a Boolean algebra A'. Then h is sequentially continuous 
as a homomorphism of (A, LA) into (A', LA'). 
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Proof. Suppose, on the contrary, that h is not sequentially 
continuous. Then some sequence (a(n)) converges to a under 
lLA and the sequence (h(a(n))) does not converge to h(n) under 
LA'. Since LA' is 2-generated, there exists 9 E Hom(A', 2) such 
that the sequence (g(h(a(n)))) does not converge to g(h(a)) in 
2. Since go h E Hom(A, 2), we have a contradiction. 0 

As an immediate corollary we have the following. 

Proposition 3.8. The categories BA and FB(2) are isomor­
phic. 

Let A be a Boolean algebra. Recall that if H = Hom(A, 2), 
then AH is a reduced perfect field of subsets of H, for each 
h E H the homomorphism hH is sequentially continuous, and 
each ultrafilter on AH is fixed. Hence, if we start with A, pass 
to (A, ILA ), apply the functor F from Proposition 3.4, then we 
end up with a reduced perfect field (AH,ILH ). In the opposite 
direction, if we start with a reduced perfect field A of subsets 
of X carrying the pointwise convergence, then A can be con­
sidered as a fine 2-generated Boolean algebra and hence we can 
forget the fine convergence and end up with a Boolean algebra. 
This yields an equivalence between the categories F8(2) and 
PFS. 

Corollary 3.9. (The nontopological Stone duality.) The cat­
egories BA and PMM are dual. 
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