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ON THE DARBOUX PROPERTY OF
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MULTIVALUED FUNCTIONS
 

Grazyna Kwiecinska* 

Abstract 

In this paper we study the Darboux property of 
multivalued functions from a measurable metric 
space (X,d,M(X),J.l) to a uniform space 
(Y, U(Y)). We introduce the density tpopology 
7d,(X) and show that the open connected sets 
are connected in this topology. The notion of 
approximate continuity with respect to a differ
entiation basis F is defined. The approximately 
continuous multivalued functions with respect to 
F are continuous in the new topology. We intro
duce 7d,(X)-regular sets and prove that approx
imately continuous multivalued functions with 
respect to F take 7d,(X)-regular sets into con
nected sets, Le., they have a Darboux property. 

1. Introduction 

A. Denjoy in his work [3] on derivatives introduced an interest
ing class of real functions, the approximately continuous func
tions. One of the facts discovered by him in this work was that 
these functions have the Darboux property. In this paper we 
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discus the above property in the case of multivalued functions 
from a measurable metric space into arbitrary uniform space. 
The proof of Denjoy depends on properties of derivatives and 
cannot be extended to our case. 

2. Notations and Definitions 

Let X and Y be two non-empty sets and let us assume that 
for every point x E X a non-empty subset F(x) of Y is given. 
In this case we say that F is a multivalued function from X to 
Y and we write F : X ~ Y. 

For F : X ~ Y and any set BeY we denote 

F+ (B) = {x EX: F (x) c B} 

and 

F-(B) = {x EX: F(x) nB =1= 0} 

Let (X, T(X)) and (Y, T(Y)) be topological spaces. A mul
tivalued function F is called upper (resp. lower) semicontinu
ous at a point x E X if the following condition is valid : 

(1) \lG E T(Y) (F(x) c G ===} x E IntP+(G)) 

(resp. tiC E T(Y) (F(x) n G =1= (/) ===} x E IntP-(G))). 

F is called continuous at the point x E X if it is simultane
ously upper and lower semicontinuous at this point. 

Let (Y, U (Y)) be a uniform space and let P be the family of 
pseudometrics {J on the space Y such that {{ (x, Y) E X x Y : 
(J(x, Y) < 2-n

} : {J E P, n E N} ( N denotes the set of all 
positive integers) is a base for the uniformity U(Y) ( see [7]). 

The symbol C(Y) is used to denote the class of all nonempty 
compact subsets of Y with respect to the topology induced by 
U(Y). 



249 ON THE DARBOUX PROPERTY OF ... 

For each g E P, a number r > 0 and each y E Y and A c Y 
we will write 

K(y,g,r) = {z E Y: g(y,z) < r} 

and 
K(A, g, r) = U{K(y, g, r) : YEA}. 

A multivalued function F : X ~ Y is called h-upper (resp. 
h-Iower) semicontinuous at a point x E X if the following con
dition holds true: 

(2)	 for each e > 0 and g E P there exists a neighbourhood 
U(xo) of Xo such that F(x) c K(F(xo), g, e) (resp. F(xo) c 
K(F(x), g, e)) for each x E U(xo). 

It is known that 

(3)	 If F is upper (resp. h-Iower) semicontinuous at a point 
x E X, then it is h-upper (resp. lower) semicontinuous at 
the point x ([6], tho 1.15 and 1.12). If moreover F(x) E 

C(Y), then conditions (1) and (2) are equivalent ([6],th. 
1.17 and 1.14). 

Let (X, T(X)) and (Y, T(Y)) be topological spaces. In the 
work [4] the following definition of a Darboux property was 
given: 

Definition 1. A multivalued function F : X ~ Y has the V 
property if the image F(E) = UxEEF(x) is connected for any 
connected set E eX. 

Continuous multivalued functions do not necessarily have 
the property V, but the following is true. 

Theorem 1. If a multivalued function F : X ~ Y with closed 
and connected values is continuous, then it takes connected sets 
into connected sets. 
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This theorem is established by observing, that in this case 
F is a function from X to the space of all closed non-empty 
subsets of Y. 

A special case of Theorem 1, when both X and Yare the 
sets of real numbers, was shown already, see theorem 1 and 2 
in [2]. 

Let (X, d, M(X), J.l) be a measurable metric space with a 
metric d, with a a-finite G6-regular complete measure J.l defined 
on au-field M(X) of subsets of X containing Borel sets. Let 
J.l* be the outer measure corresponding to J.l. 

Let F c M(X) be a family of J.l-measurable sets with 
nonempty interiors of a positive and finite measure J.l, the 
boundaries of which are of J.l-measure zero. 

Let {In}nEN c F and x E X. We take In ~ X to mean that 
x E Int(In ) for n E N and the sequence of diameters 8(In ) con
verges to zero if n approaches infinity . Let us assume that for 
every x E X there exists a sequence (In)nEN from F converging 
to the point x. The pair (F, ~) forms a differentiation basis 
of (X, d, M(X), J.l) in accordance with Bruckner's terminology 
([1], p.30). 

Let A c X and x EX. The upper outer density of A at 
the point x with respect to F is 

. J.l*(A n In) 
hmsuPln-+x J..l(In) · 

Replacing limsup by liminf we obtain the lower outer density 
of A at x with respect to F. These densities we will denote by 
D*u(x, A) and D*z(x, A) respectively. If both these densities 
are equal, then their common value is called the outer density 
of the set A at the point x with respect to F and is denoted 
by D*(x,A). 

If A E M(X), then outer density of the set A at the point 
x E X with respect to F is called density of A at x with respect 
toF. 

A point x E X is called a density point of a set A c X with 
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respect to F if there exists a set B E M(X) such that B c A 
and density of B at x with respect to F is equal to 1. We will 
write D(x, A) = 1. 

In the remainder of the paper we assume that 

(4)	 F has the density property, i.e. for every set A c X 
Il({x E A: D*z(x, A) < I}) = O. 

A measurable set in X will be called homogeneous with 
respect to F if its density with respect to F is one at each of 
its points. 

Let ¢>(A) denote the set of all density points of A E M(X) 
with respect to F. Then for A E M(X) inclusion A c ¢(A) 
means that A is a homogeneous set with respect to F. It is easy 
to see that ¢(A n B) = ¢>(A) n ¢(B) for each A E M(X) and 
B E M(X). Therefore the finite intersection of homogeneous 
sets with respect to F is homogeneous with respect to F. 

Let {At} tET be the family of homogeneous sets with respect 
to F. The measure Il is a-finite, so we can suppose that Il(X) < 
00. Let b denote the upper bound of all measures of finished 
sums of the sets of family {At}tET' Then there exists {tn} C T 
such that J.L(UnENAtn) = b. Let A = UnENAtn' Then A E 
M(X) and J.l(At \ A) = 0 for each t E T. Moreover ¢(At) C 
¢(A) because At \ (At \ A) c A for each t E T. The sets At 
are homogeneous with respect to F, so At C ¢(At) for each 
t E T. Therefore A C UtET At C UtET ¢(At) c ¢>(A) and 
UtETAt E M(X) because JL(A \ ¢(A)) = O. Finally UtETAt C 

¢(UtET At), Le. the union of homogeneous sets with respect to 
F is homogeneous with respect to F. Since the empty set and 
the whole space are homogeneous sets with respect to F, the 
space X can be topologized by taking the homogeneous sets 
with respect to F as open sets. This topology we will denote 
by Td(X) (comp. [8] or [5]). 

Definition 2. A set A C X is called Td(X)-connected if it is 
connected in the density topology Td(X). 



252 Grazyna Kwiecinska 

Let (Y, T(Y)) be a topological space. 

Definition 3. A multivalued function F : X ~ Y is called 
approximately upper (resp. lower) semicontinuous at a point 
Xo E X with respect to F if there exists a set A E M(X) 
such that D(xo, A) = 1 and the restriction FIA is upper (resp. 
lower) semicontinuous at Xo. 

F is called approximately upper (resp. lower) semicontinu
ous with respect to:F if it is approximately upper (resp. lower) 
semicontinuous with respect to :F at each point x EX. 

If F is simultaneously approximately upper semicontinuous 
and approximately lower semicontinuous with respect to F, 
then it is called approximately continuous with respect to F. 

3. Main Results 

Let (X, d, M (X) ,~) be a space defined as before, let (Y, U(Y) ) 
be a uniform space and let F : X ~ Y be a multivalued 
function. For fixed Xo EX, (J E P and c > 0 let us put 

Au(xo, g, c) = {x EX: F(x) c K(F(xo), g, c)} 

and 

Al(xo, g, e) = {x EX: F(xo) c K(F(x), (2, e)}. 

Let us consider the following conditions: 

(al) F is approximately upper semicontinuous at Xo with re
spect to F, 

(a2) F is approximately lower semicontinuous at Xo with re
spect to F, 

(b1) Vg E P "Ie > 0 D(xo, Au(xo, g, c)) = 1, 

(b2) 'rig E P 'ric > 0 D(xo, Az(xo, (J, c:)) = 1, 
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(Cl) 'iG E T(Y) (P(Xo) c G => D(xo, P+(G)) = 1), 

(C2) 'iG E T(Y) (P(xo) n G =1= 0 => D(xo, P-(G)) = 1). 

Theorem 2. Let (X,d,M(X),/-l) and (Y,U(Y)) be as it was 
stated above and let P : X ~ Y be a multivalued function. 
Then the following implications are valid: 

(i) (al) =} (b1), (b2) =} (a2), (Cl) =} (b1) and (b2) => (C2). 

(ii)	 If F has compact values, then (b1) =} (al), (a2) =} 

(b2), (b1) =} (Cl) and (C2) => (b2). 

Proof Fix c > a and (2 E P. Suppose F is approximately 
upper semicontinuous with respect to :F at the point Xo. Then 
there exists a set A E M(X) such that D(xo, A) = 1 and 
FIA is upper semicontinuous at xc. From (3) it follows that 
there exists an open set U(xo) containing Xo such that M = 
A n U(xo) c Au(xo, (2, c). Moreover D(xo, M) = 1, which es
tablishes the implication (al) => (b1) . 

In the same manner we can see that (a2)=> (b2) holds true. 
Let us assume that (b2) is valid. Let {} E P and let (Cn)nEN 

be a sequence of positive numbers decreasing to zero. Then 

(5) 'in E N 'ik E N Al(xo, {}, cn+k) C Al(xo, (2, cn) 

From (b2 ) it follows that for each n E N there exists a set 
En E M(X) such that Bn C Al(xo,g,Cn) and D(xo,Bn) = 1. 
Therefore 

(6)	 'in E N ~kn E N 'ik E N (if XQ E Ik, Ik C Ikn and 
8(Ik ) < 8(Ikn ), then 

J,l(Bn n Ik ) 1 )
p,(Ik) > - en 

We may suppose that the sequence (Ikn)nEN is decreasing. Let 
us put 
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(7) A = UnENCn U {XC}, 

where Cn = Bn n (Ikn \ Ikn+1 ). 

We will show that D(xo, A) = 1. Suppose Ik --+ Xo. For 
each kEN there exists n E N such that Ikn+1 C Ik C Ikn and 
J..l(Ikn+1 )< cnJ..l(Ik ). From (6) we have 

(8) J..l(Bn n Ik ) > (1 - cn)J..l(Ik ). 

On the other hand we have the inequalities: 

(9) J1(Bn n Ikn+1 ) ::; J1(Ikn+1 ) < cnJ..l(Ik ). 

From (8) and (9) it follows immediately that 
J..l(A n I k ) ~ J..l(Cn n Ik) = J..l(Bn n (Ikn \ I kn+1 ) n I k ) = J..l(Bn n 
Ik ) - J..l(Bn n Ikn+1 ) > (1- cn)J..l(Ik ) - cnJ1(Ik ) = (1- 2cn)J1(Ik). 

J1(A n Ik )
Thus we have /-L(h) > (1 - 2cn)' 

If Ik --+ xo, then Cn --+ 0 and this establishes D(xo, A) = 1. 
Now we show that FIA is lower semicontinuous at the point 

Xo. Let c > O. There exists n E N such that Cn < c. Let r = 
8(Ikn+1 ) and let x E AnK(xo, (J, r). Then x E UiENCn+iU{XO}. 
Moreover for each i E N we have Cn+i C Al(xo, (J, Cn+i) C 

Al(xo, (J, c). Therefore F(xo) C K(F(x), (J, c) for each x E 

A n K(xo, r). By virtue of (3) the multifunction FIA is lower 
semicontinuous at xo, which establishes the implication (b2 ) ::::} 

(a2). 
Applying this argument again, with (b2 ) replaced by (b1 ) and 

with assumed compactness of values of F, we obtain (b1) => 
(al). 

To prove the implication (Cl) => (b1) it is sufficient to ob
serve that the equality Au(xo, (J, e) = F+(K(F(xo), g, c)) holds 
true. 

Now suppose that F has compact values and (b1) is valid. 
Let G be an open set such that F(xo) c G. Let g E P and 
let (cn)nEN be a decreasing sequence of positive numbers con
vergent to zero such that K(F(xo), g, Cn) C G for each n E N. 
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By virtue of (b1) in the same fashion as before we can con
struct the set A (see (7)) such that D(xo, A) = 1 . We have 
P(x) C K(F(xo), g, €n) C G for each x E A. Thus we have 
A C P+(G) and D(xo, F+(G)) = 1, which establishes the im
plication (b1) => (Cl). 

Suppose that F has compact values and (C2) is valid. Let 
g E P and e > o. There exists a sequence (Yi)i=1,2, ... ,n such 
that P(xo) C Ui=1,2, ,nK (Yi, g,~) and F(xo) n K(Yi, g,~) =I 
ofor each i = 1,2, , n. Let Ui = P-(K(Yi, {}, ~)) for each 
i = 1,2, .. , n and let U(xo) = ni=1,2, ... ,nUi. By (C2) we have 
D(xo, Ui) = 1 for each i = 1,2, ... , n. Then Xo E U(xo) and 
D(xo, U(xo)) = 1. It suffices to show that U(xo) c Al(xo, g, e). 
Let x E U(xo). Then for each i = 1,2, ... , n we have F(x) n 
K(Yi, {}, ~) =I 0. Thus 

(10) Vi E {I, 2, ... , n} 3zi E F(x) Yi E K(Zi, (J, ~). 

Let Y E F(xo). Then there exists j E {I, 2, ... , n} such that 
{}(Y, Yj) < ~. Let Zj be chosen for Yj according to (10). Then 
{}(Zj, y) < e. Thence F(xo) C K(P(x), {}, €) and x E Al(xo, {}, e). 
The proof of (C2) =} (b2 ) is complete. 0 

Now let us suppose that (b2) is valid and let G c Y be an 
open set such that F(xo) n G =I 0. Let y E F(xo) n G and let 
(en)nEN be a decreasing to zero sequence of positive numbers 
such that K(y, g, cn) C G for each n E N. Again likewise as 
before we can construct a set A (see (7)) such that D(xo, A) = 
1. It remains to prove that A c P-(G). Let x E A. Then 
there exists n E N such that x E en C Al(xo, {}, €n). Thus 
we conclude that F(xo) c K(P(x), (], €n). Because y E F(xo), 
then there exists Z E F(x) such that y E K(z, {}, en). According 
to assumption K(y, {}, en) C G, thus we conclude that Z E G, 
hence F(x) n G =I 0, Le. x E F-(G), which establishes the 
implication (b2 ) =} (C2) and completes the proof of theorem 2. 

Summarizing above results, we have 
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Conclusion 1. Let F : X ~ Y be a multivalued function with 
compact values. Then F is approximately continuous if and 
only if F is continuous with respect to the density topology 
1d(X). 

Let	 A c X and x E X. Let us note that 

(11)	 x is a limit point of the set A in the topology 1d(X) if 
and only if Du *(x, A) > o. 

A point with this property we will call a 1d(X)-limit point. 
A 1d(X)-connected set is the one which is not the union of 

two nonempty subsets of X neither of which contains a 1d(X)
limit point of the other. 

The next theorem is established by the Conclusion 1. 

Theorem 3. Let F : X ~ Y be an approximately continu
ous with respect to F multivalued function with compact and 
connected values. Then F takes 1d(X)-connected sets into con
nected sets. 

Theorem 4. If a set A c X is open and connected, then it is 
1d(X)-connected subset of X. 

Proof Suppose A is open and connected but not 1d(X)
connected. Then there exist sets Band C nonempty, disjoint, 
homogeneous with respect to F and such that A = B UC. Let 
b E Band c E C. Let B(a, c) be an open ball including band 
c. For any set P E M(X) the function j(x) = p,(pnB(x,r)) is

p,(B(x,r)) 

continuous for fixed r > 0 ( the number 1-£~~fl,~))U is called the 
relative measure of P in B(x, r) ). 

Let Cl = min(c-d(a, b), c-d(a, c)). Then B(x, cl) C B(a, c) 
for each x E B(a, c - cl). Let us choose rl :::; Cl so that ,the 
relative measure of B in B(b, Tl) exceeds ~ and the relative 
measure of B in B(c, rl) is less than ~. This is possible since B 
has at bdensity one with respect to F and at c density zero with 
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respect to:F. There must then be a point al E B(a, c) such 
that the relative measure of B in B(al, rl)is exactly~. The 
ball B(al' rl) must have interior points bi E Band Cl E C. Let 
C2 = min(rl - d(al' b1 ), rl - d(al' Cl))' Analogously as before 
we may choose r2 < rl so that B(x, r2) C B(al' rl) for every 
x E B(al, rl - c2) and so that the relative measure of B in 
B(b1 , r2) exceeds ~ and is less than ~ in B(Cl' r2)' There is 
then a point a2 E B (aI, rl) such that the relative measure of B 
in B(a2, r2) is exactly ~. Continuing this process we construct 
a sequence B(an,rn) of open balls such that for each n E N we 
have B(an+l' rn+l) C Cl(B(an,rn)) C B(an-l, rn-I) ( Cl(M) 
denotes the closure of M ) and the relative measure of B in the 
ball B(an,rn) is ~. This sequence converges to a point ao E A 
but neither B nor C have density one at ao with respect to :F. 
Since Band C are homogeneous with respect to :F ao fj. Band 
ao fj. C. This contradiction establishes the theorem. 0 

Let us observe that a line segment in euclidean space R2 

is not 1d(R2)- connected. This is an example showing the ne
cessity of the opennes of A in the above theorem. However 
Theorem 4 is true if a connected set A has only the property: 
Int(A) cAe CI(Int(A)). This follows by the same method as 
in the proof of Theorem 4, because we may assume Int(A) =I 0. 

Definition 4. Let A C X be a closed set with connected inte
rior. The set A is called 1d(X)-regular if its boundary points 
are 1d(X)-limit points of the interior of A. 

Theorem 5. If a set A C X is 1d(X)-regular, then it is 1d(X)
connected. 

Proof. Suppose that A is 1d(X)-regular and is not 1d(X)
connected. The set A is 1d(X)-regular, so interior of A is a 
connected subset of A. Moreover A is not 1d(X)-connected. 
Then there exist two homogeneous with respect to F sets B 
and C such that Band C are disjoint, non-empty and each 
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contains none of the other's 1d(X)-limit points. One of the 
sets, say B, must then be contained entirely in the boundary 
of A, for otherwise this separation would induce a separation 
of the interior of A which is not possible ( see tho 4 ) because 
interior of A is open and connected. Then the set B contains a 
1d(X)-limit point of the interior of A and hence of C, which is 
contrary to our assumption. This finishes the proof of theorem. 
o 

Let A be an open sphere in R2 and let us delete an open 
radius. The resulting set is 1d(R2)-connected. This example 
shows that the converse of Theorem 4 and Theorem 5 is not 
true. 

Conclusion 2. Let F : X ~ Y be an approximately contin
uous with respect to F multivalued junction with compact and 
connected values. Then F takes 1d(X)-regular sets into con
nected sets. 
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