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CONVEXITY AND THE BROUWER FIXED
POINT THEOREM
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Abstract

In this paper, a class of spaces which is a general-
ization of topological linear spaces is introduced.
The Schauder fixed point theorem and the Helly
theorem on centered families of convex sets are
proved. A new characterization of metric ANR
and AR-spaces is given.

1. Introduction

The aim of this paper is to present a class of spaces which
contains topological linear spaces, simplicial complexes and
topological manifolds. Some concepts are taken from alge-
braic topology. However, the main tool is the Brouwer fixed
point theorem, which appears here in the form of four lemmas
of Sperner. A simple and short proof of the Brouwer theo-
rem, based on combinatorial technique and Sperner’s lemma,
was given by Knaster, Kuratowski and Mazurkiewicz in 1929.
Nowadays, there are many proofs of this theorem which omit
combinatorial methods (see, e.g. [6]). And this is the justifica-
tion for using the fixed point theorem in proofs of the lemmas.
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A set of (n+1) points po, ..., p, € R™ is said to be (affinely)
independent if the vectors p; — po,...,pn — Po are linearly in-
dependent. This is equivalent to the statement that for each
real numbers t,...,t, the following implication holds

Zn:tzpz=0& it,-—-O — t0=...=tn=0

=0 =0

The definition of independence does not depend on the order
of points po, . . ., Pn.
Let the points py, ..., p, be independent. Their convex hull

n n
COTI/U{po,.. . ,pn} = {33 ER™:z= Zt,pz, Zt, = 1, 0 < t,}
=0 =0

with the subspace topology is said to be n-dimensional (geo-
metric) simplex spanned by the vertices p;. We shall use no-
tation [po, . .., ps) instead of conv{po,...,p,}. From indepen-
dence of the points it follows that each point x € [po, ..., Pn),
T =Y ot;-p; is uniquely determined by its barycentric coor-
dinatest; > 0 .

Let P = [po, - .., pn) be an n-dimensional simplex. The sub-
set

[pO) e 7ﬁi:' . "pn] = [PO: co ey Pi—1yDit1, - - '7p'n]

is called the i-th (n — 1)-dimensional face of the n-dimensional
simplex [po, - . . , Dn)-

First Lemma of Sperner. Let {Ao,...,A,} be an open (or
a closed) covering of n-dimensional simplex P = [py,...,Dn)-.
Then there ezists a sequence 0 < ip < ... < i < n such that

(i) [Pigs - - - s D3] N Asy N ... N Ay, # 0.

Proof. (I). Assume that the sets A; are open and let us define
a continuous map f: P — P
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Z d(:v pi
where d;(z) ;== inf{||z —y|| 1y € P\ A}, d(z) = D 1 o di(z).

Since the sets A; form an open covering of the simplex P, we
infer that d(z) > 0 for each point z € P. According to the
Brouwer fixed point theorem there exists a point a € P such
that f(a) = a. This means that

d;(a) = t;(a) - d(a) for each i=0,...,n
Since the sets A; are open and d(a) > 0 we infer that
t;(a) >0 if and only if a € A; for each i1=0,...,n

Now, let us put {%,...,i%} = {i < n:t;(a) > 0}. Then, from
the above we get

ac [pio’ o apik] nAio n.. mAik.

(IT). Assume now, that the sets A; are closed and define for
each m = 1,2, ... open sets

1
Um:={x€P:||:c—a||<E for some a € A;}

From the part (I) it follows that for each m = 1,2, ... there
exists a set I, C {0,...,n} and a point a,, € P such that

am € conv{p; 11 € I,} N ﬂ{U{” 11 € In}

Since the family of distinct sets I, is finite and the simplex P
is compact, there exists an infinite subset M C N such that
for each m € M we have

I,=1 and lim a,, =a € P.
meM

And this implies that a € conv{p; ;i€ I} N N{A;:i€I}. O
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Second Lemma of Sperner. If open (or closed) sets By, ..., B,
of an n-dimensional simplex P = [py, . . ., pn] satisfy the follow-
ing condition

(i) [Digs - - - » Pi) € BigU...UB;, foreach0<ip<..<iz<n
then BoN...N B, # 0.

Proof. Suppose that ByN...N B, = 0 and let us put A; := P\
B;. Then the family {A,,...,Ar} is a closed (open) covering
of the simplex P and according to (ii)

[Digs - - - s D JNAspN...NA;, =0 foreach 0<4p< ... <4 <m,

contrary to (i) of the First Lemma of Sperner. O
Third Lemma of Sperner. If {By,...,B,} is an open (or a
closed) covering of an n-dimensional simplex P = [py, . .., D]
such that

(11i) B; N [poy...sPis---,0n) = 0 foreach i =0,...,n,
then BoN..NB,#0

Proof. 1t suffices to check that the sets B; satisfy the condition
(ii) of the Second Lemma of Sperner. Let us fix a sequence
0<i <..<i <nandi#ip,...,5% From (iii) if follows
that

[piov'“,pik] - [p0a'~'7ﬁi’°°')pn] - P\Bz
Since P = By U .. U B, we infer that
[p,-o,...,pik] - BiOU...UB,;k. O

Fourth Lemma of Sperner. Let {Ay,...,An} be a closed (or
an open) covering of an n-dimensional simplex
P= [p()a-"’p'n.] . If

(W) [poy---sDiy---,Pn] C A; foreach i = 0,...,n,
then AgN...N A, #0.

Proof. Suppose that AgN...N A, = 0 and let us put B; :=
P\ A;. From (iv) it follows that the condition (iii) holds for
the covering {By,...,B,}. Therefore § # ByN..N B, =
P\ (AgU...UA,), contrary to P = AgU...U A,. 0
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2. Simplicial Structures

Let X = (X,7) be a topological space. Any continuous map
o : [po,...,pn] — X from a geometric simplex into X, is
said to be singular simplex contained in X. For each singular
simplex o : [po,...,pn] — X let us introduce the following
notations:

dom o = [po,...,Pn), tm 0 = d[po, - ., Pn)s
vert o := {o(po),---,0(pn)}.

For a given topological space (X,7) the family of all singu-
lar simplexes contained in X will be denoted by X.

A family F C ¥ is said to be simplicial structure in a space
X if for each singular simplex ¢ € F, 0 : [pg,...,pn) — X
and for each sequence of indexes 0 < ip < ... < 7 < n we have

O'H,p‘ioa""pik] Gf.

A triple (X, 7, F), where 7 is a topology on X and F is a
simplicial structure in the space (X, 7) is said to be topological
simplicial space. In the case when (X, p) is a metric space or
(X,]| - ]|) is normed space, the triples (X, p, F), (X,]||-||,F)
will be called metric, or normed simplicial space.

Example 1.

1. It is clear that for a given space X the family ¥ is an ex-
ample of simplicial structure.

2. Also the family C C X of all the constant maps is a simpli-
cial structure.

3. A very important example of simplicial structure is the
family £ C X of all affine maps , I : [po,...,pn] — X;
IO roti-pi) = Y ioti - U(pi), where X is a convex subset
of a linear topological space E.

4. A topological manifold can be described by a simplicial
structure Z C ¥ consisting of all the singular simplices which
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are one-to-one maps.

Now, we are going to extend the notion of convexity from
linear topological spaces onto topological simplicial spaces.

A topological simplicial space (X, 7T, F) is said to be convez
if for each finite set A C X there exists a simplex ¢ € F such
that A = vert o, and it is locally convez at a point x € X if
for each its open neighbourhood U, there exists an open set
Vz, £ € V; C U, such that (a) for each finite subset F C V,
there exists 0 C F with vert ¢ = F, and (b) for each o € F;
vertoCV, = tmoCU,

A simplicial space X which is locally convex at each point
x € X is said to be locally convex.

Let us recall that a subset C C X of a topological linear
space X is convex if for each n + 1 points cy,...,c, € C, each
convex combination Y. t; - ¢; belongs to C. In our termi-
nology it means that for each singular linear simplex ¢ € L;
vert 0 C C' implies 4m o C C. Thus in the case when X is
a topological linear space and F = L is a simplicial structure
consisting of all the affine simplices, then the notion of con-
vexity in our sense coincides with the notion convexity in the
classical sense.

3. A Fixed Point Theorem

In this part we shall use the First Lemmma of Sperner as a
main tool for investigating fixed points. Let us state the lemma
as

Theorem on Indexed Covering. Let {U,,...,U,} be an open
covering of a topological space and o : |pq,...,ps) — X a sin-
qular simplex. Then there exists a sequence 0 < 19 < ... < 7 <
n of indezes such that o[pi,..., Py ] NV N...NU; # 0

The following theorem is a sharpened version of the Schauder
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fixed point theorem for convex subspaces of normed spaces.

The Schauder Fixed Point Theorem. Let (X,7,F) be a
convezr Hausdorff topological simplicial space, and letg: X —

X be a continuous map such that g(X) is compact and X is
locally convez at each point z € g(X). Then g has a fized point.

Proof. Let us put Y := g(X) and suppose, contrary to our
claim, that g(z) # z for each z € X. Since X is a Hausdorff
space hence for each x € X there exists an open neighbour-
hood W, of x such that
(1) Weng(W) = )
Let us put W = {W, : z € Y} and let V be an open covering
of Y satisfying the condition of local convexity:
(2) for each V' € V there exists W(V) € W, V C W(V), such
that for each o € F;

vert cCV = imao C W(V).
The family V is an open covering of Y, which is a Hausdorff
compact space and therefore there exists a relatively open in
Y finite covering U = {Uy, ..., U,} which is a star-refinement
of V (cf. Engelking [4],p. 377 ) ie., Y = Uy U... UU, and for
each y € Y there exists V' € V such that
(3) st(y,U) =J{UelU:yeU}CV
Convexity of X implies that there exists a singular simplex
o€ F, o:[po..sPn] — X, such that o(p;) € U; for each
i =0,...,n. The family {¢g7(;) : ¢ = 0,...,n} is an open
covering of X and according to the theorem on indexed cover-
ing there exist a sequence 0 < 75 < ... < % < n and a point
w € X such that

(4) w e U[p,-o, ""pik] N g—l(Uio) N ﬂg‘l(Uik)

From the above we get that g(w) € U, N...NU;, and since
o(p;) € U;, we infer from (3) that there exists V' € V such that
(5)0'(]?1'0), ""’a(pik) € st(g(w),L{) cV

But the condition (2) of local convexity implies that
w, g(w) € W(V), contrary to (1). O
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We shall show that the assumption of local convexity is es-
sential.

Example 2. Fix n > 0 and let us define X = Q U {p},
where Q := {z € R" : ||z|]| < 1} and p = (1,0,...,0) €
R™. The set X is a convex subset of R". Let £ be the affine
simplicial structure consisting of all the affine simplices in X.
Now, describe a new topology 7 on X generated by a base
of open neighbourhoods; for every z € @ and € > 0 define
neighbourhoods U (€) := {y € @ : ||z — y|| < €} the same as
in the Euclidean topology, and for p, put Uy(e) := {p} U{z €
Q:llz|| >€},0<e<l, e—1.

The topology 7 is weaker than the Euclidean topology on
X and therefore the triple (X, 7T, £) is a topological simplicial
space. The space X is locally convex at each point z # p
because the neighbourhoods U, (e€) are linearly convex. It is
easy to see that X is not locally convex at p because for each
point z € Uy(€), = # p, the 1-dimensional linear simplex with
vertexes z and —z must contain 0 = (0,...,0).

Let B := {z € R*: ||z|| £ 1}. It is known that the quo-
tient space B/OB is homeomorphic to n-dimensional sphere
S™:={z € R™: ||z|| = 1}, and therefore the space (X, T) has
not fixed point property. Thus the Schauder Theorem does
not hold for the space (X,7, L) though it is convex and lo-
cally convex at each point but one.

This example is related to still unsolved problem of Schauder
from the Scottish Book [8, Problem 54], which can be expressed
in our terminology as the following question; Is the assump-
tion of local convexity, in the Schauder fixed point theorem,
essential for linear topological spaces (with the simplicial lin-
ear structure)? Our example shows that the answer is affirna-
tive for spaces with simplicial affine structure and non-linear
topology.

The example shows also that the sphere S™ has a simpli-
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cial structure consisting of the all maps hol, | € L, where
h: X — 8" is a fixed homeomorphism. This structure is
convex but, as it was shown, cannot be locally convex. On the
other hand one can find a simplicial locally convex structure on
S™ but in view of the Schauder Theorem it cannot be convex.

Some new results related to the Schauder problem can be
found in [9].

4. Centered Families and Convexity

Let us recall the definition of covering dimension, dim X, of
a topological space X; dim X < n provided that for each
open covering W there exists an open covering U such that
U is a refinement of W (i.e., for each U € U thereis W € W
such that U C W) and foreachz € X; |{U eU:z € U}| < n.

Lemma on Collapse of a Singular Simplex.
If o : [poy..eyPn] — X is a singular simplez in a Hausdorff
space X and dim X < n, then

n{d[po, --~7ﬁi, ...,pn] 1= 0, ,n} 75 @

Proof. Suppose, contrary to our claim, that o(Py)N...No(P,)
= @, where P := [po,...,pn] and P, := [po,...,Di,-..,Pnl.
Then W = {W,,...,W,}, where W, := X \ o(F;), is an open
covering of X. Let U = {U, : s € S} be an open covering of
X, which is a refinement of W. Since U is a refinement of W

hence there exists a function ¢ : S — {0,...,n} such that
Us C Wys) for each s € S. Letting B; := U{o™}(Us) : ¢(s) =
i} we obtain an open covering {By,..., B} of the simplex

P, which satisfies the condition (iii) of the Third Lemma of
Sperner and therefore there exists a point a € P such that
a € ByN...NB,. Hence |[{s € S:0o(a) € Us}| > n. But this
means that dimX > n, a contradiction. O
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Observe, that from the above lemma it follows that dim R™ >
n.

A subset C of a convex topological simplicial space (X, T, F)
is said to be convez if for each ¢ € F; vert 0 C C  implies
imo CC.

A family C of sets is said to be centered if each finite sub-
family D C C has a non-empty intersection.

The Helly Theorem. Let (X,7,F) be a convex topological
space with dim X < n. IfC C 2% is a family of convex subsets
such that each n element subfamily D C C has a non-empty
intersection, then C is centered.

Proof. There is no loss of generality in assuming C =

{Cq,...,Crn} and m > n. By induction we may assume also
that for each ¢ = 0,...,m there exists z; € Co N ...C;_1 N
Cit1,.-.,Cnm. Since X is convex, hence there exists 0 C F, ¢ :

[po, - - -y m] — X such that o(p;) = z;. By Lemma on a col-
lapse of a singular simplex there is ¢ € ({o[po, - - -, Diy- - - » D) :
i=0,...,m}. From the choice of the points z; it follows that

X0y .-+ Tiv1, Titl,- -, Tm € C;. Hence, since C is convex, we
have; ¢ € alpo, - - ,ﬁi, ..+,Pm) C C; for each i, and this yields
ce Con..NC. O

Helly’s theorem which was first published in 1921 and proved
for X = R™ plays an important role in the geometry of con-
vex sets. For a recent account of results related to the Helly
theorem and its applications we refer the reader to [5].

Numerous applications of the Second Lemma of Sperner,
which is known as the Kuratowski-Knaster-Mazurkiewicz The-
orem, were developed by Ky Fan, and presented as the theory
of KKM-maps. We shall only show how to extend the defini-
tion of KKM-maps onto topological simplicial spaces.

Let (E,7T,F) be a convex topological simplicial space and
X C E a given subset. A map G : X — 2F is called a
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KKM-map if for each o € F;

vert cCX = imoC U{G(x) : x € vert o}.

It is clear that, the following statement is equivalent to the
Second Lemma of Sperner

KKM-map Principle. If G : X — 2F is a KKM-map and
G(z) is closed for each z € X, then the family {G(z) : z € X}
s centered.

For informations on KKM-maps the reader is referred to
Dugundji-Granas book [3].

For each subset A C X x Y let us define
A, ={yeY:(z,y) € A}, AY:{zeX:(z,y) € A}

Now, assume that X is a topological space and (Y, 7, F) is
a convex topological simplicial space. A set A C X xY is said
to be a river if for each x € X, A, is convex and non-empty.
A river A C X XY is parallel to X if there exists y € Y
such that X x {y} C A (i.e., X = AY ) and A is locally parallel
to X if for each € X there exists y € Y such that z € Int AY.

Theorem on a Parallel River. Assume thatdim'Y < n
and let A C X XY be a river such that; 1. A, is compact
and closed for each x € X, and 2. for each (n + 1) points
Zo,...,Tn € X there erists y € Y such that xo,...,z, € AY.
Then A is parallel to X.

Proof. Fix zg,...,z, € X and choose y € Y such that
Zo,--.,%n € AY. But this is equivalent toy € A, N...N A, .
In view of the Helly Theorem we infer that {4, : z € X} is a
centered family and therefore there exists z € ({4, : z € X}.
This finishes the proof that X x {z} C A. 0
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Theorem on a River and a Stream. Let AC X XY bea
river locally parallel to X and let g: Y — X be a continuous

map such that g(X) is compact. Then there ezistsw € Y such
that (g(w),w) € A.

Proof. From the assumption it follows that {Int AY:y € Y}

is an open covering of X. Since g(X) is compact, there exist
points Yo, ...,Yn € Y such that g¢(X) C UpU ... UU,, where
U; := Int A¥%. Choose o € F, 0 :[po,...,Pn] — Y such that
o(p;) = y; for i = 0,...,n. The family {g7*(0y), ..., (Un)}
is an open covering of Y and according to Theorem on indexed
covering there exist a sequence 0 < 75 < ... < 7 < n and a
point w € Y such that w € o[pi,...,p:,] N g~ (Us) N ... N
g 1(U;,). Hence g(w) € U;;N...NU;, C A% N ...N A¥%x. This
implies that ¥, ..., ¥, € Agw) i-€., vert o|[pig, ..., Pi,] T Ag(w)-
This and convexity of Ay, yields w € Ay, which completes
the proof. 0

The theorem has the following interpretation; A river locally
parallel to X and a stream running along Y ( = the graph of
g:Y — X ) must meet themselves.

5. Simplex-Like Families

In this part we shall discuss some applications of the Fourth
Lemma of Sperner.

A finite family {Co,...,C,} of subsets of a topological sim-
plicial space (X,7,F) is said to be simplex-like if for each i;
ConN..NC;.i1NCipr1 N....NCyp # 0.

Define |z| := > iy |z:i| if z = (zo,...,Zn) € R*!

Equilibrium Theorem. Let {Cy,...,C,} be a simplez-like
family of convex subsets in a convez topological space (X,T,F)
and let f : X — [0,00)"*, f = (fo,..., fn), be a continuous
map such that for each i; f;(C;) = {0}.
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Then for each continuous map g : X — [0,00)"*! there
ezxists a point z € X such that; f(z) - |g(z)| = |f(z)| - g(z).

Proof. Choose points z; € CoN...NC;—1NCiy1N...NC, and
a singular simplex ¢ € F, o : [po,...,pn] — X such that
o(p;) = z; for each ¢ = 0,...,n, and let us put F := fooao,
G :=goo0, P:=[po,...,pn), and P; := [Do,...,Dis---,Dn]
Convexity of the sets C; implies that o(P;) C C; C f71(0).
Letting

Ai:={z € P: Fi(z) - |G(2)| < Gi(z) - |F ()]},

we obtain a family of closed sets satisfying the condition (iv)
of the Fourth Lemma of Sperner.

Observe that P = Ag U ...U A,, because, if a € P\ (Ao U
- UAy), then for z := o(a); fi(2) - |9(z)| > gi(z) - |f(2)], for

each 1 =0,...,n, and in consequence
1f@) - lg(@)| = i fil@) - lg()] > iogi(x) - |f(2)]
= |g(z)| - [f (=),

a contradiction.

According to the Fourth Lemma of Sperner there exist a €
Ao N...N A,. Letting x = o(a), the same reasoning as above

yields; f(z) - |g(z)| = g(z) - | f(=)]. D

For any point z € X, where (X, p) is a metric space, let
d(z,A) = inf {p(z,a) : a € A} denotes as usual the distance
between the point z and the set A.

Corollary 5.1. Let {Cy,...,C,} be a simplez-like family in
a convex metric simplicial space (X, p) and let be given sets
A; C X with C; C A; for each i =0,...,n. Then there exists
z € X such that d(z,Ao) = ... = d(z, An).
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Proof. Apply the Equilibrium Theorem to the constant map
g: X —{t}, t=01/n+1),...,1/(n+1)) and f: X —
[0,00)"*1, where fi(z) := d(z,A;). It is clear that z € X,
where f(z) =t - |f(z)| is the point as we asserted. 0

We turn now to some applications of the Equilibrium Theo-
rem for the case where X is equal to an n-dimensional simplex
D :=[dy,...,d,] and the simple-like family {Cy,...,C,} con-
sists of the i-th (n — 1)-dimensional faces D; =
[dos .., ds,...,dn], C;= D;, of the simplex D.

Fixn > 1. Let T := {z € [0,00)"* : |z| = 1} be n-
dimensional standard simplex. In our notation T" = [ey, . . . , €],
where ey = (1,0,...,0), e =(0,1,0,...,0),...,e, = (0,...,0,
1). Then T; = {t € T : t; = 0} is the i-th face of T

1. Assume that f : T — T is the identity map g : T —
[0,00)"*! is continuous. The Equilibrium Theorem implies
that there exists z € T such that g(z) = |g(z)| - z. This obser-
vation gives a generalization of the Perron-Frobenius Theorem
which states that every square matrix {a;;} with a;; > 0 has
at least one non-negative real eigenvalue. This theorem plays
very important role in economics models (cf. H. Nikaido [10]).
2. If, in addition, g(T) C T, then |g(z)| = 1, and as a conse-
quence we obtain the Brouwer Fixed Point Theorem.

3. Throughout the remaing part of this paper we shall deal
with constant maps g : D — T and f arbitrary satisfying the
assumptions of the Equilibrium Theorem. If g(z) = ¢, then we
immediately obtain

Corollary 5.2. Let f : D — [0,00)™*L, f = (fo,..., fa), be @
continuous map such that f;(D;) = {0} for eachi=0,...,n.
Then for each point t € T, there exists x € D such that
f(z) =1f(2)| - ¢

Using the above corollary one can obtain direct proofs of the
Kuratowski-Steinhaus Sandwich Theorem (7, 1] and a theorem
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on dividing of curves due to Urbanik [12].

Let u(A) means the n-dimensional Lebesgue measure of the
set A C R" . For any point z € D let us denote

Dz(m) = [d07 s adi—l’xa di+1a R d'n,]

the convex hull of the set {dy,...,di-1, 2, dit1,-..,dn}.

Sandwich Theorem. Let A C D be a measurable set. Then
for any point t € T there exists a point x € D such that for
eachi=20,...,n

pAN Di(z)] = ti - u(A)

Proof. Define a continuous map f : D — [0,00)"*! |

f= (an"'afn)a
fi(@) := u[AN Dy(z)] i=0,...,n
It is clear that for each z € D; |f(z)| = p(A).

According to Corollary 5.2. for each point t € T there is a
point z € D such that f(z) = |f(z)| -t . Since |f(z)| = n(A)
hence for eachi =0, ... n fi(z) = u(4) - t;. O

For a given set A C R™ and a point z € R" let
A—z:={a—z:a€ A}

means a translation of the set A.

Assume that P := [po,...,p,] is an n-dimensional simplex
such that 0 € IntP. Let for each ¢ = 0,...,n M; be the cone
consisting of the union of all the rays joining 0 to the points of
(n — 1)-dimensional face P; := [po, ..., Di,- -, Pn)-
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The Kuratowski-Steinhaus Theorem. Let A C R™ be a
bounded Lebesgue measurable set. Then for each point t € T
there exist a point x € R™ such that for eachi=0,...,n

pl(A—z) N M| = p(A) -t

Proof. Since the set A is bounded there exist a number s > 0
such that

ACD and (A—z)NM; =0, foreachiand z € D;,

where D := [dp,...,dn] , di = s- p; . Define a continuous map
f D — [Oyoo)n+l’ f= (an"':fn) )

fi(z) =p[(A—z)NM;] foreach i=0,...,n

It is clear that for each z € D and i = 0,...,n; |f(z)| = u(A)
and f;(D;) = {0}. Then for a given point ¢t € T there is a
point z € D such that f(z) = u(A)-t. And this means that
pl(A—2z)NM;] = p(A)-t; foreach :=0,...,n. O

In this part we shall consider some results related to the
Urbanik’s paper [12].

Lemma 5.3. Let g : [0,1] x [0,1] — [0,00) be a continuous
function with the following properties;

(a) g(u,u) =0 and g(0,1) > 0,

(b) g(u,v) =0 and g(v,w) = 0 implies g(u,w) = 0.

Then for each natural number n > 0 there exist a real num-
ber d > 0 and a sequence 0 =1uy < ... < Up < Upy1 =1 such
that g(u;, ui41) = d for each i =0,...,n.

Proof. Let us define a continuous functions u; : D — [0, 1]
fort=0,...,n+1,

ug(x) = 0, u,(a:) = to(l’) +---+ ti_l(IE)
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and functions f; : D — [0,00); fi(z) = g[wi(z), ui+1(z)], for
¢t = 0,...,n. Observe that if z € D; then ¢;(z) = 0, and in
consequence u;(z) = u;41(z), but this implies that f;(z) = 0.
From Corollary 5.2., fort = (1/(n+1),...,1/(n+1)), it follows
that there is a point € D such that fo(z) = ... = fn(z). Let
us put foreachi=10,... n

u; =u(z) and d= fi(z).

Then d = g(u;,u;41) for each i. We shall show that d > 0.
Suppose that d = 0. Then according to the assumption (b) we
get

g('LLo,Ul) =..= g(un,un.,_l) = 0.
And this implies that ¢(0,1) = 0, contrary to (a). O

The Urbanik Theorem. Let f : [0,1] — X be a continuos
map into a metric space (X, p) such that f(0) # f(1). Then
for each natural number n > 0 there exist a real number d > 0
and a sequence

O=1uy<uy <. <Up < Upt1 =1
such that for each ¢t = 0, ... ,n
d = p[f (w;), f(uir1)).

Proof. Indeed, the function g(u,v) := p[f(u), f(v)] satisfies
the assumptions (a), (b) of the Lemma . ]

Corollary 5.4. Let f : S — [0,00) be a continuous function
defined on a triangle S := NABC' such that

(1) f(z) =0 iff z € sideAB.

Then for each natural number n > 1 there exists a sequence of
points belonging to the side AB,

A=P0<P1<...<Pn<Pn+1=B
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such that
f(Qo) = ... = f(Qn)

where the points Qo,...,Qn € S are vertices of the triangles
AP,Q;P;11,1=0,...,n which are similar to the triangle S.

Proof. Consider a coordinate system such that the side AB
is contained in the diagonal and A = (0,0) and the prod-
uct [0,1] x [0, 1] is equal to the parallelogram ABCD. Now,
extend the function f to a continuous function g defined by
9(u,v) = f(u,v) if u < v, and g(u,v) = f(v,u) if v < u.
According to the previous Lemma there exist a real number
d > 0 and a sequence 0 = yp < Y3 < ... < Up < Up4q = 1 such
that d = g(u;, u;41) for each 2 = 0,...,n. Now, the Corollary
becomes obvious when we put @Q; := (u;, Uit1) - 0

6. Axiom of Uniqueness

A simplicial structure F on X satisfies the aziom of uniqueness
if for each pair of simplices o; : [p},...,p] for i = 1,2, the
following equality holds

ogr0ly =030l

whenever

(01011)(e;) = (02 013)(e4) for each j =0,...,n,

where
€ = (1,0,...,0), €1 = (0,1,0,...,0),...,6,, = (0,,0,1)
and [; : [eg,...,en] — [Dh, ..., D] is the unique linear homeo-

morphism induced by the vertex maps l;(e;) = p%; i =1,2; j =
0,...,n.

Example 3.
1. Let L be the affine simplicial structure, described in Ex-
ample 2, on a convex subset of linear topological space. It is
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obvious that £ satisfies the axiom of uniqueness.

2. Now, let (X,7,F) be a topological simplicial structure for
which the axiom of uniqueness holds and let f : X — Y be a
continuous one-to-one map onto Y. The family of maps of the
form f oo, where o € F, is a simplicial structure on Y which
preserves the axiom of uniqueness.

The following theorem is a first step to provide a natural
and intrinsic characterization of metric spaces with simplicial
structures where the axiom of uniqueness holds.

Theorem 6.1. Let Y be a subspace of a space X with simpli-
cial structure F being locally conver and satisfying the aziom
of uniqueness and let r : U — Y be a retraction from an open
set U, Y Cc U C X, (ie., ris continuous and r(z) = z for
each € Y ). Then the family G of all maps of the formroo,
where 0 € F and vert o C Y, s a simplicial locally convex
structure with the azxiom of uniqueness.

Moreover, if in addition, U = X and F is convez then G is
convez, too.

Proof. First let us check that G satisfies the axiom of unique-
ness. Fix o; : LPB,---,P%] — X, 0; € F for i = 1,2, with
vert o; C Y and let I; : [eo,...,en] — [Dh,...,p.] be affine
maps such that (roo; o ll)(eJ) = (roog0ly)(e;) for each
j =0,...,n. Since 7(z) = x for each z € Y, we infer that
(01 0 ll)( ;) = (02 0 l3)(ej). By the axiom of uniqueness we
have; 010l =030l and hence rogy0l; =roogol,.
Next we shall show that G is locally convex. Fix z € Y and
its open neighbourhood W, C X. Since r is continuous there
is an open set U, C X; z € U, C W,, such that r(U,) C W,.
Choose an open set V, C X; z € V, C U,, which satisfies
the conditions (a) and (b) of definition of local convexity at z.
Now, let o € F with vert o C Y be such that vert(roo) C V.
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It is clear that vert o C V, and according to the condition (b);
im o C U,, and in consequence we have im(roo) C W,.

If we assume that F is convex and U = X then it is obvious
that G must be convex. D

Remarks.

1. From the above lemma it follows that each each retract of a
normed space has a convex locally convex simplicial structure
satisfying the axiom of uniqueness.

2. In fact, we have proved that a continuous closed map f pre-

serves local convexity at each point y such that
fy)nY|=1.

Let us put B(z,¢) := {y € X : p(z,y) < €}, where (X, p)
is a metric space, A C X and € > 0.
For a singular simplex o : [py, . .., p,] C Y denote; vert dom

o:={po,-..,Pn}

Lemma 6.2. Let A be a non-empty closed subset of a metric
space (X, p). Then there exists a family {Us,as : s € S} (called
a Dugundji system for A ) such that {Us : s € S} is locally
finite open covering of X \ A, as € A, and for eacha € A, s €
S, € > 0 the following implication holds;

(D) U, N B(a,€) # 0 implies as € B(a, 5¢).

Proof. Let {Us : s € S} be a locally finite open covering of
X \ A which refines the covering {B(z,r(z)) : z € X \ A},
where r(z) = 3d(x, A). For each s € S choose z; € X \ A and
as € A such that U, C B(zs,7(z,)) and p(zs, as) < 3r(zxs).

To show that (D) holds, fix b € Us N B(a,€). Then
2r(zs) < p(zs,a) < p(xs,b) + p(b,a) < r(zs) + €, and hence
r(zs) < €.
On the other hand
plas, a) < p(as, zs) + p(zs,b) + p(b, a) < 3r(zs) +7r(zs)+e€ < Se.
a
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The Dugundji Extension Theorem. Let A be a non-empty
closed subset of a metric space (X, p) and let (Y,T,F) be a
topological simplicial space satisfying the aziom of uniqueness.
Assume that f : A — Y is a continuous map such that Y
is locally convez at each point y € f(OA). Then there exist an
open set U C X and a continuous map F : U — Y such that
AcCcUand FIA=f.

Moreover, if in addition, Y is convez, then U = X.

Proof. Let {Us,as: s € S} be a Dugundji system for A. De-
fine a partition of unity {¢; : s € S} on X \ A subordinated
to {U; : s € S};

. d(z, X \ Us) I
#ole) = > tes Az, X\ Ur) cX\4

Let ® be the family of all pairs (W, o) with the following
properties:
(1) W C X\ A is an open set such that Sy := {s € S :
WnNU; #0} is finite,
(2) o € F is a singular simplex with vert o = {f(as) : s €
Sw}.
Next for each pair o = (W,0) € ® define a continuous map
F, : X\ A — Y as a composition of two maps
X\A—domo—Y:

Fy = U( Z ¢s($) : ps)

SESw

where p; € vert dom o and o(ps) = f(as).

Fix a; = (W;,0;) € ® for ¢ = 1,2, and let us put W :=
W1 N W,. We shall verify that

Fou[W = Fo,|W.
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It is clear that Sw C Sw, NSw,. Arrange Sy into the sequence;
Sw = {so,..., Sk}, and define linear maps I; : e, ...,ex] —
[p%gs -» B,] C dom oy, where pi. € vert dom o; and oy(p},) =
flas;) fori=1,2and j=0,...,k.

The axiom of uniqueness; o, 0l; = 501, and ¢;1(0,1] C U,
imply that for each x € W we have;

Fo(z) = 01( ), ¢4,(2) - 1}))

s;€ESw
=01( ) ¢ -lley)
s;ESw
=(o10L)( Y 6(z)-€5)
SjGSW
=(0200)( D ¢s(z)-€5)
s;ESw
= 02 Z ¢s;(z) - la(e;))
s;ESw
o3 Y s;(z) - PL)
sJGSW
= Fyo,(x).

Now, define U := | {W : (W,0) € ®}UA and F:U — Y,

) f=) if z€A
Fla) = {Fa(a:) if zeU\A

where a = (W,0) € ® and z € W.

The map F is well-defined because it does not depend on
the choice of a.

To complete the proof it suffices to check that U is an open
neighbourhood of A and that F' is continuous at each point
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a € OA belonging to the boundary of A.

Fix a € OA and an open neighbourhood G C Y of f(a).
Since Y is locally convex at f(a) hence there exists an open
set H; f(a) € H C G, satisfying the conditions of local con-
vexity;

(a) for each finite subset F' C H there exists o0 € F such that
vert o = F, and
(b) foreachoc € F; vertcCH = 1imo CQG.

Choose € > 0 such that f(B(a,5)) C H. Now, fix z €
B(a,¢€) and let W be an open set; £ € W C B(a,¢), such that
Sw={s € S:WnU, # 0} is finite. Since {Us,as:s € S} is
a Dugundji system we infer that for each s € S;

Us N B(a,€) # 0 implies f(as) € H

From the above it follows that F' := {f(a;) : s € S} C H.
In view of the condition (a) there exists ¢ € F such that
vert o = F C H and by (b); im 0 C G. Thus a = (W, 0) is an
element of ® and F(z) = F,(z) €im ¢ CG.

In fact, we have proved that z € B(a,€) C U and F(B(a,¢))
C G. This proves that U is an open neighbourhood of A and
that F' is continuous. By definition of U it is clear that in the
case when X is convex the equality X = U holds. 0

According to the Arens-Eells theorem each metric space
(X, p) can be isometrically embedded as a closed subset in a
normed linear space. In view of this theorem, our Theorem and
the Dugundji Extension Theorem just proved, give together, a
characterization of ANR and AR-spaces (cf. Borsuk [2]) in the
class of metric spaces in terms of notions of simplicial struc-
tures;
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ANR = locally convex with the axiom of uniqueness metric
simplicial space,

AR = convex, locally convex with the axiom of uniquenss
metric simplicial space.

Problem. Find an example of a compact metric space which
has a convex locally convex simplicial structure, but which
has no convex locally convex structure satisfying the axiom of
uniqueness.

In 1975 Roberts [11] constructed an interesting class of met-
ric compact convex sets which are non-locally convex. Some
of them have the AR-property (cf.[9]). Thus from our results
it follows that there exists a metric compact convex and non-
locally convex set which has convex and and locally convex
simplicial structure.
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