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Abstract 

For a non-negative integer n the Nobeling space 
N~n+1 is the n-dimensional analogue of Hilbert 
space. It is a topologically complete, separable, 
n-dimensional, absolute extensor in dimension n 
with the property that any mapping of an at 
most n-dimensional, topologically complete, sep
arable, metric space into N~n+l can be approxi
mated arbitrarily closely by a closed embedding. 
It has been widely conjectured that these proper
ties topologically characterize N~n+l. The con
jecture is well-known to be true for n = o. In 
this paper we prove it for n = 1. We also prove 
a Z-set unknotting theorem for Nf. 

1. Introduction 

All spaces considered in this paper are separable and metriz
able. 

A Hilbert cube is a space homeomorphic to 1w (1 = [0,1]), 
the Cartesian product of countably many closed intervals. 
Torunczyk (see [10]) showed that a metric space X is a Hilbert 
cube if and only if it has the following properties: 
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(IHc) compact, 
(2Hc) absolute retract, 
(3 H c) any map of any metric compactum into- X can be 

approximated arbitrarily closely by an errlbedding. 
The finite dimensional analogues of the Hilbert space are 

the Menger cubes M~n+l, n ~ o. Bestvina [3] has proved that 
a metric space X is homeomorphic to M~n+l if and only if X 
has the following properties: 

(1 M ) compact, 
(2M ) dimension n, 
(3M) AE(n) = LCn

-
1 n en-I, Le. absolute extensor in 

dimension n (see [5]), 
(4M) any map of any at most n-dimensional metric com

pactum into X can be approximated arbitrarily closely by an 
embedding. 

The topologically complete analogue of the Hilbert cube is 
Hilbert space. Torunczyk [9] proved that a separable metric 
space X is homeomorphic to Hilbert space if and only if it has 
the properties: 

(IHs) Polish, 
(2HS ) AE, 
(3HS ) every map of a Polish space into X can be approxi

mated arbitrarily closely by a closed embedding. 
The finite dimensional analogues of the Hilbert space are 

the Nobeling spaces N~n+l. The space N~n+l is defined to be 
the set of points in Euclidean (2n + 1)-space R2n+l at most n 
of whose coordinates are rational. It is well-known that N;n+l 

has the properties: 
(IN) Polish, 
(2N ) dimension n, 
(3N ) AE(n), 
(4N ) any map of any at most n-dimensional Polish space 

into X can be approximated arbitrarily closely by a closed 
errlbedding. 

It has long been known [1] that the space of irrational num
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bers NJ is topologically characterized by (IN )-(4N). Until very 
recently virtually nothing more was known about positive di
mensional Nobeling spaces. 

It is well-known that the Cartesian product (0, I)W is homeo
morphic to Hilbert space and is a pseudo-interior in the Hilbert 
'cube /W. In [6] it was proved that the n-dimensional Nobeling 
space is embeddable as a pseudo-interior of the n-dimensional 
Menger cube M~n+l. It follows for example that Nobeling 
space is homogeneous. Hence, the Nobeling space should pick 
up most of the good properties of the Menger cube. 

It has long been conjectured (see for example [11]) that the 
Nobeling space is characterized topologically by (IN )-(4N). In 
this paper we prove that this conjecture is true in the case 
n = 1. We also prove a Z-set unknotting theorem for the 
I-dimensional Nobeling space (see Section 5). We follow [10] 
in most notations and our approach uses Bing partitioning [4] 
as did Anderson [2] (see also [8]) in the characterization of 
the Menger curve. Since we are dealing with non-compact 
spaces it is more convenient to use infinite partitions rather 
that the finite partitions which are used in the compact case. 
The reader may consult [7] for a summary of results on Menger 
and Nobeling spaces. 

2. Partitions 

Definition 2.1. We say that a space X is an n-dimensional 
Nobeling-type space or an Nn-space or X E N n if it satisfies 
the properties: (IN)-(4N ). 

The main result of this paper is: 

Theorem 2.2. Every pair of N1-spaces are homeomorphic. 

In this section we will introduce the notion of brick parti
tions (which is the main tool for proving Theorem 2.2) and 
give a proof of Theorem 2.2 based on some propositions which 
will be proved in the following sections. 
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We recall that a subspace Z of a space X is said to be a 
Z-set (a strong Z-set) in X if Z is closed and the identity map 
can be approximated arbitrarily closely by a map f : X ~ X 
such that f(X) n Z == 0 (clf(X) n Z == 0). In Nobeling -type 
spaces every Z-set is also a strong Z-set (see [5]). We will 
write Z E Z(X) to indicate that Z is a Z-set in X. Clearly 
if X E Nn then Z E Z(X) if and only if every map of every 
at most n-dimensional Polish space into X can be arbitrarily 
closely approximated by closed embeddings not intersecting Z. 
It is well-known ([5]) that if F is a closed subset of an at most 
n-dimensional Polish space Y, X E Nn and f : F ~ X is a 
Z-embedding (== a closed embedding with Z-set image in X) 
then f can be extended to a Z-embedding of Y. Moreover, 
any continuous extension of f can be approximated arbitrarily 
closely by an extension which is a Z-embedding. 

Definition 2.3. A closed subset A of an N 1-space X is called 
a brick if A is a regular closed set (i.e. cl(intA) == A), A is an 
N1-space with 8A homeomorphic to the set of irrationals and 
8A E Z(A). 

A family A of bricks is called a brick partition of X if A is 
a locally finite cover of X of order 2 and distinct elements of 
A have pairwise disjoint interiors. 

We say that a brick partition A is in general position with 
a subset Z of X if for every A E A, Z n 8A == 0. 

Proposition 2.4. Let A be a brick partition of an N 1-space 
X and let for every A E A, AA be a brick partition of A which 
is in general position with 8A. Then U{AA : A E A} is a brick 
partition of X. 

Proof Obvious. o 

Proposition 2.5. Let X be an N1-space, let Z be a 0
dimensional Z -set in X and let U be an open cover of X. Then 
there exists a brick partition A of X which is in general posi
tion with Z and such that A refines U. 



A CHARACTERIZATION OF I-DIMENSIONAL ... 159 

Proof The proof is given in Section 3. D 

Proposition 2.6. Let Xl and X 2 be M -spaces, let Zl E Z(Xl ) 
and Z2 E Z(X2) be O-dimensional and homeomorphic, and let 
Al be a brick partition of Xl which is in general position with 
Zl. Then for every homeomorphism f : Zl ~ Z2 there exist 
a brick partition partition A2 of X 2 and a 1- to - 1 correspon
dence F : Al ~ A2 such that 

(i) A2 is in general position with Z2, 
(ii) :F preserves the combinatorial structure of Al and A 2 , 

i.e. forA,B E AI, F(A)nF(B) = 0 if and only if AnB = 0, 
(iii) F agrees with I, i.e. for A E AI, F(A) n Z2 = I(A n 

Zl). 

Proof The proof is given in Section 4. o 

Proof of Theorem 2.2. Let Xl and X2 be Nl-spaces. We will 
prove that a homeomorphism f : Zl ~ Z2 of O-dimensional 
Z-subsets of Xl and X2 respectively can be extended to a 
homeomorphism of Xl and X 2• Fix complete bounded met
rics on Xl and X2 such that diam Xl < 1 and diam X 2 < 1, 
and by Proposition 2.5 take a brick partition Ai of Xl with 
mesh Ai < 1/2 and such that Ai is in general position with 
Zl. Then by Proposition 2.6 there exist a brick partition A~ 

of X2 and a correspondence F l : Ai ~ A~ such that F l 
preserves the combinatorial structure of Ai and A~, A~ is in 
general position with Z2 and J=i agrees with f. Extend f to a 
homeomorphism 11 : zt = Zl U (U{8A : A EAt}) ~ Zi = 
Z2 U (u{8A : A E A~}) such that 11 (A n B) = :Fi(A) n J=i(B) 
for A =I BEAt· 

Let B E A~ and A = (Fl)-l({B}). Applying Proposi
tion 2.5 take a brick partition A B of B which is in general 
position with Zi n B and such that mesh A B < 1/3. By 
Proposition 2.6 there exist a brick partition AA of A and a 
1-to-1 correspondence FA : AA ~ AB such that FA pre
serves the combinatorial structure of AA and AB, AA is in 
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general position with zt n A and FA agrees with fllz1nA. De
fine Ai = U{AA : A E Ai}, A§ = U{AB : B E A~} 

l 

and let 
F2 : AI ~ A§ be defined by FA on every AA. By Proposition 
2.4, AI and A~ are brick partitions of Xl and X 2 respectively. 
ClearlY;:2 is 1-to-1, F 2 preserves the combinatorial structure 
of AI and A~, AI and A~ are in general position with Zl and 
Z2 respectively and F 2 agrees with f. 

Proceed by induction and construct for every n a brick par
tition Ai, i = 1,2 of Xi and a I-to-l correspondence Fn : 

Al ~ A2' such that Ar+ l refines Ai, mesh Ai < 2/n, Fn 

preserves the combinatorial structure of Al and A2', F n agrees 
with f and Fn+I(A) C Fn(B) if and only if A c B. 

Define f' : Xl ~ X 2 by f'(x) = n{Fn(A) : x E A, A E 
AI' n E N}. Then f' is well-defined and f' is a homeomorphism 
which extends f. 0 

3. Proof of Proposition 2.5 

First we prove some auxiliary propositions and lemmas, and in 
the end of this section we prove Proposition 2.5. 

Proposition 3.1. Let X be an Nn-space and let Z be a Z-set 
in X. Then a map f of a Polish space Y of dim ~ n into X 
which is a closed embedding on a closed subset F of Y can be 
arbitrarily closeliJ approximated by a closed map f' from Y to 
X such that f' coincides with J on F, J'(Y)nZ = J(F)nZ and 
for every closed A c Y \ F, f'IA is a Z-embedding. Moreover, 
if f(F) is a Z-set then f' can be chosen to be a Z-embedding. 

Proof If J(F) is a Z-set then denote by YI ::> Y the space 
obtained from Y by attaching Z to Y and identifying the points 
of Z n J(F) and F n J-l(Z) by J. Let Jl : Yl ----+ X be the 
extension of f sending Z C YI to Z C X by the identity. Now 
Jl can be arbitrarily closely approximated by a Z-embedding 
f~ such that J~ coincides with fl on F U Z (see the remark 
following Theorem 2.2). Denote J' = J~ly and we are done. 
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If f(F) is not a Z-set then fix complete metrics on X and 
y for which we use the same notation d. Since flF is a closed 
embedding we may assume that d(f(x), f(y)) = d(x, y) for 
x,y E F. 

Then there exists an open neighborhood Vi of F such that 
such that d(f(x), f(y)) > 1/2 for every x, y E Vi with d(x, y) > 
1. Indeed, let V be an open cover of X with meshV< 1/8. 
Define 

Vi = U{f- 1 (V) n O(f-l (V) n F, 1/8) : V n f(F) =I 0, V E V} 

where O(A, E) stands for the open E-neighborhood of A. Then 
VI has the required property. 

Set 11 = 1, PI = Y \ Vi and approximate fllF! by a Z
embedding 91 : F1 ~ X such that 91 (PI) n Z = 0 and 91 is so 
close to fllF! that 91 can be extended to a map f2 : Y ~ X 
with f21F = flF (= fllF) and such that dist(f2, fl) ~ 1/2. 

Then there exists an open neighborhood 112 c Vi of F such 
that d(!2(X), f2(Y)) > 1/4 for every x, y E 112 with d(x, y) > 
1/2. Set'P2 = Y\ V2. Extend 91 : F1 ~ X to a Z-embedding 
g2 : F2 ~ X such that 92(F2) n Z = 0 and 92 is so close to 
121F2 that 92 can be extended to a map 13 : Y ~ X with 
f31F = flF and such that dist(f3, 12) ~ 1/22

. 

Proceed by induction and construct for every m a map fm : 
y ~ X and an open neighborhood Vm of F such that for 
Fm = Y\Vm we have fmlF = flF' fm+llFm = fmlFm ' fm+llFm is 
a Z-embedding, d(fm(x), fm(Y)) > 1/(2m) for every x, y E Vm 
with d(x, y) > l/m and dist(fm+l, 1m) ~ 1/2m. We may also 
assume that Vm +l C Vm and nVm = F. 

Define I' = lim fm· Then f'IF = flF' f'IFm is a Z-embedding 
and d(f'(x), f'(y)) > 1/(2m) -1/2m - 2for every x, y E Vm with 
d(x, y) > 11m. It is not difficult to check that the last property 
implies that f' is a closed map. Since for every m, fm+l can 
be taken arbitrarily close to 1m, I' can also be constructed to 
be arbitrarily close to f. 0 
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Proposition 3.2. Let X be an H1-space and let U be an open 
cover of X. Then there exist two discrete families V1 and V2 

of open connected sets such that V = V1 U V2 covers X and 
refines U. 

Proof Take discrete families of closed sets U1 and U2 such 
that U1 u U2 covers X and refines U. Let U' and U" be open 
enlargements of U E Ui such that clU" c U', u; = {U' : U E 
Ui }, i = 1, 2 are discrete and U~ U U~ refines U. 

Let eu : U" -----+ X be the inclusion. By Proposition 3.1 
eu can be approximated by a closed map e~ : U" -----+ X such 
that eulu = e~lu and e~(U") c U'. Then the components of 
e~(U") form a discrete family of closed sets and hence 

V~ = {A : A is a component of e~(U"), U E Ui }, i = 1,2 
are discrete families of closed connected sets such that 
V~ U V~ refines U and covers X. Take a connected open 
discrete enlargement Vi of V~, i=1,2 which refines U and we 
are done. 0 

Lemma 3.3. Let X be an H1-space and let F1 and F2 be dis
joint connected closed subsets of X. Then for every discrete 
family U of closed connected subsets of X such that every 
U E U intersects at most one of the sets F1 and F2 there ex
ist closed, connected and disjoint enlargements F~ and F~ of 
F1 and F2 respectively such that for every U E U, U either is 
contained in F~ or in F;. 

Proof Adding to Fi the set U{U : U E U, Un Fi =f 0}, i = 1,2 
we may assume that no element of U intersects F1 U F2 • Let 
for every U E U, U' be a closed connected neighbourhood of 
U that such U' = {U' : U E U} is discrete and no element of 
U' intersects F1 U F2 • Take disjoint closed connected neighbor
hoods G1 and G2 of F1 and F2 which also do not intersect the 
elements of U'. Let C1 be the component of X \ G2 which con
tains G1 and let C2 = X \ C1• Then C2 is connected, G2 C C2 

and for every element U' E U', U' either is contained in C1 or 
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in C2• Let Ft = Fi U (U{U : U E U, U c Gi }, i = 1,2. Then 
Ft cintCi and for every element U E U, U is contained in 
either Fi or in F2· 

Apply Proposition 3.1 to approximate the inclusion of C1 

into X by a closed map 11 : C1 ~ X such that 11 is the 
identity on Fi, 11 (C1)\Fi is a sigma Z-set and 11 (C1)nF2= 
0. Applying Proposition 3.1 again approximate the inclusion 
of C2 into X by a closed map 12 : C2 ~ X such that 
12 is the identity on F; and 11(C1) n 12(C2) = 0, and set 
F; = fi(Ci). 0 

Lemma 3.4. Let X be an N1 -space and let F1 and F2 be dis
joint, connected closed subsets of X. Then for every E > 0 
there exist closed disjoint connected sets F~ and F~ and a dis
crete family U of closed connected sets with meshU < E such 
that F1 C F~, F2 C F~, the elements ofU do not meet F1 U F2 , 

U covers X \ (F~ U F~) and every U E U intersects both F~ and 
F~. 

Proof Let VI and V2 be discrete families of closed connected 
subsets of X such that V = VI U V2 covers X and mesh V < E. 

We may assume that V is so small that Fi = F1 U (U{V : V E 

V, V n F1 =I 0}) and F2 = F2 U (U{V : V E V, V n F2 # 0}) 
are disjoint and every V E V intersects at most one of the sets 
Fi and F2· 

By Lemma 3.3 let F~ and F~ be disjoint closed and connected 
enlargements of Fi and F2 such that F~ U F~ contains the 
elements of VI. We may also assume that F~ contains the 
elements of V2 which do not intersect F~ and F~ contains the 
elements of V2 which do not intersect F~. Let U = {V : V E 
V2, V intersects both F~ and F~} and we are done. 0 

Lemma 3.5. Let X, U,Fi , F;, i = 1,2 be as in Lemma 3.4. 
Let for each U E U, U' be a connected closed set not intersect
ing F1 U F2 and such that U C intU' and U' = {U' : U E U} 
is discrete and of mesh < E. Then for every U' E U' there 
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exist two closed maps ff', If' : u' ~ U' such that fiU'IF~ n8U" 
i = 1, 2 is the identity and ff" (U') n ff' (U') = 0. 

~ 

Denote F;' = (F;\(U{U': U' E U'}))U(U{fiU'(U') : U' E U'}), 
i = 1,2. 
Then F;' and F~' are connected disjoint and closed sets con
taining F1 and F2 respectively and X \ (F~' u F~') is covered by 
U'. 

Proof Fix U E U and take closed sets U'II and U" such that 
U c intU"' cU"' c intU" C U" c U' and intU'", intU" are 
connected. Set G:" = int((F; nU"') UU), H~' = ((F; nu") UU) 
and H~ = ((F; n U') U U), i = 1,2. 

Replacing U by a larger set with connected interior we may 
assume that intU is connected. Then G~' is open and con
nected. Thus G:" is AE(l) (an ab~olute extensor in dimen
sion 1), and hence the inclusions e~' : G~' \ (intH~) ----t G~' 
and e;' : G;' \ (intH~) ----t G;' can be extended to maps 

f "' · G'" H' G'" d f"' . Gil' U H' G'"1· l U 2----t Ian 2· 2 1~ 2· 

Let I;' :U' ----t H~, i = 1,2 be the map which is the identity 
on H~ \ G~" and coincides with f;" on G~' U H~ and G~' U H~ 
for i = 1 and i = 2 respectively. 

By Proposition 3.1 approximate f~' by a closed map f~ : 
U' ----+ U' such that f~ is the identity on F; n au', f~ (U') n 
F~ nau' = 0 and f~ (U') nH~ is a Z-set. Applying Proposition 
3.1 again approximate f~' by a closed map f~ : U' ~ U' such 
that f~(U') n f~ (U') = 0 and f~ is the identity on F~ n au'. 0 

Lemma 3.6. Let an N1-space X be the union X = A U B of 
two closed regular subsets A and B such that intA n intB = (/) 
and aA = 8B = A n B is O-dimensional. Then A n B is 
homeomorphic to the set of irrationals. 

Proof Assume that A n B is not homeomorphic to the set of 
irrationals. Then there exists a point x E A n B such that x 
has a compact neighborhood in A n B. Take connected open 
neighborhoods U and U' of x in X such that clU C U' and 
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A n B n clU' is compact. Let Y = N x U and let f : Y ~ X 
be the map sending N x {u} to u for u E U. Take XA E 

(A \ B) n U and XB E (B \ A) n U. Approximate I by a closed 
embedding f' : Y ---t X such that f'(N x {XA}) c A \ B, 
f' (N x {xB }) c B \ A and f' (Y) does not intersect X \ U'. 
Then Xi = I' ({i} x U) nAn B n clU' i= (/) for every i E N 
and hence {Xi : i E N} is an infinite discrete family of closed 
subsets of the compact set A n B n clU'. This contradiction 
proves the lemma. 0 

Proposition 3.7. Let X be an NI -space, let Z be a 0
dimensional Z -set in X and let FI and F2 be disjoint con
nected closed subsets of X. Then there exists a 2-element brick 
partition A = {AI, A2 } of X which is in general position with 
Z and such that Fi C intAi , i = 1,2. 

Proof If Z i= 0 then take disjoint closed connected neighbor
hoods Ft and F2 of Fl and F2• Decompose Z into a discrete 
sequence of closed subsets Z = Zl U Z2 U ... such that each 
Zi has a connected closed neighborhood Vi which intersects at 
most one of the sets Fi and F2. Let Y be the free union of 
the sets Vi, i = 1,2, ... and let I : Y ~ X be the map which 
sends Vi to Vi by the identity. Approximate f by a closed em
bedding I' which is the identity on UZi and such that every 
f'(Vi) intersects at most one of the sets FI and F2. By Lemma 
3.3 we can replace FI and F2 by larger closed connected and 
disjoint sets whose union contains Uj'CVi) and, hence, contains 
Z. Thus we may assume that Z = 0. 

It is easy to see that applying Lemmas 3.4 and 3.5 one can 
construct closed connected sets Ff, F2' and discrete families 
Un of closed connected sets such that: 

(i) F'!1 C intF:n+1 and F· C F·l . 
~ ~ ~ ~ , 

(ii) Un+1 refines Un, mesh Un < lin, Un covers X\ (F1UF2) 
and every element of Un meets both F1 and F2'; 

(iii) for every U E Un there exists a closed map liU : U ~ 
U n Fin, i = 1,2 which is the identity on Fin n aU. 
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Denote Ai = cl(UnFin). Then Fi C intAi and we will show 
that A = {AI, A2 } is a brick partition of X. Clearly Ai is a 
regular set and dim(A1 n A2) = O. Hence by Lemma 3.6, 8Ai 

is homeomorphic to the set of irrationals. 
Fix i. Let U be an open cover of Ai and let g : Y ~ Ai be 

a map of a I-dimensional Polish space into Ai. Define 
Ui = {U : U E UI , Ai n U is contained in an element of U} 
and by induction on n define 
U~ = {U : U E Un' Ai n U is contained in an element of U and 
U is not contained in the elements of Ui U U:;' U ... U U~-I}' 

Let U* = UnU~ and denote by f the map f : Ai ~ Ai 
which is the identity on Ai = Ai \ (U{U : U E U*}) and for 
every U E U* and every x E Un Ai, f(x) = fiU(X). Since U* 
is discrete, f is continuous. Clearly g and fog are U-close in 
Ai and clf(Ai ) n 8Ai = 0. Then since X is an N1-space, fog 
can be arbitrarily closely approximated by a closed embedding 
into Ai with the range not intersecting 8Ai . This shows both 
that Ai is an N1-space and that 8Ai is a Z-set in Ai. Thus A 
is a brick partition. 0 

Proof of Proposition 2.5. By Proposition 3.2 take two discrete 
families VI and V2 of closed connected sets such that V = 

VI U V2 refines U and covers X. Also take for every V E V an 
open neighborhood V' such that V~ = {V' : V E Vi}, i = 1,2 
is discrete and V' = V~ U V~ refines U. 

For V E V define Fv = V \ (U{U' : U E V,U =I V}. We 
may assume that Fv =10 for every V E V. Then {Fv : V E V} 
is discrete. Let Y be the free union of the sets V, V E V and 
let I : Y ~ X be the map sending V to V by the identity for 
each V E V. Denote F = U{Fv : V E V}. It is not difficult to 
see that applying Proposition 3.1 I can be approximated by 
a closed map I' which is the identity on F and such that the 
family {f'(V) : V E V} is discrete and /'(V) c V' for V E V. 

By Proposition 3.7 for every pair V, U E V, V =I U take 
a two element brick partition {Avu, Auv } which is in general 
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position with Z and such that f'(V) C Avu and f'(U) C Auv . 
For V E V define 

Av = f'(V) U (U{(U' nV' n Avu : U E V, U i= V}). 

Since f'(V) U (U' n V' n Avu ) is connected for every U E V, 
U i= V, Av is also connected. It is easy to check that Av is 
a brick and, hence, A = {Av : V E V} is the desired brick 
partition. 0 

4. Proof of Proposition 2.6 

For proving Proposition 2.6 we need the following propositions 
and constructions. 

Proposition 4.1. Let A be a brick partition of an NI-space 
X which is in general position with a subset Z of X and let 
A = Al U A 2 U ... be a decomposition of A into a sequence 
of disjoint subfamilies ~ such that B i = U{A : A E ~} 

is connected for every i. Then B = {BI, B2 , .•• } is a brick 
partition of X which is in general position with Z. 

Proof The proof follows directly from the definition. 0 

Construction 4.2. A connectification of a closed set avoiding 
a Z-set. 

Let X be an N1-space, let F be closed subset of X and let 
Z be a Z-set in X such that F n Z = 0. By Proposition 3.1 
approximate the identity on X by a closed map f : X ----+ 

X which is the identity on F and f(X) n Z = 0. Then for 
every connected closed set C containing F, f (C) is a connected 
closed set which contains F and does not intersect Z. If F is 
a Z-set then f can be chosen to be a Z-embedding. 

Construction 4.3. A realization of a nerve avoiding a Z -set. 
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Let X be a Nl-space and let A be a brick partition of X 
which is in general position with a set Z E Z(X). For every 
A E A pick a point XA E (intA) \Z and for every pair A, B E A 
with A =1= B and A n B =1= 0 pick a point XAB = XBA E A n B. 
Set ZA = AnZ. 

By Proposition 3.1 extend the embedding of GA = {XAB : 
B E A, A =1= B, A n B =1= 0} to a Z-embedding of the cone 
N A over GA into A which does not intersect ZA and such that 
8AnNA = GA and the vertex of the cone is sent to XA, i.e. we 
realize N A as a subset of A. 

Define N = U{NA : A E A}. It is easy to see that N is a 
Z-set in X. We will refer to N as a (Z-)realization of the nerve 
of A. 

Note that we can construct an infinite discrete family of Z
realizations of the nerve of A. Indeed, take discrete families 
of points xAB' xA' n E N such that xA E intA \ Z and xAB = 

xBA E A n B for A, B E A, A =1= B and A n B =1= 0. Define 
fA : N x GA ~ A by fA(n, XAB) = xAB and extend fA to a 
Z-embedding gA : N x NA ~ A avoiding ZA and such that 
gA( {n} x NA) n 8A = {XAB : B E A, A =1= B} and gA(n, XA) = 
xA. Let 9 : I'l x N ~ X coincide with gA on each I'l x NA. 
Then {g( {n} x N) : n E I'l} is a discrete family of Z-realizations 
of the nerve of A avoiding Z. 0 

Construction 4.4. A connectijication of an amalgam. 

Let A be a brick partition of an Nl-space X which is in general 
position with a Z-subset Z of X and let A = Al U A2u... be a 
decomposition of A into a sequence of disjoint subfamilies A k , 

k = 1,2, .... Set Bk = U{A : A E A k } and B = {B l , B2 , ••• }. 

Note that B i may be not connected. We will construct a 
brick partition B' = {B~, B;, ... } which is in general position 
with Z and such that B' has the same combinatorial structure 
as Band B' n Z = B n Z for every B E B. 

Let N be a realization of the nerve of A avoiding Z. Take 
two bricks A, BEAk which lie in different components of Bk 
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and let AI, A2 , ••. , An be a finite chain of bricks in A connecting 
Ao = A and An+1 = B, Le. Ai n A j -# 0 if and only if Ii - jl ~ 

1. Let I = lAB be the arc of the nerve N connecting the 
vertices XAo,XAoAl,XAl,XAlA2' ... ,XAn+l. Let G = GAB be a 
small neighborhood of I with closure contained in int(Ao U 
A2 ... U An +l ) and such that G n Z = 0. 

We will connect Ao and A n +1 by modifying Ai to A~ such 
that 

(i) A' = (A \ {Ao, AI, ... ,An+I }) U {A~, A~, ... , A~+I} is a 
brick partition of X, 

(ii) Ai \ G = A~ \ G, 
(iii) A~ n A~ n G -# 0 if and only if either Ii - jl ::; 1 or i = 0 

and j = n + 1. 
Let a set F containing XAnAn+l be clopen in An n An+1 and 

contained in G. Also assume that F is so small that (G nAn n 
An +l ) \ F -# 0 and there is a connectification M of F in An n G 
such that M E Z(An ) and M n BAn = F (apply Construction 
4.2). 

Set A~+I = An+1 and A~ = An. Then M~ = (InA~) UM E 
Z(A~) and M~ is connected. Clearly Mn = (A~ \ G) U ((A~+I n 
A~) \ F) is closed and does not intersect M~. Hence there 
is a closed connectification M~ C A~ of Mn which does not 
intersect M~. By Proposition 3.7 there exists a two element 
brick partition {A~, A~} of A~ which is in general position with 
BA~ and such that Mn C M~ C A~ and M~ C A~. 

Set A~-l = An - 1 U A~. Then A~-l is a brick, M~_l = (1 n 
A~_l)UM E Z(A~_l)' M~-l is connected, (8A~_1)nM~_1 = F 
and F is clopen in 8A~_1. Clearly Mn - 1 = (A~-l \ G) U ((A~ n 
A~-l) \ F) is closed and does not intersect M~-l. Hence there 
is a closed connected set M~-l C A~-l containing M n - 1 and 
not intersecting M~-l. Take a two element brick partition 
{A~-l' A~-l} of A~-l which is in general position with 8A~_1 
and such that Mn- I C M~-I C A~-I and M~-I C A~-I· 

Set A~-2 = An - 2 U A~-l and proceed by induction and 
finally set A~ = Ao U A~. It is not difficult to see that A~, 
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i = 0, n + 1 satisfy the conditions (i)-(iii). 
Now we will show that connecting separately the elements 

of A k we will get a brick partition. 
Take an infinite discrete family NAB, A =1= B E A of real

izations of the nerve of A avoiding Z. We may take the arc 
lAB used for connecting the elements A, BEAk, k = 1,2, ... to 
be in NAB. Then the family of lAB'S is also discrete. Suppose 
that the open neighborhood GAB of lAB is taken such that in 
addition to the properties described above the family of GAB'S 

is discrete. Let fA = UfAB and GA = UGAB . Since fA is a 
Z -set we may also assume that A \ GA is connected for each A 
in A. 

Apply the above construction sequentially for every pair of 
elements of A that we need to connect. Denote by A' the set 
obtained from A E A after all the modifications. The process 
of modifying elements of A is carried out in a locally finite 
manner and hence in order to show that A' is a brick the only 
thing that we have to verify is that A' is connected. Since the 
connected set A \ GA is contained in A' and the construction 
carried out inside GA it follows that A' is also connected. 

Since GAnZ = 0we have that A'nZ = AnZ and 8A' nZ = 
8AnZ = 0for every A E A. Thus A' = {A' : A E A} is a brick 
partition of X which is in general position with Z. From the 
construction it follows that B~ == U{A' : A E A k } is connected 
and B' = {B~, B;, ... } has the same combinatorial structure as 
B and we are done. 0 

Proof of Proposition 2.6. Let N C Xl be a realization of the 
nerve of Al avoiding Zl. Denote Cl = N U Zl' Extend f to 
a closed embedding of Cl onto some C2 C X2 and now embed 
X2 into Xl identifying C2 with 0 1 by the previous embedding. 
Thus we realize X2 as a subset of Xl with Z2 = Zl and C2 = Cl 
and let us set Z = Z2 = Zl and 0 = 0 1 = O2 , 

Arrange Al into a sequence Al = {AI, A2, •.• }. Let A be 
a brick partition of X2 which is in general position with Z. 



A CHARACTERIZATION OF I-DIMENSIONAL ... 171 

Denote Bi = U{A : A E A, A n Ai f= 0 and A n Aj == 0 for 
j < i} and B = {Bi : i = 1,2, ... }. By Proposition 2.5 A 
can be chosen so small that Ai nZ = Bi nZ and the condition 
BinBj =f 0implies AinAj =f 0, i.e. we do not create additional 
intersections in B. Now note that we have on N c Call 
the intersections of Al and hence we can take the elements of 
A so small that we do not miss intersections of AI, that is 
Bi n B j =f (/) if and only if Ai n A j =f 0. 

Take a connectification A 2 = B' of B in X == X2 as described 
in Construction 4.4 and we are done. 0 

5. Remarks 

Remark 5.1. A Z-set unknotting theorem. 

In the proof of Theorem 2.2 we have shown that every home
omorphism f : Zl ~ Z2 of O-dimensional Z-subsets of N l
spaces Xl and X 2 , respectively, can be extended to a home
omorphism of Xl and X 2• This result remains true with no 
dimensional restriction on Zl and Z2 and it is called a Z-set 
unknotting theorem. Here we will present a proof of a Z-set 
unknotting theorem for Nl-spaces. 

Fix a complete bounded metric on Xl such that diamXI < 
1. Clearly Xl \Zl E M. Take a brick partition Al == {AI, A2 , .•• } 

of Xl \Zl such that for every A E AI, diamA <dist(A, Zl). Let 
N be the nerve of A realized in Xl \ Zl. Then C1 = Zl UN E 

Z(Xl ). Embed Cl as a Z-set C2 into X2 identifying Zl with Z2 
by f and embed X 2 into Xl identifying Cl and C2 by the pre
vious embedding. Now we will regard X2 as a subset of Xl and 
let us denote Z = Zl = Z2 and C = Cl == C2 . Take a brick par
tition A 2 of X 2 \ Z and denote Bi == U{A : A E A 2 , A n Ai =f (/) 
and An Aj == 0 for j < i} and B == {Bi : i == 1,2, ...}. We may 
assume that the elements of A 2 are so small that B has the 
same combinatorial structure as Al and diamA <dist(A, Z) 
for every A E A 2 . 
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We will connectify the Bi's paying attention to some prop
erties which allow us to extend the map f. 
For every A E A2 pick a point PA E intx2A. For every pair 
of bricks A, B E A2 define a:(A, B) =inf{diamL : L is an arc 
connecting PA and PB in X 2 } and take an arc LAB connecting 
PA and PB in X2 and such that diamLAB < 2a(A, B). It is 
easy to check that for 
Sn = U{A : A E A2 such that there is B E A 2 with a(A, B) > 
1/n and such that A and B are contained in the same element 
of B} 
we have clSn n Z = 0 for each n = 1, 2, ... Then since Z is 
a Z-set in X2 we may assume using Proposition 3.1 that the 
LAB'S are chosen such that for 
Ln = U{LAB : a(A, B) > lin and A and B are contained in 
an element of B} 
we have clLn n Z = 0 for each n = 1,2, ... 
Connectify B applying Construction 4.4 and assuming that 
each arc lAB is chosen to be contained in the bricks of A2 in
tersecting LAB. Let B' be a connectification of B obtained in 
this way (note that the procedure of connectification is carried 
out in X 2 \ Z). 

An extension f : Xl ~ X2 of f will be constructed as 
follows. Define f on 8Ai, Ai E Al such that flaAi : 8Ai ----+ 

8B~ is homeomorphism and j(8Ai n 8Aj ) = 8B~ n 8B~ for 
every i and j. By the proof of Theorem 2.2 extend flaAi to a 
homeomorphism flAi : Ai ~ B~. Thus we have constructed 
an extension f : Xl ~ X2 and it is not difficult to verify that 
f is a homeomprphism. 

Remark 5.2. Menger curve. 

By a minor modification the proofs presented in this paper 
can be used to obtain a characterization of the Menger curve. 
Since the Menger curve is compact it suffices to use finite par
titions. Note that for finite brick partitions Proposition 2.6 
can be easily derived from Proposition 3.7. Hence, the work 
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in Section 4 is unnecessary to obtain a characterization of the 
Menger curve. 
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