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ON THE DARBOUX PROPERTY OF
APPROXIMATELY CONTINUOUS
MULTIVALUED FUNCTIONS

Grazyna Kwieciiska*

Abstract

In this paper we study the Darboux property of
multivalued functions from a measurable metric
space (X,d,M(X),u) to a wuniform space
(Y,U(Y)). We introduce the density tpopology
74(X) and show that the open connected sets
are connected in this topology. The notion of
approximate continuity with respect to a differ-
entiation basis F is defined. The approximately
continuous multivalued functions with respect to
JF are continuous in the new topology. We intro-
duce T3(X)-regular sets and prove that approx-
imately continuous multivalued functions with
respect to F take Ty(X)-regular sets into con-
nected sets, i.e., they have a Darboux property.

1. Introduction

A. Denjoy in his work [3] on derivatives introduced an interest-
ing class of real functions, the approximately continuous func-
tions. One of the facts discovered by him in this work was that
these functions have the Darboux property. In this paper we
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discus the above property in the case of multivalued functions
from a measurable metric space into arbitrary uniform space.
The proof of Denjoy depends on properties of derivatives and
cannot be extended to our case.

2. Notations and Definitions

Let X and Y be two non-empty sets and let us assume that
for every point z € X a non-empty subset F(z) of Y is given.
In this case we say that F' is a multivalued function from X to
Y and we write F: X — Y.

For F: X — Y and any set B C Y we denote

Ft*(B)={ze€ X :F(z) C B}

and

F-(B)={z€ X : F(z)NB # 0}

Let (X,7 (X)) and (Y, 7 (Y)) be topological spaces. A mul-
tivalued function F is called upper (resp. lower) semicontinu-
ous at a point z € X if the following condition is valid :

(1) VGeT(Y) (F(z) C G= z € IntF*(G))
(resp. VG € T(Y) (F(z) NG # 0 = z € IntF~(Q))).

F is called continuous at the point z € X if it is simultane-
ously upper and lower semicontinuous at this point.

Let (Y,U(Y)) be a uniform space and let P be the family of
pseudometrics g on the space Y such that {{(z,y) € X x Y :
o(z,y) < 27"} : p € P,n € N} ( N denotes the set of all
positive integers ) is a base for the uniformity U (Y") ( see [7]).

The symbol C(Y') is used to denote the class of all nonempty
compact subsets of Y with respect to the topology induced by
Uuy).
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For each p € P, anumberr >0andeachy € Yand ACY
we will write

K(y,0,r)={2€Y :0(y,2) <7}

and
K(A,or) =U{K(y,or):yc A}

A multivalued functlon F:X— Y is called h-upper (resp.
h-lower) semicontinuous at a point z € X if the following con-
dition holds true:

(2) for each € > 0 and p € P there exists a neighbourhood
U(zo) of zg such that F(z) C K(F(zo), 0,€) (resp. F(zo) C
K(F(x),0,€)) for each z € U(zy).

It is known that

(3) If F is upper (resp. h-lower) semicontinuous at a point
z € X, then it is h-upper (resp. lower) semicontinuous at
the point z ([6], th. 1.15 and 1.12). If moreover F(z) €
C(Y), then conditions (1) and (2) are equivalent ([6],th.
1.17 and 1.14).

Let (X,7(X)) and (Y,7(Y)) be topological spaces. In the
work [4] the following definition of a Darboux property was
given:

Definition 1. A multivalued function F : X — Y has the D
property if the image F(E) = UycpF(z) is connected for any
connected set £ C X.

Continuous multivalued functions do not necessarily have
the property D, but the following is true.

Theorem 1. If a multivalued function F : X — Y with closed
and connected values is continuous, then it takes connected sets
into connected sets.
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This theorem is established by observing, that in this case
F' is a function from X to the space of all closed non-empty
subsets of Y.

A special case of Theorem 1, when both X and Y are the
sets of real numbers, was shown already, see theorem 1 and 2
in [2].

Let (X,d, M(X), ) be a measurable metric space with a
metric d, with a o-finite Gs-regular complete measure p defined
on a o-field M(X) of subsets of X containing Borel sets. Let
©* be the outer measure corresponding to p.

Let F € M(X) be a family of uy-measurable sets with
nonempty interiors of a positive and finite measure u, the
boundaries of which are of y-measure zero.

Let {I}nen C F and z € X. We take I, — z to mean that
z € Int(I,) for n € N and the sequence of diameters 6(7,) con-
verges to zero if n approaches infinity . Let us assume that for
every € X there exists a sequence (I,)nen from F converging
to the point z. The pair (F,—) forms a differentiation basis
of (X,d, M(X), ) in accordance with Bruckner’s terminology
(1], p-30).

Let A C X and z € X. The upper outer density of A at
the point z with respect to F is

p(ANI,)
p(l,)

Replacing limsup by liminf we obtain the lower outer density
of A at z with respect to F. These densities we will denote by
D*,(z,A) and D*/(z, A) respectively. If both these densities
are equal, then their common value is called the outer density
of the set A at the point z with respect to F and is denoted
by D*(z, A).

If A € M(X), then outer density of the set A at the point
z € X with respect to F is called density of A at z with respect
to F.

A point z € X is called a density point of a set A C X with

limsup;__,,
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respect to F if there exists a set B € M(X) such that BC A
and density of B at x with respect to F is equal to 1. We will
write D(z, A) = 1.

In the remainder of the paper we assume that

(4) F has the density property, i.e. for every set A C X
pu{z e A: D*(z,A) < 1}) =0.

A measurable set in X will be called homogeneous with
respect to F if its density with respect to F is one at each of
its points.

Let ¢(A) denote the set of all density points of A € M(X)
with respect to F. Then for A € M(X) inclusion A C ¢(A)
means that A is a homogeneous set with respect to F. It is easy
to see that ¢(A N B) = ¢(A) N ¢(B) for each A € M(X) and
B € M(X). Therefore the finite intersection of homogeneous
sets with respect to F is homogeneous with respect to F.

Let {A;},c be the family of homogeneous sets with respect
to F. The measure p is o-finite, so we can suppose that p(X) <
00. Let b denote the upper bound of all measures of finished
sums of the sets of family {A:},.;. Then there exists {t,} C T
such that pu(UpenAs,) = b. Let A = U,enA:,. Then A €
M(X) and p(A: \ A) = 0 for each t € T. Moreover ¢(A;) C
#(A) because A; \ (A:\ A) C A for each t € T. The sets A;
are homogeneous with respect to F, so A; C ¢(A;) for each
t € T. Therefore A C User At C Uier #(A:) C ¢(A) and
User A: € M(X) because u(A\ ¢(A)) = 0. Finally User At C
&(User At), i.e. the union of homogeneous sets with respect to
F is homogeneous with respect to F. Since the empty set and
the whole space are homogeneous sets with respect to F, the
space X can be topologized by taking the homogeneous sets

with respect to F as open sets. This topology we will denote
by T3(X) (comp. [8] or [5]).

Definition 2. A set A C X is called 74(X)-connected if it is
connected in the density topology 74(X).
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Let (Y,7(Y)) be a topological space.

Definition 3. A multivalued function F' : X — Y is called
approximately upper (resp. lower) semicontinuous at a point
o € X with respect to F if there exists a set A € M(X)
such that D(zo, A) = 1 and the restriction F| 4 is upper (resp.
lower) semicontinuous at .

F is called approximately upper (resp. lower) semicontinu-
ous with respect to F if it is approximately upper (resp. lower)
semicontinuous with respect to F at each point z € X.

If F is simultaneously approximately upper semicontinuous
and approximately lower semicontinuous with respect to F,
then it is called approximately continuous with respect to F.

3. Main Results

Let (X,d, M(X), 1) be a space defined as before, let (Y,U(Y))
be a uniform space and let FF : X — Y be a multivalued
function. For fixed 2o € X, p € P and € > 0 let us put

Au(zo,0,€) ={z € X : F(z) C K(F(20), 0,€)}
and

Ai(zo, 0,6) ={z € X : F(zo) C K(F(x),0,€)}-
Let us consider the following conditions:

(a1) F is approximately upper semicontinuous at o with re-
spect to F,

(az) F is approximately lower semicontinuous at zo with re-
spect to F,

(b1) Yo € P Ve >0 D(xo, Au(z0, 0,€)) =1,
(b2) Yo € P Ve > 0 D(zo, Ai(zo, 0,€)) = 1,
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(c1) VG € T(Y) (F(z0) C G = D(zo, F7(G)) = 1),
(ca) VG € T(Y) (F(z0) NG # 0 = D(zo, F~(G)) = 1).

Theorem 2. Let (X,d, M(X),u) and (Y,U(Y)) be as it was
stated above and let F : X — Y be a multivalued function.
Then the following implications are valid:

(i) (a1) = (b1), (b2) = (@2), (c1) = (b1) and (b2) = (ca)-

(i) If F has compact values, then (b)) = (a1),(a2) =
(b2), (b1) = (c1) and (c2) = (b2).

Proof. Fix € > 0 and p € P. Suppose F is approximately
upper semicontinuous with respect to F at the point 2. Then
there exists a set A € M(X) such that D(zo,A) = 1 and
F| 4 is upper semicontinuous at zp. From (3) it follows that
there exists an open set U(zy) containing zo such that M =
ANU(zy) C Au(zo, 0,€). Moreover D(zg, M) = 1, which es-
tablishes the implication (a;) = (b1) .

In the same manner we can see that (az)= (b) holds true.

Let us assume that (bo) is valid. Let o € P and let (&n),,cn
be a sequence of positive numbers decreasing to zero. Then

(5) Yne NVke N Az(xo, 0, 5n+k) C Al(xo, 0, €n)

From (b,) it follows that for each n € N there exists a set
B, € M(X) such that B, C Ai(xo, 0,€x) and D(zo, B,) = 1.
Therefore

(6) Yne N 3k, e N Vke N (if 29 € Iy, Iy C I, and
5(Ik) < 5(Ikn), then

/*L(Bn N Ik)
W >1-— 5n)

We may suppose that the sequence (I,),cn is decreasing. Let
us put
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(7) A= UnenCn U {zo},

where Cn = Bn N (Ik-n \Ikn+1)-

We will show that D(zo, A) = 1. Suppose Iz — zo. For
each k € N there exists n € N such that Iy,,, C Iz C I, and
Ik, ., )< €xpt(Ix). From (6) we have

(8) w(BnNIx) > (1 —en)u(ly).
On the other hand we have the inequalities:

(9) w(B.N ‘[kn+1) < /-‘(Ikn«u) < enpt(Ik).
From (8) and (9) it follows immediately that

(AN Ix) 2 p(Co N Ix) = p(Ba N (I, \ Tipyy) N Ix) = p(Bn N
L) = (Bn N Ikpyy) > (L= €n)ullx) — enp(ls) = (1= 2en) u(lk).
Thus we have HAN L) > (1 - 2¢e,).
u(Ix)

If Iy — zg, then €, — 0 and this establishes D(zq, A) = 1.

Now we show that F| 4 is lower semicontinuous at the point
zo. Let € > 0. There exists n € N such that €, < €. Let r =
0(I,,,) and let z € ANK (z0, 0,7). Then z € U;enyCryiU{z0o}.
Moreover for each i € N we have C,; C Ai(zo, 0,nti) C
Ai(zo, 0,€). Therefore F(zq) C K(F(x),p,€) for each z €
AN K(zg,7). By virtue of (3) the multifunction F| 4 is lower
semicontinuous at 2o, which establishes the implication (b3) =
(a2).

Applying this argument again, with (b2) replaced by (b;) and
with assumed compactness of values of F', we obtain (b;) =
(a1).

To prove the implication (¢;) = (b1) it is sufficient to ob-
serve that the equality A,(zo, 0,€) = F(K(F(zo), 0,€)) holds
true.

Now suppose that F' has compact values and (b;) is valid.
Let G be an open set such that F(zg) C G. Let p € P and
let (€n),en be a decreasing sequence of positive numbers con-
vergent to zero such that K (F(zo), 0,€,) C G for each n € N.
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By virtue of (b;) in the same fashion as before we can con-
struct the set A (see (7)) such that D(zg,A) = 1. We have
F(z) ¢ K(F(z0),0,en) C G for each z € A. Thus we have
A C F*(G) and D(z9, F*(G)) = 1, which establishes the im-
plication (b;) = (c1).

Suppose that F' has compact values and (cp) is valid. Let
0 € P and € > 0. There exists a sequence (¥:);_; 5, such
that F(SB()) C Uiz 2, ,nK(yuQa 2) and F(ZO) N K(yu Q, 2) #
D for each ¢ = 1,2,...,n. Let U; = F~(K(y;0,%)) for each
i =1,2,..,n and let U(2o) = MNiz12,. oUi- By (c2) we have
D(zo,U;) = 1 for each i = 1,2,...,n. Then zo € U(zy) and
D(z,U(zp)) = 1. It suffices to show that U(zo) C Ai(zo, 0,€).
Let z € U(zg). Then for each ¢ = 1,2,...,n we have F(z) N

K(yi;0,5) # 0. Thus

(10) Vi € {1,2,...,n} 3z; € F(z) v; € K(z;, 0, -;—)

Let y € F(zo). Then there exists j € {1,2,...,n} such that
0(y,y;) < §. Let z; be chosen for y; according to (10). Then
o0(zj,y) < e. Thence F(zo) C K(F(z),0,¢) and z € Ai(zo, 0, €).
The proof of (¢;) = (bs) is complete. O

Now let us suppose that (bs) is valid and let G C Y be an
open set such that F(zo) NG # 0. Let y € F(z9) NG and let
(€n)nen be a decreasing to zero sequence of positive numbers
such that K(y, 0,en) C G for each n € N. Again likewise as
before we can construct a set A (see (7)) such that D(zo, A) =
1. It remains to prove that A C F~(G). Let x € A. Then
there exists n € N such that z € C, C A)(zo,0,6,). Thus
we conclude that F(zo) C K(F(z), 0,€,). Because y € F(zy),
then there exists z € F'(z) such that y € K(z, g, €,). According
to assumption K (y, 0,€,) C G, thus we conclude that z € G,
hence F(z) NG # 0, i.e. £ € F~(G), which establishes the
implication (b3) = (c2) and completes the proof of theorem 2.

Summarizing above results, we have
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Conclusion 1. Let F : X — Y be a multivalued function with
compact values. Then F is approzimately continuous if and
only if F is continuous with respect to the density topology

Ty(X).
Let A C X and z € X. Let us note that

(11) z is a limit point of the set A in the topology 74(X) if
and only if D,*(z, A) > 0.

A point with this property we will call a 7;(X)-limit point.

A 74(X)-connected set is the one which is not the union of
two nonempty subsets of X neither of which contains a 7;(X)-
limit point of the other.

The next theorem is established by the Conclusion 1.

Theorem 3. Let FF : X — Y be an approzimately continu-
ous with respect to F multivalued function with compact and
connected values. Then F takes Ty(X)-connected sets into con-
nected sets.

Theorem 4. If a set A C X is open and connected, then it is
T4(X)-connected subset of X.

Proof. Suppose A is open and connected but not 73(X)-
connected. Then there exist sets B and C nonempty, disjoint,
homogeneous with respect to F and such that A = BUC. Let
b€ Band ce C. Let B(a,€) be an open ball including b and
c. For any set P € M(X) the function f(z) = &P0BED) 5

w(B(z,r))
continuous for fixed 7 > 0 ( the number %’%’P is called the

relative measure of P in B(z,r) ).
Let £; = min(e—d(a,b),e—d(a,c)). Then B(z,€;) C B(a,¢)

for each z € B(a,e — €1). Let us choose 7 < €; so that the

relative measure of B in B(b,r;) exceeds % and the relative

measure of B in B(c,71) is less than 3. This is possible since B
has at b density one with respect to F and at ¢ density zero with
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respect to F. There must then be a point a; € B(a,¢) such
that the relative measure of B in B(a;,r)is exactly 3. The
ball B(a;, ;) must have interior points b, € B and ¢; € C. Let
£, = min(ry — d(a1,b1),71 — d(a1,¢1)). Analogously as before
we may choose o < 7y so that B(z,75) C B(ay,r) for every
z € B(aj,m1 — €2) and so that the relative measure of B in
B(b1,75) exceeds 1 and is less than 3 in B(cy,72). There is
then a point a; € B(ai,r;) such that the relative measure of B
in B(as,r2) is exactly 3. Continuing this process we construct
a sequence B(an, r,) of open balls such that for each n € N we
have B(ani1,Tn+1) C Cl(B(an,mn)) C B(an-1,7n-1) ( CU(M)
denotes the closure of M ) and the relative measure of B in the
ball B(an,T,) is % This sequence converges to a point ag € A
but neither B nor C have density one at ag with respect to F.
Since B and C are homogeneous with respect to F ag € B and
ag € C. This contradiction establishes the theorem. 0

Let us observe that a line segment in euclidean space R?
is not 7;(R?)- connected. This is an example showing the ne-
cessity of the opennes of A in the above theorem. However
Theorem 4 is true if a connected set A has only the property:
Int(A) € A C Cl(Int(A)). This follows by the same method as
in the proof of Theorem 4, because we may assume Int(A) # 0.

Definition 4. Let A C X be a closed set with connected inte-
rior. The set A is called 73(X)-regular if its boundary points
are T3(X)-limit points of the interior of A.

Theorem 5. Ifaset A C X is Ty(X)-regular, then it is Ty(X)-
connected.

Proof. Suppose that A is 73(X)-regular and is not 74(X)-
connected. The set A is Ty(X)-regular, so interior of A is a
connected subset of A. Moreover A is not 74(X)-connected.
Then there exist two homogeneous with respect to F sets B
and C such that B and C are disjoint, non-empty and each
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contains none of the other’s 7;(X)-limit points. One of the
sets, say B, must then be contained entirely in the boundary
of A, for otherwise this separation would induce a separation
of the interior of A which is not possible ( see th. 4 ) because
interior of A is open and connected. Then the set B contains a
74(X)-limit point of the interior of A and hence of C, which is
contrary to our assumption. This finishes the proof of theorem.
g

Let A be an open sphere in R? and let us delete an open
radius. The resulting set is 73(R?)-connected. This example
shows that the converse of Theorem 4 and Theorem 5 is not
true.

Conclusion 2. Let F : X — Y be an approrimately contin-
uous with respect to F multivalued function with compact and
connected values. Then F takes T3(X)-regular sets into con-
nected sets.
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