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ON THE DARBOUX PROPERTY OF
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MULTIVALUED FUNCTIONS
 

Grazyna Kwiecinska* 

Abstract 

In this paper we study the Darboux property of 
multivalued functions from a measurable metric 
space (X,d,M(X),J.l) to a uniform space 
(Y, U(Y)). We introduce the density tpopology 
7d,(X) and show that the open connected sets 
are connected in this topology. The notion of 
approximate continuity with respect to a differ­
entiation basis F is defined. The approximately 
continuous multivalued functions with respect to 
F are continuous in the new topology. We intro­
duce 7d,(X)-regular sets and prove that approx­
imately continuous multivalued functions with 
respect to F take 7d,(X)-regular sets into con­
nected sets, Le., they have a Darboux property. 

1. Introduction 

A. Denjoy in his work [3] on derivatives introduced an interest­
ing class of real functions, the approximately continuous func­
tions. One of the facts discovered by him in this work was that 
these functions have the Darboux property. In this paper we 
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discus the above property in the case of multivalued functions 
from a measurable metric space into arbitrary uniform space. 
The proof of Denjoy depends on properties of derivatives and 
cannot be extended to our case. 

2. Notations and Definitions 

Let X and Y be two non-empty sets and let us assume that 
for every point x E X a non-empty subset F(x) of Y is given. 
In this case we say that F is a multivalued function from X to 
Y and we write F : X ~ Y. 

For F : X ~ Y and any set BeY we denote 

F+ (B) = {x EX: F (x) c B} 

and 

F-(B) = {x EX: F(x) nB =1= 0} 

Let (X, T(X)) and (Y, T(Y)) be topological spaces. A mul­
tivalued function F is called upper (resp. lower) semicontinu­
ous at a point x E X if the following condition is valid : 

(1) \lG E T(Y) (F(x) c G ===} x E IntP+(G)) 

(resp. tiC E T(Y) (F(x) n G =1= (/) ===} x E IntP-(G))). 

F is called continuous at the point x E X if it is simultane­
ously upper and lower semicontinuous at this point. 

Let (Y, U (Y)) be a uniform space and let P be the family of 
pseudometrics {J on the space Y such that {{ (x, Y) E X x Y : 
(J(x, Y) < 2-n

} : {J E P, n E N} ( N denotes the set of all 
positive integers) is a base for the uniformity U(Y) ( see [7]). 

The symbol C(Y) is used to denote the class of all nonempty 
compact subsets of Y with respect to the topology induced by 
U(Y). 
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For each g E P, a number r > 0 and each y E Y and A c Y 
we will write 

K(y,g,r) = {z E Y: g(y,z) < r} 

and 
K(A, g, r) = U{K(y, g, r) : YEA}. 

A multivalued function F : X ~ Y is called h-upper (resp. 
h-Iower) semicontinuous at a point x E X if the following con­
dition holds true: 

(2)	 for each e > 0 and g E P there exists a neighbourhood 
U(xo) of Xo such that F(x) c K(F(xo), g, e) (resp. F(xo) c 
K(F(x), g, e)) for each x E U(xo). 

It is known that 

(3)	 If F is upper (resp. h-Iower) semicontinuous at a point 
x E X, then it is h-upper (resp. lower) semicontinuous at 
the point x ([6], tho 1.15 and 1.12). If moreover F(x) E 

C(Y), then conditions (1) and (2) are equivalent ([6],th. 
1.17 and 1.14). 

Let (X, T(X)) and (Y, T(Y)) be topological spaces. In the 
work [4] the following definition of a Darboux property was 
given: 

Definition 1. A multivalued function F : X ~ Y has the V 
property if the image F(E) = UxEEF(x) is connected for any 
connected set E eX. 

Continuous multivalued functions do not necessarily have 
the property V, but the following is true. 

Theorem 1. If a multivalued function F : X ~ Y with closed 
and connected values is continuous, then it takes connected sets 
into connected sets. 
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This theorem is established by observing, that in this case 
F is a function from X to the space of all closed non-empty 
subsets of Y. 

A special case of Theorem 1, when both X and Yare the 
sets of real numbers, was shown already, see theorem 1 and 2 
in [2]. 

Let (X, d, M(X), J.l) be a measurable metric space with a 
metric d, with a a-finite G6-regular complete measure J.l defined 
on au-field M(X) of subsets of X containing Borel sets. Let 
J.l* be the outer measure corresponding to J.l. 

Let F c M(X) be a family of J.l-measurable sets with 
nonempty interiors of a positive and finite measure J.l, the 
boundaries of which are of J.l-measure zero. 

Let {In}nEN c F and x E X. We take In ~ X to mean that 
x E Int(In ) for n E N and the sequence of diameters 8(In ) con­
verges to zero if n approaches infinity . Let us assume that for 
every x E X there exists a sequence (In)nEN from F converging 
to the point x. The pair (F, ~) forms a differentiation basis 
of (X, d, M(X), J.l) in accordance with Bruckner's terminology 
([1], p.30). 

Let A c X and x EX. The upper outer density of A at 
the point x with respect to F is 

. J.l*(A n In) 
hmsuPln-+x J..l(In) · 

Replacing limsup by liminf we obtain the lower outer density 
of A at x with respect to F. These densities we will denote by 
D*u(x, A) and D*z(x, A) respectively. If both these densities 
are equal, then their common value is called the outer density 
of the set A at the point x with respect to F and is denoted 
by D*(x,A). 

If A E M(X), then outer density of the set A at the point 
x E X with respect to F is called density of A at x with respect 
toF. 

A point x E X is called a density point of a set A c X with 
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respect to F if there exists a set B E M(X) such that B c A 
and density of B at x with respect to F is equal to 1. We will 
write D(x, A) = 1. 

In the remainder of the paper we assume that 

(4)	 F has the density property, i.e. for every set A c X 
Il({x E A: D*z(x, A) < I}) = O. 

A measurable set in X will be called homogeneous with 
respect to F if its density with respect to F is one at each of 
its points. 

Let ¢>(A) denote the set of all density points of A E M(X) 
with respect to F. Then for A E M(X) inclusion A c ¢(A) 
means that A is a homogeneous set with respect to F. It is easy 
to see that ¢(A n B) = ¢>(A) n ¢(B) for each A E M(X) and 
B E M(X). Therefore the finite intersection of homogeneous 
sets with respect to F is homogeneous with respect to F. 

Let {At} tET be the family of homogeneous sets with respect 
to F. The measure Il is a-finite, so we can suppose that Il(X) < 
00. Let b denote the upper bound of all measures of finished 
sums of the sets of family {At}tET' Then there exists {tn} C T 
such that J.L(UnENAtn) = b. Let A = UnENAtn' Then A E 
M(X) and J.l(At \ A) = 0 for each t E T. Moreover ¢(At) C 
¢(A) because At \ (At \ A) c A for each t E T. The sets At 
are homogeneous with respect to F, so At C ¢(At) for each 
t E T. Therefore A C UtET At C UtET ¢(At) c ¢>(A) and 
UtETAt E M(X) because JL(A \ ¢(A)) = O. Finally UtETAt C 

¢(UtET At), Le. the union of homogeneous sets with respect to 
F is homogeneous with respect to F. Since the empty set and 
the whole space are homogeneous sets with respect to F, the 
space X can be topologized by taking the homogeneous sets 
with respect to F as open sets. This topology we will denote 
by Td(X) (comp. [8] or [5]). 

Definition 2. A set A C X is called Td(X)-connected if it is 
connected in the density topology Td(X). 
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Let (Y, T(Y)) be a topological space. 

Definition 3. A multivalued function F : X ~ Y is called 
approximately upper (resp. lower) semicontinuous at a point 
Xo E X with respect to F if there exists a set A E M(X) 
such that D(xo, A) = 1 and the restriction FIA is upper (resp. 
lower) semicontinuous at Xo. 

F is called approximately upper (resp. lower) semicontinu­
ous with respect to:F if it is approximately upper (resp. lower) 
semicontinuous with respect to :F at each point x EX. 

If F is simultaneously approximately upper semicontinuous 
and approximately lower semicontinuous with respect to F, 
then it is called approximately continuous with respect to F. 

3. Main Results 

Let (X, d, M (X) ,~) be a space defined as before, let (Y, U(Y) ) 
be a uniform space and let F : X ~ Y be a multivalued 
function. For fixed Xo EX, (J E P and c > 0 let us put 

Au(xo, g, c) = {x EX: F(x) c K(F(xo), g, c)} 

and 

Al(xo, g, e) = {x EX: F(xo) c K(F(x), (2, e)}. 

Let us consider the following conditions: 

(al) F is approximately upper semicontinuous at Xo with re­
spect to F, 

(a2) F is approximately lower semicontinuous at Xo with re­
spect to F, 

(b1) Vg E P "Ie > 0 D(xo, Au(xo, g, c)) = 1, 

(b2) 'rig E P 'ric > 0 D(xo, Az(xo, (J, c:)) = 1, 
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(Cl) 'iG E T(Y) (P(Xo) c G => D(xo, P+(G)) = 1), 

(C2) 'iG E T(Y) (P(xo) n G =1= 0 => D(xo, P-(G)) = 1). 

Theorem 2. Let (X,d,M(X),/-l) and (Y,U(Y)) be as it was 
stated above and let P : X ~ Y be a multivalued function. 
Then the following implications are valid: 

(i) (al) =} (b1), (b2) =} (a2), (Cl) =} (b1) and (b2) => (C2). 

(ii)	 If F has compact values, then (b1) =} (al), (a2) =} 

(b2), (b1) =} (Cl) and (C2) => (b2). 

Proof Fix c > a and (2 E P. Suppose F is approximately 
upper semicontinuous with respect to :F at the point Xo. Then 
there exists a set A E M(X) such that D(xo, A) = 1 and 
FIA is upper semicontinuous at xc. From (3) it follows that 
there exists an open set U(xo) containing Xo such that M = 
A n U(xo) c Au(xo, (2, c). Moreover D(xo, M) = 1, which es­
tablishes the implication (al) => (b1) . 

In the same manner we can see that (a2)=> (b2) holds true. 
Let us assume that (b2) is valid. Let {} E P and let (Cn)nEN 

be a sequence of positive numbers decreasing to zero. Then 

(5) 'in E N 'ik E N Al(xo, {}, cn+k) C Al(xo, (2, cn) 

From (b2 ) it follows that for each n E N there exists a set 
En E M(X) such that Bn C Al(xo,g,Cn) and D(xo,Bn) = 1. 
Therefore 

(6)	 'in E N ~kn E N 'ik E N (if XQ E Ik, Ik C Ikn and 
8(Ik ) < 8(Ikn ), then 

J,l(Bn n Ik ) 1 )
p,(Ik) > - en 

We may suppose that the sequence (Ikn)nEN is decreasing. Let 
us put 
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(7) A = UnENCn U {XC}, 

where Cn = Bn n (Ikn \ Ikn+1 ). 

We will show that D(xo, A) = 1. Suppose Ik --+ Xo. For 
each kEN there exists n E N such that Ikn+1 C Ik C Ikn and 
J..l(Ikn+1 )< cnJ..l(Ik ). From (6) we have 

(8) J..l(Bn n Ik ) > (1 - cn)J..l(Ik ). 

On the other hand we have the inequalities: 

(9) J1(Bn n Ikn+1 ) ::; J1(Ikn+1 ) < cnJ..l(Ik ). 

From (8) and (9) it follows immediately that 
J..l(A n I k ) ~ J..l(Cn n Ik) = J..l(Bn n (Ikn \ I kn+1 ) n I k ) = J..l(Bn n 
Ik ) - J..l(Bn n Ikn+1 ) > (1- cn)J..l(Ik ) - cnJ1(Ik ) = (1- 2cn)J1(Ik). 

J1(A n Ik )
Thus we have /-L(h) > (1 - 2cn)' 

If Ik --+ xo, then Cn --+ 0 and this establishes D(xo, A) = 1. 
Now we show that FIA is lower semicontinuous at the point 

Xo. Let c > O. There exists n E N such that Cn < c. Let r = 
8(Ikn+1 ) and let x E AnK(xo, (J, r). Then x E UiENCn+iU{XO}. 
Moreover for each i E N we have Cn+i C Al(xo, (J, Cn+i) C 

Al(xo, (J, c). Therefore F(xo) C K(F(x), (J, c) for each x E 

A n K(xo, r). By virtue of (3) the multifunction FIA is lower 
semicontinuous at xo, which establishes the implication (b2 ) ::::} 

(a2). 
Applying this argument again, with (b2 ) replaced by (b1 ) and 

with assumed compactness of values of F, we obtain (b1) => 
(al). 

To prove the implication (Cl) => (b1) it is sufficient to ob­
serve that the equality Au(xo, (J, e) = F+(K(F(xo), g, c)) holds 
true. 

Now suppose that F has compact values and (b1) is valid. 
Let G be an open set such that F(xo) c G. Let g E P and 
let (cn)nEN be a decreasing sequence of positive numbers con­
vergent to zero such that K(F(xo), g, Cn) C G for each n E N. 
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By virtue of (b1) in the same fashion as before we can con­
struct the set A (see (7)) such that D(xo, A) = 1 . We have 
P(x) C K(F(xo), g, €n) C G for each x E A. Thus we have 
A C P+(G) and D(xo, F+(G)) = 1, which establishes the im­
plication (b1) => (Cl). 

Suppose that F has compact values and (C2) is valid. Let 
g E P and e > o. There exists a sequence (Yi)i=1,2, ... ,n such 
that P(xo) C Ui=1,2, ,nK (Yi, g,~) and F(xo) n K(Yi, g,~) =I 
ofor each i = 1,2, , n. Let Ui = P-(K(Yi, {}, ~)) for each 
i = 1,2, .. , n and let U(xo) = ni=1,2, ... ,nUi. By (C2) we have 
D(xo, Ui) = 1 for each i = 1,2, ... , n. Then Xo E U(xo) and 
D(xo, U(xo)) = 1. It suffices to show that U(xo) c Al(xo, g, e). 
Let x E U(xo). Then for each i = 1,2, ... , n we have F(x) n 
K(Yi, {}, ~) =I 0. Thus 

(10) Vi E {I, 2, ... , n} 3zi E F(x) Yi E K(Zi, (J, ~). 

Let Y E F(xo). Then there exists j E {I, 2, ... , n} such that 
{}(Y, Yj) < ~. Let Zj be chosen for Yj according to (10). Then 
{}(Zj, y) < e. Thence F(xo) C K(P(x), {}, €) and x E Al(xo, {}, e). 
The proof of (C2) =} (b2 ) is complete. 0 

Now let us suppose that (b2) is valid and let G c Y be an 
open set such that F(xo) n G =I 0. Let y E F(xo) n G and let 
(en)nEN be a decreasing to zero sequence of positive numbers 
such that K(y, g, cn) C G for each n E N. Again likewise as 
before we can construct a set A (see (7)) such that D(xo, A) = 
1. It remains to prove that A c P-(G). Let x E A. Then 
there exists n E N such that x E en C Al(xo, {}, €n). Thus 
we conclude that F(xo) c K(P(x), (], €n). Because y E F(xo), 
then there exists Z E F(x) such that y E K(z, {}, en). According 
to assumption K(y, {}, en) C G, thus we conclude that Z E G, 
hence F(x) n G =I 0, Le. x E F-(G), which establishes the 
implication (b2 ) =} (C2) and completes the proof of theorem 2. 

Summarizing above results, we have 
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Conclusion 1. Let F : X ~ Y be a multivalued function with 
compact values. Then F is approximately continuous if and 
only if F is continuous with respect to the density topology 
1d(X). 

Let	 A c X and x E X. Let us note that 

(11)	 x is a limit point of the set A in the topology 1d(X) if 
and only if Du *(x, A) > o. 

A point with this property we will call a 1d(X)-limit point. 
A 1d(X)-connected set is the one which is not the union of 

two nonempty subsets of X neither of which contains a 1d(X)­
limit point of the other. 

The next theorem is established by the Conclusion 1. 

Theorem 3. Let F : X ~ Y be an approximately continu­
ous with respect to F multivalued function with compact and 
connected values. Then F takes 1d(X)-connected sets into con­
nected sets. 

Theorem 4. If a set A c X is open and connected, then it is 
1d(X)-connected subset of X. 

Proof Suppose A is open and connected but not 1d(X)­
connected. Then there exist sets Band C nonempty, disjoint, 
homogeneous with respect to F and such that A = B UC. Let 
b E Band c E C. Let B(a, c) be an open ball including band 
c. For any set P E M(X) the function j(x) = p,(pnB(x,r)) is

p,(B(x,r)) 

continuous for fixed r > 0 ( the number 1-£~~fl,~))U is called the 
relative measure of P in B(x, r) ). 

Let Cl = min(c-d(a, b), c-d(a, c)). Then B(x, cl) C B(a, c) 
for each x E B(a, c - cl). Let us choose rl :::; Cl so that ,the 
relative measure of B in B(b, Tl) exceeds ~ and the relative 
measure of B in B(c, rl) is less than ~. This is possible since B 
has at bdensity one with respect to F and at c density zero with 
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respect to:F. There must then be a point al E B(a, c) such 
that the relative measure of B in B(al, rl)is exactly~. The 
ball B(al' rl) must have interior points bi E Band Cl E C. Let 
C2 = min(rl - d(al' b1 ), rl - d(al' Cl))' Analogously as before 
we may choose r2 < rl so that B(x, r2) C B(al' rl) for every 
x E B(al, rl - c2) and so that the relative measure of B in 
B(b1 , r2) exceeds ~ and is less than ~ in B(Cl' r2)' There is 
then a point a2 E B (aI, rl) such that the relative measure of B 
in B(a2, r2) is exactly ~. Continuing this process we construct 
a sequence B(an,rn) of open balls such that for each n E N we 
have B(an+l' rn+l) C Cl(B(an,rn)) C B(an-l, rn-I) ( Cl(M) 
denotes the closure of M ) and the relative measure of B in the 
ball B(an,rn) is ~. This sequence converges to a point ao E A 
but neither B nor C have density one at ao with respect to :F. 
Since Band C are homogeneous with respect to :F ao fj. Band 
ao fj. C. This contradiction establishes the theorem. 0 

Let us observe that a line segment in euclidean space R2 

is not 1d(R2)- connected. This is an example showing the ne­
cessity of the opennes of A in the above theorem. However 
Theorem 4 is true if a connected set A has only the property: 
Int(A) cAe CI(Int(A)). This follows by the same method as 
in the proof of Theorem 4, because we may assume Int(A) =I 0. 

Definition 4. Let A C X be a closed set with connected inte­
rior. The set A is called 1d(X)-regular if its boundary points 
are 1d(X)-limit points of the interior of A. 

Theorem 5. If a set A C X is 1d(X)-regular, then it is 1d(X)­
connected. 

Proof. Suppose that A is 1d(X)-regular and is not 1d(X)­
connected. The set A is 1d(X)-regular, so interior of A is a 
connected subset of A. Moreover A is not 1d(X)-connected. 
Then there exist two homogeneous with respect to F sets B 
and C such that Band C are disjoint, non-empty and each 
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contains none of the other's 1d(X)-limit points. One of the 
sets, say B, must then be contained entirely in the boundary 
of A, for otherwise this separation would induce a separation 
of the interior of A which is not possible ( see tho 4 ) because 
interior of A is open and connected. Then the set B contains a 
1d(X)-limit point of the interior of A and hence of C, which is 
contrary to our assumption. This finishes the proof of theorem. 
o 

Let A be an open sphere in R2 and let us delete an open 
radius. The resulting set is 1d(R2)-connected. This example 
shows that the converse of Theorem 4 and Theorem 5 is not 
true. 

Conclusion 2. Let F : X ~ Y be an approximately contin­
uous with respect to F multivalued junction with compact and 
connected values. Then F takes 1d(X)-regular sets into con­
nected sets. 
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